[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH09142865A - Reactor forming porous preform for optical fiber - Google Patents

Reactor forming porous preform for optical fiber

Info

Publication number
JPH09142865A
JPH09142865A JP30900595A JP30900595A JPH09142865A JP H09142865 A JPH09142865 A JP H09142865A JP 30900595 A JP30900595 A JP 30900595A JP 30900595 A JP30900595 A JP 30900595A JP H09142865 A JPH09142865 A JP H09142865A
Authority
JP
Japan
Prior art keywords
porous preform
optical fiber
flame
optical fibers
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30900595A
Other languages
Japanese (ja)
Inventor
Atsushi Terada
淳 寺田
Katsutoshi Motosugi
勝利 本杉
Hideya Morihira
英也 森平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP30900595A priority Critical patent/JPH09142865A/en
Publication of JPH09142865A publication Critical patent/JPH09142865A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01406Deposition reactors therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/0144Means for after-treatment or catching of worked reactant gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reactor capable of producing a high quality porous preform for optical fibers in a high yield. SOLUTION: In this reactor forming a porous preform for optical fibers, equipped with an apparatus for pulling up the porous preform for optical fibers while rotating, a burner 40 for attaching soot on the growth face of porous preform 20 for optical fiber, a discharge port 50, suction port 60 and airway 63 for suction gas, a blocking body 64 for blocking the flow of the suction gas to flame 41 is provided in the airway 63 for suction gas. Since the suction gas is blocked by the blocking body 64 provided in a prescribed place of the airway 63 for suction gas, the suction gas is not directly brought into contact with the flame 41. As a result, the porous preform 20 for optical fiber not causing fluctuation of the flame 41 and having good shape and free from crack is obtained in high yield.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高品質の光ファイ
バ用多孔質母材が高歩留りで得られる反応容器に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reaction container in which a high quality porous preform for optical fibers can be obtained with a high yield.

【0002】[0002]

【従来の技術】光ファイバ用多孔質母材は、バーナから
SiCl4 やGeCl4 等の原料ガスを噴出させ、この
原料ガスを酸水素又は炭化水素の火炎中で加水分解させ
てガラス微粒子とし、このガラス微粒子を回転する出発
材(石英棒)の周囲に堆積させて製造される。得られる
光ファイバ用多孔質母材は、焼結後、その先端部を加熱
し軟化させ、その一端を一定速度で引張り、所要の外径
を持つ光ファイバに線引加工される。ところで、このよ
うな光ファイバ用多孔質母材を製造する反応容器は、図
3に例示するように、光ファイバ用多孔質母材20を回転
させつつ引上げる装置30、光ファイバ用多孔質母材20の
成長面にすすを付けるバーナ40、バーナ40から排出され
る副生成物や不要物を排出する排気口50、反応容器12内
に流すガスを吸込む吸気口60、前記吸気口60付近に設け
られた円環状の吸気用風道63から構成されている。尚、
前記の副生成物とは、塩素や塩化水素等、不要物とは、
光ファイバ用多孔質母材に堆積しなかったガラス微粒子
等である。これらの副生成物や不要物は、前述のよう
に、反応容器12内を通流する吸気ガスに搬送されて、排
気口50から排出される。
2. Description of the Related Art A porous base material for an optical fiber is a raw material gas such as SiCl 4 or GeCl 4 ejected from a burner, and the raw material gas is hydrolyzed in a flame of oxyhydrogen or hydrocarbon to form glass fine particles, It is manufactured by depositing the glass particles around a rotating starting material (quartz rod). The obtained porous preform for optical fibers is heated and softened after sintering, and one end of the porous preform is drawn at a constant speed to be drawn into an optical fiber having a required outer diameter. By the way, as illustrated in FIG. 3, the reaction container for producing such a porous base material for an optical fiber includes a device 30 for pulling up the porous base material for an optical fiber 20 while rotating the porous base material for an optical fiber, and a porous base material for an optical fiber. A burner 40 for sooting the growth surface of the material 20, an exhaust port 50 for exhausting by-products and unnecessary substances exhausted from the burner 40, an intake port 60 for sucking gas flowing in the reaction vessel 12, and the vicinity of the intake port 60. The intake air passage 63 is provided in an annular shape. still,
With the above-mentioned by-products, chlorine, hydrogen chloride, etc.
For example, glass fine particles not deposited on the porous preform for optical fibers. As described above, these by-products and unnecessary substances are carried to the intake gas flowing in the reaction container 12 and discharged from the exhaust port 50.

【0003】[0003]

【発明が解決しようとする課題】しかし、バーナの火炎
はロウソクの炎に見られるように、周囲の気流に影響さ
れて、揺らぎを生じる。特に風道を出た後の吸気ガスは
流れが不安定で、この為火炎の揺らぎが大きくなり、光
ファイバ用多孔質母材の形状が不均一になることや割れ
が発生することがあった。又、吸気ガスの流れが乱れる
と堆積されないガラス微粒子が反応容器内に多量に滞留
するようになり、この滞留物が光ファイバ用多孔質母材
内に混入して、前記光ファイバ用多孔質ガラス母材を焼
結させた光ファイバ用ガラス母材に泡を生じさせること
があった。形状不均一のものや割れを発生した光ファイ
バ用多孔質ガラス母材や泡が生じた光ファイバ用ガラス
母材は、不良品となる為、高い製造歩留まりが得られな
かった。このような事態に対し、本発明者等は、火炎の
揺らぎを防止する方法について種々研究を行い、風道内
の吸気ガスの流れを制御することにより火炎の揺らぎを
小さくできることを知見し、更に研究を進めて、本発明
を完成させるに到った。本発明は、高品質の光ファイバ
用多孔質母材を高歩留りで製造できる反応容器を提供す
ることを目的とする。
However, the burner flame is fluctuated by being influenced by the surrounding airflow as seen in the candle flame. In particular, the flow of the intake gas after leaving the air passage was unstable, which caused large fluctuations in the flame, which could lead to uneven shapes and cracks in the porous preform for optical fibers. . Further, when the flow of the intake gas is disturbed, a large amount of glass particles that are not deposited will stay in the reaction container, and the stayed substances will be mixed in the porous preform for optical fiber to produce the above-mentioned porous glass for optical fiber. Bubbles were sometimes generated in the glass preform for optical fibers obtained by sintering the preform. Since the porous glass preform for optical fibers having a non-uniform shape or cracks and the glass preform for optical fibers having bubbles are defective products, a high production yield cannot be obtained. Against such a situation, the present inventors have conducted various researches on a method of preventing fluctuations of flames, and have found that fluctuations of flames can be reduced by controlling the flow of intake gas in the air passage, and further researches have been conducted. To complete the present invention. An object of the present invention is to provide a reaction container capable of producing a high-quality porous preform for optical fibers with a high yield.

【0004】[0004]

【課題を解決するための手段】本発明は、少なくとも、
光ファイバ用多孔質母材を回転させつつ引上げる装置、
光ファイバ用多孔質母材の成長面にすすを付けるバー
ナ、排気口、吸気口、及び吸気ガス用風道を具備した光
ファイバ用多孔質母材を形成する反応容器において、前
記吸気ガス用風道内に、吸気ガスのバーナ部分への流れ
を遮る遮蔽体が設けられていることを特徴とする光ファ
イバ用多孔質母材を形成する反応容器である。
Means for Solving the Problems The present invention provides at least:
Device for pulling while rotating the porous preform for optical fiber,
In a reaction vessel for forming a porous base material for an optical fiber, which comprises a burner for sooting a growth surface of the porous base material for an optical fiber, an exhaust port, an intake port, and an air passage for the intake gas, A reactor for forming a porous preform for an optical fiber, characterized in that a shield for blocking the flow of intake gas to the burner portion is provided inside the passage.

【0005】本発明において、遮蔽体には、板材、ブロ
ック材、目の細かいメッシュ材等種々の形状のものが適
用される。遮蔽体の形状や取付け位置は、風道の大き
さ、吸入ガス量、バーナからの火炎の位置等を勘案して
決められる。特に、取付け位置は、遮蔽体を迂回して流
出する吸気ガスの流れがバーナから出る火炎に対し対称
になるようにするのが肝要である。吸気ガスには、窒素
ガス等の不活性ガスや空気等、光ファイバ用多孔質母材
を変質させない任意のガスが適用できる。本発明は風道
を有する任意の反応容器に適用できる。又風道の形状や
位置等により特に規制されるものではない。
In the present invention, various shapes such as a plate material, a block material, and a mesh material having a fine mesh are applied to the shield. The shape and mounting position of the shield are determined in consideration of the size of the air passage, the amount of intake gas, the position of the flame from the burner, and the like. In particular, it is important that the mounting position is such that the flow of the intake gas that bypasses the shield and flows out is symmetrical with respect to the flame emitted from the burner. As the intake gas, any gas such as an inert gas such as nitrogen gas or air that does not deteriorate the porous preform for optical fiber can be applied. The present invention can be applied to any reaction vessel having an air passage. Further, it is not particularly restricted by the shape and position of the air passage.

【0006】[0006]

【実施例】以下に、本発明を実施例により詳細に説明す
る。 (実施例1)図1イ、ロは、本発明の反応容器の第1の
実施例を示す縦断面図及び平面透視図である。図で10
は、光ファイバ用多孔質母材(以下、多孔質母材と略記
する)20を形成する反応容器であり、反応容器10の頂部
に多孔質母材20を回転させつつ引上げる装置30が取付け
られている。多孔質母材20の下方にはバーナ40が設置さ
れており、このバーナ40からの火炎41により反応生成す
るすすが多孔質母材20の下面に堆積される。バーナ40の
前方に排気口50が設けられており、この排気口50から、
反応容器10内の副生成物や不要物等が排出される。反応
容器10の上部に吸気口60が設けられている。この吸気口
60の内側には円筒状の仕切壁61が設けられており、この
仕切壁61と反応容器10の内壁面62との間に形成される円
環状の空間が吸気ガス用風道63となる。この風道63の下
端は開放されており、この開放された風道63の下端の、
バーナ40の直上部分に所定長さの板状の遮蔽体64が設け
られている。
The present invention will be described below in detail with reference to examples. (Embodiment 1) FIGS. 1A and 1B are a longitudinal sectional view and a plan perspective view showing a first embodiment of a reaction container of the present invention. 10 in the figure
Is a reaction vessel for forming a porous preform for optical fiber (hereinafter abbreviated as porous preform) 20, and a device 30 for pulling up while rotating the porous preform 20 is attached to the top of the reaction vessel 10. Has been. A burner 40 is installed below the porous base material 20, and soot generated by reaction by a flame 41 from the burner 40 is deposited on the lower surface of the porous base material 20. An exhaust port 50 is provided in front of the burner 40, and from this exhaust port 50,
By-products and unnecessary substances in the reaction vessel 10 are discharged. An intake port 60 is provided above the reaction container 10. This inlet
A cylindrical partition wall 61 is provided inside 60, and an annular space formed between this partition wall 61 and the inner wall surface 62 of the reaction vessel 10 serves as an intake gas air passage 63. The lower end of this air passage 63 is open, and the lower end of this open air passage 63
A plate-shaped shield 64 having a predetermined length is provided directly above the burner 40.

【0007】図1に示した反応容器10を用いて、多孔質
母材20を製造した。多孔質母材を回転させつつ引上げる
装置30に、出発材の石英棒31を取付け、この石英棒31の
先端部分にバーナ40からの酸水素の火炎41を当て、この
火炎41により原料(SiCl4 、GeCl4 )が加水分
解されて生成するガラス微粒子を堆積させた。反応容器
10内を、脱気ポンプ(図示せず)により排気口50から脱
気し、同時に吸気口60から窒素ガスを吸引した。塩素ガ
ス等の副生成物や、堆積しなかったガラス微粒子等の不
要物は窒素ガス流に乗って排気口50から排出された。ガ
ラス微粒子が反応容器内に滞留するようなことはなかっ
た。
A porous base material 20 was manufactured using the reaction vessel 10 shown in FIG. A quartz rod 31 as a starting material is attached to a device 30 for pulling up while rotating the porous base material, and a flame 41 of oxyhydrogen from a burner 40 is applied to the tip end portion of the quartz rod 31, and the raw material (SiCl 4 4 , glass particles produced by hydrolysis of GeCl 4 ) were deposited. Reaction vessel
The inside of 10 was degassed from the exhaust port 50 by a degassing pump (not shown), and at the same time, nitrogen gas was sucked from the intake port 60. By-products such as chlorine gas and unnecessary substances such as glass particles that did not deposit were discharged from the exhaust port 50 along with the nitrogen gas flow. The glass particles did not stay in the reaction vessel.

【0008】(実施例2)図2イ、ロは、本発明の反応
容器の第2の実施例を示す縦断面図及び平面透視図であ
る。この反応容器11は、吸気口60がバーナ40の配置位置
から、平面透視図で見て90度ずれた位置にある。この
為、遮蔽体64は、遮蔽体64を迂回した窒素ガスがバーナ
40の火炎41へ左右対称に流れるように、バーナ40の直上
よりやや吸気口60寄りにずらした位置に設けた。この反
応容器11を用いて、実施例1と同様にして、光ファイバ
用多孔質母材を製造した。
(Embodiment 2) FIGS. 2A and 2B are a longitudinal sectional view and a plan perspective view showing a second embodiment of the reaction container of the present invention. In the reaction container 11, the intake port 60 is at a position deviated from the disposition position of the burner 40 by 90 degrees in a plan perspective view. For this reason, the shield 64 is protected by the nitrogen gas that bypasses the shield 64.
It was installed at a position slightly offset from the position directly above the burner 40 toward the intake port 60 so that it would flow symmetrically to the flame 41 of the 40. Using this reaction vessel 11, a porous preform for optical fibers was manufactured in the same manner as in Example 1.

【0009】得られた各々の光ファイバ用多孔質母材に
ついて、形状の均一性及び割れの発生状況を調査した。
又形状の均一性に問題がなく割れが発生しなかった光フ
ァイバ用多孔質母材は、焼結して得た光ファイバ用ガラ
ス母材の泡についても調査を行った。そしてこれらの調
査結果に基づいて歩留りを調べた。図3に示した従来の
反応容器によっても、光ファイバ用多孔質母材を製造し
同様の調査を行った。結果を、火炎の揺らぎの状況を併
記して表1に示す。
With respect to each of the obtained porous base materials for optical fibers, the uniformity of shape and the occurrence of cracks were investigated.
Further, with respect to the porous preform for optical fibers, which had no problem in shape uniformity and did not crack, the bubbles of the glass preform for optical fibers obtained by sintering were also investigated. And the yield was investigated based on these survey results. The same investigation was carried out by producing a porous preform for optical fibers by using the conventional reaction container shown in FIG. The results are shown in Table 1 together with the situation of flame fluctuation.

【0010】[0010]

【表1】 ○:全て、形状良好、割れ無し、泡無し。 △:形状不良のもの有り、割れ発生のもの有り、泡発生のもの有り。 *:形状及び割れが○のものについて調査した。[Table 1] ◯: All have good shape, no cracks, and no bubbles. Δ: Some shapes were defective, some were cracked, and some were foamed. *: The shape and cracks were evaluated as ○.

【0011】表1より明らかなように、本発明例品(実
施例1、2)は、光ファイバ用多孔質母材の形状が全て
に渡って良好であり、割れもなく、又光ファイバ用ガラ
ス母材の泡発生もなく、その結果、製造歩留りが高かっ
た。これに対し、従来品(従来例1)は、火炎の揺らぎ
が大きく、形状が不均一となり、割れも生じていなかっ
た。又ガラス微粒子が反応容器内に多量に滞留し、これ
が光ファイバ用多孔質母材に混入して焼結後の光ファイ
バ用ガラス母材に泡が生じた。この為製造歩留りが著し
く低下した。
As can be seen from Table 1, the products of Examples of the present invention (Examples 1 and 2) were excellent in the shape of the porous base material for optical fiber over all, without cracking, and for optical fiber. No bubbles were generated in the glass base material, and as a result, the production yield was high. On the other hand, the conventional product (conventional example 1) had a large flame fluctuation, an uneven shape, and no cracking. Further, a large amount of glass microparticles stayed in the reaction container, which was mixed in the porous preform for optical fibers to generate bubbles in the sintered glass preform for optical fibers. Therefore, the production yield was remarkably reduced.

【0012】[0012]

【発明の効果】以上に述べたように、本発明の反応容器
は、吸気用風道の所定箇所に遮蔽体が設けられているの
で、吸気ガスが遮蔽体に遮られて火炎に直接当たらず、
その為火炎の揺らぎが小さくなり、形状が良好で、割れ
のない高品質の多孔質母材が高歩留りで得られる。
As described above, in the reaction container of the present invention, since the shield is provided at a predetermined position of the intake air passage, the intake gas is shielded by the shield and does not directly hit the flame. ,
Therefore, the fluctuation of the flame becomes small, the shape is good, and a high-quality porous base material without cracks can be obtained with a high yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(イ)は本発明の反応容器の第1の実施例を示
す縦断面図、(ロ)は本発明の反応容器の第1の実施例
を示す平面透視図である。
FIG. 1A is a longitudinal sectional view showing a first embodiment of a reaction container of the present invention, and FIG. 1B is a plan perspective view showing a first embodiment of the reaction container of the present invention.

【図2】(イ)は本発明の反応容器の第2の実施例を示
す縦断面図、(ロ)は本発明の反応容器の第2の実施例
を示す平面透視図である。
FIG. 2A is a vertical sectional view showing a second embodiment of the reaction container of the present invention, and FIG. 2B is a plan perspective view showing the second embodiment of the reaction container of the present invention.

【図3】従来の反応容器の縦断面図である。FIG. 3 is a vertical cross-sectional view of a conventional reaction container.

【符号の説明】[Explanation of symbols]

10,11,12…反応容器 20…………光ファイバ用多孔質母材 30…………光ファイバ用多孔質母材を回転させつつ引上
げる装置 31…………石英棒 40…………バーナ 41…………火炎 50…………排気口 60…………吸気口 61…………仕切壁 62…………反応容器の上部内壁面 63…………吸気ガス用風道 64…………遮蔽体
10,11,12… Reaction vessel 20 ………… Porous preform for optical fiber 30 ………… Device for pulling while rotating porous preform for optical fiber 31 ………… Quartz rod 40 ………… … Burner 41 ………… Flame 50 ………… Exhaust port 60 ………… Intake port 61 ………… Partition wall 62 ………… Upper inner wall of reaction vessel 63 ………… Intake gas air passage 64 ………… Shield

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも、光ファイバ用多孔質母材を
回転させつつ引上げる装置、光ファイバ用多孔質母材の
成長面にすすを付けるバーナ、排気口、吸気口、及び吸
気ガス用風道を具備した光ファイバ用多孔質母材を形成
する反応容器において、前記吸気ガス用風道内に、吸気
ガスのバーナ部分への流れを遮る遮蔽体が設けられてい
ることを特徴とする光ファイバ用多孔質母材を形成する
反応容器。
1. At least an apparatus for pulling while rotating a porous preform for optical fiber, a burner for sooting a growth surface of the porous preform for optical fiber, an exhaust port, an intake port, and an air passage for intake gas. In a reaction container for forming a porous preform for optical fibers, the shield for blocking the flow of the intake gas to the burner portion is provided in the intake gas wind passage. A reaction vessel that forms a porous matrix.
JP30900595A 1995-11-28 1995-11-28 Reactor forming porous preform for optical fiber Pending JPH09142865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30900595A JPH09142865A (en) 1995-11-28 1995-11-28 Reactor forming porous preform for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30900595A JPH09142865A (en) 1995-11-28 1995-11-28 Reactor forming porous preform for optical fiber

Publications (1)

Publication Number Publication Date
JPH09142865A true JPH09142865A (en) 1997-06-03

Family

ID=17987762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30900595A Pending JPH09142865A (en) 1995-11-28 1995-11-28 Reactor forming porous preform for optical fiber

Country Status (1)

Country Link
JP (1) JPH09142865A (en)

Similar Documents

Publication Publication Date Title
KR102545712B1 (en) Method and apparatus for manufacturing porous glass preform for optical fiber
EP2583952A1 (en) Method and burner for producing a porous glass preform
JP4043768B2 (en) Manufacturing method of optical fiber preform
JPH10245242A (en) Apparatus for producing porous glass base material for optical fiber
JP2000290035A (en) Device for production of porous optical fiber perform
CN1057348C (en) Method and apparatus for chemically gas phase sedimenting coating of inner surface of essentially semilspheric stroma
JPH09142865A (en) Reactor forming porous preform for optical fiber
JP3653902B2 (en) Glass base material synthesis burner and glass base material manufacturing method
JP5012042B2 (en) Manufacturing method of glass base material
JPH07300332A (en) Production unit for optical fiber preform
KR101157662B1 (en) Fabrication Apparatus of Porous Glass preform and Glass Preform For Optical Fiber Fabricated Thereby
KR102545711B1 (en) Apparatus and method for manufacturing porous glass preform
JP2002326833A (en) Apparatus for producing optical fiber base material and method for producing optical fiber base material using it
JP3510425B2 (en) Manufacturing method of optical fiber preform
CN102417294B (en) The manufacture method of porous glass base material and manufacturing installation
JP2010064934A (en) Burner for producing synthetic silica glass, and apparatus for producing synthetic silica glass using the burner
KR20020067992A (en) Method of forming soot preform
JPH1053430A (en) Apparatus and method for manufacturing optical fiber preform
JP2000327341A (en) Multiple pipe burner for producing porous glass base material and method and device for producing porous glass base material by use of the same
US20040172977A1 (en) Method of producing glass particle-deposited body
JP2003508336A (en) Equipment for producing glass preforms by flame hydrolysis
JP4449272B2 (en) Method for producing glass particulate deposit
JP3186572B2 (en) Method for producing glass preform for optical fiber
JPH09132422A (en) Apparatus for producing preform for optical fiber
JPS62162637A (en) Production of optical fiber preform