JPH09148836A - Antenna system - Google Patents
Antenna systemInfo
- Publication number
- JPH09148836A JPH09148836A JP30296895A JP30296895A JPH09148836A JP H09148836 A JPH09148836 A JP H09148836A JP 30296895 A JP30296895 A JP 30296895A JP 30296895 A JP30296895 A JP 30296895A JP H09148836 A JPH09148836 A JP H09148836A
- Authority
- JP
- Japan
- Prior art keywords
- elements
- mutual coupling
- equation
- matrix
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Aerials With Secondary Devices (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は平面または曲面上
に配列された素子アンテナと各素子アンテナにつながれ
たウェイト乗算回路、各ウェイト乗算回路につながれウ
ェイト乗算回路の出力を加算する加算回路からなるアン
テナ装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antenna comprising an element antenna arranged on a plane or a curved surface, a weight multiplication circuit connected to each element antenna, and an addition circuit connected to each weight multiplication circuit and adding the outputs of the weight multiplication circuits. It relates to the device.
【0002】[0002]
【従来の技術】図7は従来のアンテナ装置を示すもの
で、図において1は平面上に並べられたN個の素子アン
テナ、2は受信機、3はアナログ/ディジタル変換回
路、4はウェイト乗算回路、5は加算回路である。2. Description of the Related Art FIG. 7 shows a conventional antenna device, in which 1 is an N element antenna arranged on a plane, 2 is a receiver, 3 is an analog / digital conversion circuit, and 4 is weight multiplication. The circuit 5 is an adder circuit.
【0003】次に動作について説明する。素子アンテナ
1で受信された受信信号は、それぞれの素子アンテナに
つながれた受信機2に送られ、周波数変換される。受信
機2で周波数変換された信号はアナログ/ディジタル変
換回路3でディジタル信号に変換され、ウェイト乗算回
路4にて所望のアレー指向性を形成するためのウェイト
を乗算され、加算回路5にて他のウェイト乗算回路から
出力された受信信号と加算され、所望のアレー指向性を
得る。Next, the operation will be described. The reception signal received by the element antenna 1 is sent to the receiver 2 connected to each element antenna, and frequency conversion is performed. The signal frequency-converted by the receiver 2 is converted into a digital signal by the analog / digital conversion circuit 3, multiplied by a weight for forming a desired array directivity by the weight multiplication circuit 4, and then added by the addition circuit 5. And the received signal output from the weight multiplication circuit are added to obtain a desired array directivity.
【0004】ここで各素子アンテナ間には素子間相互結
合が存在する。素子間相互結合はアレー動作状態におけ
る素子指向性(アレー素子指向性)を単体素子指向性か
ら変化させ、サイドローブの上昇、利得の低下等のアン
テナ性能低下をまねく。Mutual coupling between elements exists between the element antennas. Mutual coupling between elements changes the element directivity (array element directivity) in the array operating state from the single element directivity, resulting in deterioration of antenna performance such as side lobe increase and gain decrease.
【0005】[0005]
【発明が解決しようとする課題】従来のアンテナ装置は
以上のように構成されているため素子間相互結合の影響
により、サイドローブの上昇、利得の低下等のアンテナ
性能低下が発生した。Since the conventional antenna device is configured as described above, the antenna performance is deteriorated due to the influence of mutual coupling between the elements, such as an increase in side lobes and a decrease in gain.
【0006】この発明にかかるアンテナ装置は上記のよ
うな問題点を解消するためのものであり、曲面または平
面上に素子が配列されたアンテナ装置において素子間相
互結合をアレー素子指向性の計測値から乗算しその影響
を補償することで、サイドローブの上昇、利得の低下等
を低減したアンテナ装置を提供することを目的とする。The antenna device according to the present invention is for solving the above-mentioned problems, and in an antenna device in which elements are arranged on a curved surface or a plane, mutual coupling between elements is measured by array element directivity. It is an object of the present invention to provide an antenna device in which an increase in side lobes, a decrease in gain, and the like are reduced by multiplying by and compensating for the effect.
【0007】また、この発明にかかるアンテナ装置は、
簡略かつ素子数が増加しても実現可能な回路で実現する
ことを目的とする。Further, the antenna device according to the present invention is
The object is to realize a circuit that is simple and can be realized even if the number of elements is increased.
【0008】また、この発明にかかるアンテナ装置はア
ンテナの試験調整時間を短縮化することを目的とする。Another object of the antenna device according to the present invention is to shorten the test adjustment time of the antenna.
【0009】[0009]
【課題を解決するための手段】この発明の実施の形態1
によるアンテナ装置はアレー素子指向性の観測範囲にお
いてEmbodiment 1 of the present invention
The antenna device by is in the observation range of the array element directivity.
【0010】[0010]
【数3】 (Equation 3)
【0011】がgi (θ)の最小二乗法における最適近
似関数になるように素子間相互結合c inを算出すること
で、素子間相互結合行列Cを計算し、素子間相互結合行
列Cの逆行列C-1を記憶する記憶装置と、理想的な励振
分布ベクトルW=[w1 ・・・wN ]を計算または蓄え
るウェイト制御装置と、記憶装置から出力された素子間
相互結合行列Cの逆行列C-1とウェイト制御装置から出
力された理想的な励振分布ベクトルWから演算W’=W
C-1によって各ウェイト乗算回路に設定する励振分布ベ
クトルW’を演算する演算装置を備える。Is gi Optimal near in the least-squares method of (θ)
Mutual coupling between elements so that it becomes a similar function c inCalculating
Then, the mutual coupling matrix C between elements is calculated, and the mutual coupling row between elements is calculated.
Inverse matrix C of column C-1Storage device that stores
Distribution vector W = [w1 ... wN ] Calculate or store
Between the weight control device and the element output from the storage device
Inverse matrix C of mutual coupling matrix C-1And the weight control device
Calculation from the applied ideal excitation distribution vector W W '= W
C-1The excitation distribution vector set for each weight multiplication circuit by
A computing device for computing the cuttle W'is provided.
【0012】またこの発明の実施の形態2によるアンテ
ナ装置は、上記の実施の形態1における演算装置として
各ウェイト乗算装置に隣接した内積演算回路を備える。The antenna device according to the second embodiment of the present invention includes an inner product calculating circuit adjacent to each weight multiplying device as the calculating device in the first embodiment.
【0013】またこの発明の実施の形態3によるアンテ
ナ装置は、演算W’=WC-1によって素子の励振分布
w’i を計算するに当たり、行列C-1の全ての要素を用
いてW’を計算するのではなく、素子間隔があらかじめ
設定されたしきい値より狭い素子間の相互結合の影響を
補正する要素のみを用いて計算する。[0013] The antenna device according to the third embodiment of the invention, 'by = WC -1 excitation distribution w of the element' operation W In calculating i, the W 'using all the elements of the matrix C -1 Rather than calculating, the calculation is performed using only elements that correct the effect of mutual coupling between elements whose element spacing is narrower than a preset threshold value.
【0014】またこの発明の実施の形態4によるアンテ
ナ装置は運用周波数帯域の一定間隔周波数毎にアレー素
子指向性を計測し、素子間相互結合行列Cを求め、その
行列要素を運用周波数に渡って補間、逆行列C-1を計算
し、運用周波数全帯域の逆行列C-1を記憶装置に記憶す
る。Further, the antenna device according to the fourth embodiment of the present invention measures the array element directivity at every constant interval frequency of the operating frequency band, obtains the mutual coupling matrix C between elements, and extends the matrix element over the operating frequency. interpolation, to calculate the inverse matrix C -1, stores the inverse matrix C -1 of operating frequency all the bands in the storage device.
【0015】[0015]
実施の形態1.図1はこの発明の実施の形態1を示す構
成図であり、図において1は平面または曲面上に並べら
れたN個の素子アンテナ、2は受信機、3はアナログ/
ディジタル変換回路、4はウェイト乗算回路、5は加算
回路、6はウェイト制御装置、7は記憶装置、8は演算
装置である。Embodiment 1 FIG. 1 is a configuration diagram showing a first embodiment of the present invention, in which 1 is an N element antenna arranged on a plane or a curved surface, 2 is a receiver, 3 is analog / analog
A digital conversion circuit, 4 is a weight multiplication circuit, 5 is an addition circuit, 6 is a weight control device, 7 is a storage device, and 8 is an arithmetic device.
【0016】次に動作について説明する。素子アンテナ
1で受信された受信信号は、それぞれの素子アンテナに
つながれた受信機2に送られ、周波数変換される。受信
機2で周波数変換された信号はアナログ/ディジタル変
換回路3でディジタル信号に変換され、ウェイト乗算回
路5にてウェイトを乗算され、加算回路5にて他のウェ
イト乗算回路から出力された受信信号と加算され、所望
のアレー指向性を得る。ここで、ウェイト制御装置7は
単体素子指向性fn (θ)を用いて所望の低サイドロー
ブ化ビーム、成形ビーム等の放射パターンを形成する理
想的な励振分布ベクトルW=[w1 ・・・wN ]を演算
装置8へ送る。記憶装置7は記憶していた素子間相互結
合行列Cの逆行列C-1を演算装置8へ送る。演算装置8
は演算W’=WC-1によって励振分布ベクトルW’=
[w’1 ・・・w’N ]を計算し、ウェイト乗算回路5
にW’を設定する。Next, the operation will be described. The reception signal received by the element antenna 1 is sent to the receiver 2 connected to each element antenna, and frequency conversion is performed. The signal frequency-converted by the receiver 2 is converted into a digital signal by the analog / digital conversion circuit 3, multiplied by the weight by the weight multiplication circuit 5, and received by the addition circuit 5 from another weight multiplication circuit. Is added to obtain the desired array directivity. Here, the weight control device 7 uses the single element directivity f n (θ) to form an ideal excitation distribution vector W = [w 1 ... - Send a w N] to the computing device 8. The storage device 7 sends the stored inverse matrix C −1 of the interelement mutual coupling matrix C to the arithmetic device 8. Arithmetic unit 8
Is the excitation distribution vector W '= by the calculation W' = WC -1
[W ′ 1 ... w ′ N ] is calculated, and the weight multiplication circuit 5
Set W'to.
【0017】ここで、記憶装置7において素子間相互結
合行列Cは次のようにして求められる。図2は平面また
は曲面上の素子間相互結合を示す図であり、図において
1は曲面上に配列されたN個の素子アンテナ、fn
(θ)は素子nの素子指向性、gi (θ)は素子iのア
レー素子指向性、cinは素子nからiへの素子間相互結
合である。素子iのアレー素子指向性は次式で表わされ
る。Here, the inter-element mutual coupling matrix C in the storage device 7 is obtained as follows. FIG. 2 is a diagram showing mutual coupling between elements on a plane or a curved surface. In the figure, 1 is N element antennas arranged on the curved surface, and f n.
(Θ) is the element directivity of the element n, g i (θ) is the array element directivity of the element i, and c in is the mutual coupling between elements n to i. The array element directivity of the element i is expressed by the following equation.
【0018】[0018]
【数4】 (Equation 4)
【0019】“数4”においては、gi (θ)を最適値
問題における所望の関数、fn (θ)を展開関数、cin
を展開係数と見なす事ができる。従って、cinは“数
5”に示す平均二乗誤差を最小にする係数として算出可
能である。In the equation (4), g i (θ) is a desired function in the optimal value problem, f n (θ) is an expansion function, and c in
Can be regarded as the expansion coefficient. Therefore, c in can be calculated as a coefficient that minimizes the mean square error shown in “Equation 5”.
【0020】[0020]
【数5】 (Equation 5)
【0021】“数5”においてθ1 はgi (θ)の計測
開始角度、θ2 はgi (θ)の計測終了角度を示す。
“数5”を展開すると、次式を得る。[0021] theta 1 in "Number 5" measurement start angle g i (θ), θ 2 denotes the measurement end angle g i (θ).
By expanding “Equation 5”, the following equation is obtained.
【0022】[0022]
【数6】 (Equation 6)
【0023】ここで、Here,
【0024】[0024]
【数7】 (Equation 7)
【0025】[0025]
【数8】 (Equation 8)
【0026】[0026]
【数9】 (Equation 9)
【0027】[0027]
【数10】 (Equation 10)
【0028】“数5”のεを最小とするには、下式が成
立すればよい。In order to minimize ε in "Equation 5", the following equation may be established.
【0029】[0029]
【数11】 [Equation 11]
【0030】従って、Therefore,
【0031】[0031]
【数12】 (Equation 12)
【0032】同様に、Similarly,
【0033】[0033]
【数13】 (Equation 13)
【0034】“数12”,“数13”においてRe()
は変数の実部、Im()は変数の虚部を示す。“数1
2”,“数13”より次式を得る。Re () in "Equation 12" and "Equation 13"
Indicates the real part of the variable, and Im () indicates the imaginary part of the variable. "Number 1
The following equation is obtained from 2 ”and“ Equation 13 ”.
【0035】[0035]
【数14】 [Equation 14]
【0036】“数14”=0の条件より、次のN個の一
次式を得る。Under the condition of "Equation 14" = 0, the following N linear expressions are obtained.
【0037】[0037]
【数15】 (Equation 15)
【0038】“数15”を行列を用いて表わすと、Representing "Equation 15" using a matrix,
【0039】[0039]
【数16】 (Equation 16)
【0040】従って、素子nからiへの素子間相互結合
cinは次式で算出される。Therefore, the mutual coupling c in between the elements n to i is calculated by the following equation.
【0041】[0041]
【数17】 [Equation 17]
【0042】全ての素子(i=1・・・N)についてc
inを求めることで次式を得る。C for all elements (i = 1 ... N)
Obtaining in gives the following formula.
【0043】[0043]
【数18】 (Equation 18)
【0044】次に素子間相互結合行列を用いることで、
サイドローブの上昇、利得の低下等を低減できることを
説明する。素子指向性fn (θ)を用いて所望の低サイ
ドローブ化ビーム、成形ビーム等の放射指向性を形成す
る理想的な励振分布ベクトルをW=[w1 ・・・wN ]
(wi は素子iに設定する理想的な励振分布)とする。
Wを用いることで所望のアレーアンテナの放射指向性F
(θ)は次式で表わされる。Next, by using the mutual coupling matrix between elements,
It will be described that the rise of the side lobe and the decrease of the gain can be reduced. An ideal excitation distribution vector for forming a desired radiation directivity of a side-lobe-reduced beam, a shaped beam, or the like using the element directivity f n (θ) is W = [w 1 ... w N ]
(W i is the ideal excitation distribution be set to the element i) a.
By using W, the radiation directivity F of the desired array antenna
(Θ) is represented by the following equation.
【0045】[0045]
【数19】 [Equation 19]
【0046】“数19”に“数18”を代入すること
で、By substituting "Equation 18" into "Equation 19",
【0047】[0047]
【数20】 (Equation 20)
【0048】“数20”より励振分布ベクトルW’=
[w’1 ・・・w’N ](w’i は素子iに設定する励
振分布)として、次式を得る。From "Equation 20", the excitation distribution vector W '=
The following expression is obtained as [w ′ 1 ... W ′ N ] (w ′ i is the excitation distribution set for the element i).
【0049】[0049]
【数21】 (Equation 21)
【0050】“数21”から明かなように励振分布ベク
トルW’を演算装置8にて計算し、ウェイト乗算回路5
に設定することで素子間相互結合の影響を補償した励振
分布を各素子に設定する事が可能となり、素子間相互結
合に起因するサイドローブの上昇、利得の低下等を抑制
することが可能である。図3に素子間相互結合を補償し
ていない励振分布ベクトルWをウェイト乗算回路5に設
定した場合のアレー放射パターンの例を点線で、素子間
相互結合を補償した励振分布ベクトルW’をウェイト乗
算回路5に設定して用いた場合のアレー放射パターンの
例を実線で示す。素子間相互結合の影響を補償した励振
分布を各素子に設定する事で、サイドローブが低減し利
得が上昇していることがわかる。The excitation distribution vector W'is calculated by the arithmetic unit 8 as is clear from "Equation 21", and the weight multiplication circuit 5
By setting to, it is possible to set the excitation distribution that compensates for the effect of mutual coupling between elements to each element, and it is possible to suppress the rise of side lobes and the decrease of gain due to mutual coupling between elements. is there. In FIG. 3, an example of an array radiation pattern when the excitation distribution vector W that does not compensate mutual coupling between elements is set in the weight multiplication circuit 5 is shown by a dotted line, and the excitation distribution vector W ′ that compensates mutual coupling between elements is weight multiplied. An example of the array radiation pattern when it is set in the circuit 5 and used is shown by a solid line. It can be seen that the side lobe is reduced and the gain is increased by setting the excitation distribution that compensates for the effect of mutual coupling between elements in each element.
【0051】実施の形態2.図4はウェイト制御装置6
から出力されるWから、各ウェイト乗算回路に隣接した
内積演算回路でW’を計算する実施の形態2を示す構成
図である。図4においてウェイト制御回路6から出力さ
れたWは各ウェイト乗算装置4に隣接した内積演算回路
9に送られる。記憶装置7は記憶していた行列C-1の要
素c-1 ni(n=1・・・N)を素子iの内積演算回路9
に出力する。素子iの内積演算回路9は“数22”によ
りw’i を演算する。Embodiment 2 FIG. 4 shows a weight control device 6
It is a block diagram which shows Embodiment 2 which calculates W'in the inner product arithmetic circuit adjacent to each weight multiplication circuit from W output from. In FIG. 4, W output from the weight control circuit 6 is sent to the inner product calculation circuit 9 adjacent to each weight multiplication device 4. The storage device 7 stores the stored element c −1 ni (n = 1 ... N) of the matrix C −1 in the inner product arithmetic circuit 9 of the element i.
Output to The inner product calculating circuit 9 of the element i calculates w ′ i according to “Equation 22”.
【0052】[0052]
【数22】 (Equation 22)
【0053】この図4に示す実施の形態2では各素子で
ウェイト計算を並列で行うため、演算時間の短縮が可能
であり、簡略かつ素子数が増加しても実現可能である。In the second embodiment shown in FIG. 4, since the weight calculation is performed in parallel for each element, the calculation time can be shortened, and the simplification can be realized even if the number of elements is increased.
【0054】実施の形態3.実施の形態1や実施の形態
2のアンテナ装置において素子数が多くなると演算装置
8や内積演算回路9における演算量が増加する。しか
し、図5に示す様に素子間の距離が離れていれば素子間
相互結合量は小さくなるため、図5における行列Cの斜
線の部分はほぼ0に等しい。従って、その逆行列である
C-1も斜線の部分はほぼ0に等しく、行列C-1の斜線の
部分は0であるとして、“数21”や“数22”の演算
を行っても実用上は差しつかえない。従って、“数2
2”の場合、Embodiment 3 FIG. When the number of elements in the antenna device of the first or second embodiment increases, the amount of calculation in the arithmetic unit 8 or the inner product arithmetic circuit 9 increases. However, as shown in FIG. 5, when the distance between the elements is large, the mutual coupling amount between the elements becomes small. Therefore, the shaded portion of the matrix C in FIG. Therefore, it is assumed that the inverse matrix C −1 also has a shaded portion substantially equal to 0, and that the shaded portion of the matrix C −1 is 0, even if the operation of “Equation 21” or “Equation 22” is performed. The top is safe. Therefore, "Number 2
In case of 2 ”,
【0055】[0055]
【数23】 (Equation 23)
【0056】としてw’i を計算することができる。こ
こで、D(i,n)は素子iと素子nの距離を示し、D
thは素子アンテナの形状等で決まる定数である。従っ
て、演算装置8や内積演算回路9における演算量を減ら
す事ができ、素子数が多い場合でも演算回路の簡略化
や、ビーム方向切り替え時間の短縮が可能である。W ′ i can be calculated as Here, D (i, n) represents the distance between the element i and the element n, and
th is a constant determined by the shape of the element antenna. Therefore, the amount of calculation in the arithmetic unit 8 and the inner product arithmetic circuit 9 can be reduced, and even when the number of elements is large, the arithmetic circuit can be simplified and the beam direction switching time can be shortened.
【0057】実施の形態4.実施の形態1や実施の形態
2のアンテナ装置において、運用周波数が単一でない場
合は、全運用周波数帯域においてアレー素子指向性gi
(θ)を計測し、C-1を算出する必要がある。しかしな
がら図6に示す様に素子間相互結合cniを周波数に対し
なだらかな変化を示す。従って、全運用周波数において
gi (θ)を計し、素子間相互結合行列Cを算出し、C
-1を求めるのではなく、周波数帯域のある一定間隔毎に
アレー素子指向性gi (θ)を計測し、素子間相互結合
行列Cを算出し、その要素を周波数帯域に渡って補間
し、各運用周波数におけるC-1を算出し記憶装置7に記
憶することで、アレー素子指向性gi (θ)の計測回数
を少なくでき、アンテナの試験調整時間を短縮化するこ
とが可能である。Embodiment 4 FIG. In the antenna device of the first or second embodiment, when the operating frequency is not single, the array element directivity g i in the entire operating frequency band
It is necessary to measure (θ) and calculate C -1 . However, as shown in FIG. 6, the mutual coupling between elements c ni shows a gradual change with frequency. Therefore, g i (θ) is calculated at all operating frequencies, the mutual coupling matrix C between elements is calculated, and C i
-1 is not calculated, but the array element directivity g i (θ) is measured at regular intervals of the frequency band, the interelement mutual coupling matrix C is calculated, and the elements are interpolated over the frequency band, By calculating C -1 at each operating frequency and storing it in the storage device 7, it is possible to reduce the number of times the array element directivity g i (θ) is measured and shorten the antenna test adjustment time.
【0058】なお、上実施の形態1〜4ではディジタル
ビームフォーミングアンテナ装置について説明したが、
この発明はこれに限るものでは無く、例えばマイクロ波
減衰器と移相器を備えたフェーズドアレーアンテナ装置
にも適用できるものである。Although the digital beam forming antenna device has been described in the above first to fourth embodiments,
The present invention is not limited to this, and can be applied to, for example, a phased array antenna device including a microwave attenuator and a phase shifter.
【0059】[0059]
【発明の効果】この発明の実施の形態1によれば、素子
間相互結合の影響を補償した励振分布を各ウェイト乗算
回路に設定することができ、サイドローブの上昇や利得
の低下等を抑制することができる。According to the first embodiment of the present invention, it is possible to set the excitation distribution in which the influence of mutual coupling between elements is compensated for in each weight multiplication circuit, and suppress the rise of side lobe and the decrease of gain. can do.
【0060】この発明の実施の形態2によれば、演算
W’=WC-1における各要素wi ’を内積演算回路で並
列に計算することで、構成が簡単かつ、安価であり、ビ
ーム方向の切り替え時間を短くすることが可能である。According to the second embodiment of the present invention, each element w i 'in the operation W' = WC -1 is calculated in parallel by the inner product operation circuit, so that the configuration is simple and inexpensive, and the beam direction is reduced. It is possible to shorten the switching time.
【0061】この発明の実施の形態3によれば素子iの
励振分布w’i を計算するに当たり、素子間相互結合行
列Cの逆行列C-1の要素のうち、着目する素子の近傍の
素子との相互結合の影響を補正する要素のみを用いるこ
とで、演算装置や内積演算回路における演算量を減らす
事ができ、素子数が多い場合でも構成が簡単かつ、安価
であり、ビーム方向切り替え時間の短縮が可能である。According to the third embodiment of the present invention, in calculating the excitation distribution w'i of the element i , among the elements of the inverse matrix C -1 of the inter-element mutual coupling matrix C, the elements in the vicinity of the element of interest. By using only the element that corrects the effect of mutual coupling with, it is possible to reduce the amount of calculation in the arithmetic unit and inner product arithmetic circuit, and even if there are many elements, the configuration is simple and inexpensive, and the beam direction switching time Can be shortened.
【0062】この発明の実施の形態4によれば周波数帯
域のある一定間隔毎に、アレー素子指向性g1 (θ)を
計測し、素子間相互結合行列Cを算出し、その要素を周
波帯域に渡って補間し、各運用周波数におけるC-1を算
出し記憶装置に記憶することで、アレー素子指向性の計
測回数を少なくでき、アンテナの試験調整時間を短縮化
することが可能である。According to the fourth embodiment of the present invention, the array element directivity g 1 (θ) is measured at every constant interval of the frequency band, the interelement mutual coupling matrix C is calculated, and the element is set to the frequency band. It is possible to reduce the number of times the array element directivity is measured and to shorten the test adjustment time of the antenna by interpolating over C, calculating C -1 at each operating frequency, and storing it in the storage device.
【図1】 この発明によるアンテナ装置の実施の形態1
を示す図である。FIG. 1 is a first embodiment of an antenna device according to the present invention.
FIG.
【図2】 この発明によるアンテナ装置の実施の形態1
における素子間相互結合を示す図である。FIG. 2 is a first embodiment of the antenna device according to the present invention;
FIG. 3 is a diagram showing mutual coupling between elements in FIG.
【図3】 この発明によるアンテナ装置の実施の形態1
における効果を示す図である。FIG. 3 is a first embodiment of the antenna device according to the present invention.
It is a figure which shows the effect in.
【図4】 この発明によるアンテナ装置の実施の形態2
を示す図である。FIG. 4 is a second embodiment of the antenna device according to the present invention;
FIG.
【図5】 この発明によるアンテナ装置の実施の形態3
を説明する図である。FIG. 5 is a third embodiment of the antenna device according to the present invention.
FIG.
【図6】 この発明によるアンテナ装置の実施の形態4
を説明する図である。FIG. 6 is a fourth embodiment of the antenna device according to the present invention.
FIG.
【図7】 従来のアンテナ装置の構成を示す図である。FIG. 7 is a diagram showing a configuration of a conventional antenna device.
1 素子アンテナ、2 受信機、3 アナログ/ディジ
タル変換回路、4 ウェイト乗算回路、5 加算回路、
6 ウェイト制御装置、7 記憶装置、8 演算装置、
9 内積演算回路。1 element antenna, 2 receiver, 3 analog / digital conversion circuit, 4 weight multiplication circuit, 5 addition circuit,
6 weight control device, 7 storage device, 8 arithmetic device,
9 Inner product calculation circuit.
Claims (4)
は2以上の自然数)の素子アンテナと各素子アンテナに
つながれたウェイト乗算回路、各ウェイト乗算回路につ
ながれ上記N個のウェイト乗算回路の出力を加算する加
算回路からなるアンテナ装置において、単体素子指向性
fi (θ)(i=1・・・N)から理想的な励振分布ベ
クトルW=[w1 ・・・wN ]を計算するウェイト制御
装置と、全素子アンテナのアレー素子指向性gi (θ)
(i=1・・・N)を計測し、単体素子指向性とアレー
素子指向性の差異の原因である素子間相互結合cinを全
素子に対してそれぞれのアレー素子指向性の計測値から
“数1”(θ1 は計測開始角度、θ2 は計測開始角度)
により算出することにより、“数2”に示す素子間相互
結合行列Cを求め、その逆行列C-1を計算し、逆行列C
-1を記憶する記憶装置と、上記ウェイト制御装置から出
力された理想的な励振分布ベクトルWと上記の記憶装置
から出力された素子間相互結合行列の逆行列C-1から、
演算W’=WC-1によって各ウェイト乗算回路に設定す
る励振分布ベクトルW’=[w1 ’・・・wN ’]を計
算する演算装置を備えたことを特徴とするアンテナ装
置。 【数1】 【数2】 1. N (N) arranged on a plane or a curved surface.
Is a natural number of 2 or more), a weight multiplication circuit connected to each element antenna, and an adder circuit connected to each weight multiplication circuit and adding the outputs of the N weight multiplication circuits. A weight controller that calculates an ideal excitation distribution vector W = [w 1 ... w N ] from f i (θ) (i = 1 ... N), and array element directivity g i of all element antennas (Θ)
(I = 1 ... N) is measured, and the mutual coupling c in between elements, which is the cause of the difference between the directivity of the single element and the directivity of the array element, is calculated from the measured values of the directivity of each array element for all the elements. “Equation 1” (θ 1 is the measurement start angle, θ 2 is the measurement start angle)
Then, the inter-element mutual coupling matrix C shown in “Equation 2” is obtained, and its inverse matrix C −1 is calculated to obtain the inverse matrix C.
From the storage device for storing −1 , the ideal excitation distribution vector W output from the weight control device, and the inverse matrix C −1 of the inter-element mutual coupling matrix output from the storage device,
Calculating W '= WC excitation distribution vector W to be set to each weight multiplier circuit by -1' = [w 1 '··· w N'] antenna apparatus characterized by having an arithmetic unit for calculating the. (Equation 1) (Equation 2)
に隣接した内積演算回路を設け、各素子に設定する励振
分布ベクトルW’=[w1 ’・・・wN ’]を演算する
にあたり、ベクトル演算W’=WC-1における各要素を
各内積演算回路で並列に計算することを特徴とする請求
項1記載のアンテナ装置。Wherein said arithmetic unit, when the inner product computation circuit adjacent to each weight multiplication circuits provided, calculates the excitation distribution vector W to be set to each element '= [w 1' ··· w N '] 2. The antenna device according to claim 1, wherein each element in the vector operation W '= WC -1 is calculated in parallel by each inner product operation circuit.
を用いてW’を計算するのではなく、素子間隔があらか
じめ設定されたしきい値より狭い素子間の相互結合の影
響を補正する要素のみを用いて計算することを特徴とす
る請求項1又は2記載のアンテナ装置。3. The arithmetic unit described above does not calculate W ′ by using all the elements of the matrix C −1 , but determines the influence of mutual coupling between elements whose element spacing is narrower than a preset threshold value. The antenna device according to claim 1 or 2, wherein the calculation is performed using only an element to be corrected.
定間隔周波数毎にアレー素子指向性を計測し、素子間相
互結合行列Cを求め、その行列要素を運用周波数に渡っ
て補間、逆行列C-1を計算し、運用周波数全帯域の逆行
列C-1を記憶することを特徴とする請求項1または請求
項2記載のアンテナ装置。4. The storage device described above measures array element directivity for each constant interval frequency of an operating frequency band, obtains an element mutual coupling matrix C, and interpolates and inverse matrix the matrix elements over the operating frequency. The antenna device according to claim 1 or 2, wherein C -1 is calculated and an inverse matrix C -1 of the entire operating frequency band is stored.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30296895A JP3265953B2 (en) | 1995-11-21 | 1995-11-21 | Antenna device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30296895A JP3265953B2 (en) | 1995-11-21 | 1995-11-21 | Antenna device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09148836A true JPH09148836A (en) | 1997-06-06 |
JP3265953B2 JP3265953B2 (en) | 2002-03-18 |
Family
ID=17915335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30296895A Expired - Fee Related JP3265953B2 (en) | 1995-11-21 | 1995-11-21 | Antenna device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3265953B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1349234A2 (en) * | 2002-03-26 | 2003-10-01 | Thales Plc | Compensation of mutual coupling in array antenna systems |
JP2008124595A (en) * | 2006-11-09 | 2008-05-29 | Yokohama National Univ | Calculating method of correction matrix for receiving array antenna, self-correcting method of receiving array antenna, correction matrix calculating devoce for receiving array antenna, and self-correcting device |
JP2009535870A (en) * | 2006-04-28 | 2009-10-01 | テレフオンアクチーボラゲット エル エム エリクソン(パブル) | Method and apparatus for coupling elimination of closely spaced antennas |
JP2009543432A (en) * | 2006-06-30 | 2009-12-03 | テレフオンアクチーボラゲット エル エム エリクソン(パブル) | Reconfigurable antenna and method for obtaining the configuration of a reconfigurable antenna |
JP2012222792A (en) * | 2011-04-14 | 2012-11-12 | Mitsubishi Electric Corp | Antenna device |
JP2015177494A (en) * | 2014-03-18 | 2015-10-05 | 三菱電機株式会社 | Antenna device and antenna excitation method |
JP2016506658A (en) * | 2012-12-20 | 2016-03-03 | レイセオン カンパニー | Embedded element electrically steerable antenna for improved operating bandwidth |
WO2017146020A1 (en) * | 2016-02-23 | 2017-08-31 | 三菱電機株式会社 | Array antenna device and calibration method therefor |
US9899737B2 (en) | 2011-12-23 | 2018-02-20 | Sofant Technologies Ltd | Antenna element and antenna device comprising such elements |
CN113131975A (en) * | 2019-12-31 | 2021-07-16 | 中兴通讯股份有限公司 | Antenna array decoupling method, device, system and storage medium |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11799530B2 (en) | 2019-05-28 | 2023-10-24 | Telefonaktiebolaget Lm Ericsson (Publ) | Beam management with matching networks |
-
1995
- 1995-11-21 JP JP30296895A patent/JP3265953B2/en not_active Expired - Fee Related
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2387030A (en) * | 2002-03-26 | 2003-10-01 | Thales Plc | Compensation of mutual coupling in array antenna systems |
EP1349234A3 (en) * | 2002-03-26 | 2005-06-15 | Thales Plc | Compensation of mutual coupling in array antenna systems |
EP1349234A2 (en) * | 2002-03-26 | 2003-10-01 | Thales Plc | Compensation of mutual coupling in array antenna systems |
JP4695210B2 (en) * | 2006-04-28 | 2011-06-08 | テレフオンアクチーボラゲット エル エム エリクソン(パブル) | Method and apparatus for coupling elimination of closely spaced antennas |
JP2009535870A (en) * | 2006-04-28 | 2009-10-01 | テレフオンアクチーボラゲット エル エム エリクソン(パブル) | Method and apparatus for coupling elimination of closely spaced antennas |
JP4768854B2 (en) * | 2006-06-30 | 2011-09-07 | テレフオンアクチーボラゲット エル エム エリクソン(パブル) | Reconfigurable antenna and method for obtaining the configuration of a reconfigurable antenna |
JP2009543432A (en) * | 2006-06-30 | 2009-12-03 | テレフオンアクチーボラゲット エル エム エリクソン(パブル) | Reconfigurable antenna and method for obtaining the configuration of a reconfigurable antenna |
JP4734574B2 (en) * | 2006-11-09 | 2011-07-27 | 国立大学法人横浜国立大学 | Receiving array antenna calibration matrix calculating method, receiving array antenna self-calibrating method, receiving array antenna calibration matrix calculating device, and self-calibrating device |
JP2008124595A (en) * | 2006-11-09 | 2008-05-29 | Yokohama National Univ | Calculating method of correction matrix for receiving array antenna, self-correcting method of receiving array antenna, correction matrix calculating devoce for receiving array antenna, and self-correcting device |
JP2012222792A (en) * | 2011-04-14 | 2012-11-12 | Mitsubishi Electric Corp | Antenna device |
US9899737B2 (en) | 2011-12-23 | 2018-02-20 | Sofant Technologies Ltd | Antenna element and antenna device comprising such elements |
JP2016506658A (en) * | 2012-12-20 | 2016-03-03 | レイセオン カンパニー | Embedded element electrically steerable antenna for improved operating bandwidth |
JP2015177494A (en) * | 2014-03-18 | 2015-10-05 | 三菱電機株式会社 | Antenna device and antenna excitation method |
WO2017146020A1 (en) * | 2016-02-23 | 2017-08-31 | 三菱電機株式会社 | Array antenna device and calibration method therefor |
WO2017145257A1 (en) * | 2016-02-23 | 2017-08-31 | 三菱電機株式会社 | Array antenna device and calibration method therefor |
CN113131975A (en) * | 2019-12-31 | 2021-07-16 | 中兴通讯股份有限公司 | Antenna array decoupling method, device, system and storage medium |
EP4080779A4 (en) * | 2019-12-31 | 2023-01-25 | ZTE Corporation | Antenna array decoupling method, apparatus and system, and storage medium |
US20230035416A1 (en) * | 2019-12-31 | 2023-02-02 | Zte Corporation | Antenna array decoupling method, apparatus and system, and storage medium |
US11979216B2 (en) | 2019-12-31 | 2024-05-07 | Xi'an Zhongxing New Software Co., Ltd. | Antenna array decoupling method, apparatus and system, and storage medium |
Also Published As
Publication number | Publication date |
---|---|
JP3265953B2 (en) | 2002-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9496611B2 (en) | System and method for coherent processing of signals of a plurality of phased arrays | |
US8754810B2 (en) | Hybrid adaptive antenna array | |
JP2009186465A (en) | Side lobe suppression | |
JP2005197772A (en) | Adaptive array antenna device | |
JPH09148836A (en) | Antenna system | |
JP3918573B2 (en) | Radar equipment | |
JP6659400B2 (en) | Signal processing device, radar device, and method of setting radar device | |
JPH1168443A (en) | Digital beam forming antenna system | |
JP3096734B2 (en) | Transmit array antenna calibration method | |
WO2020044442A1 (en) | Radar device and target angle measurement method | |
JP3362083B2 (en) | Array antenna device | |
JP4072149B2 (en) | Distributed aperture antenna device | |
CN103248412B (en) | A kind of method of satellite navigation Multibeam synthesis | |
JP3138728B2 (en) | Array antenna calibration method | |
JP3818898B2 (en) | Antenna device | |
CN117039432A (en) | Phased array anti-interference error correction method and device based on strong interference spatial filtering | |
JP3113837B2 (en) | Method and apparatus for reducing bias error of N-port mode former of Butler matrix type | |
JP2008157679A (en) | Radar signal processor | |
JP2006267036A (en) | Interference wave suppressor | |
JP6987307B2 (en) | Signal processing equipment, radar system and signal processing program | |
JP2002176309A (en) | Antenna device and method for measuring the antenna | |
WO2018167952A1 (en) | Adaptive array antenna device | |
JP3046949B2 (en) | Transceiver | |
JPH08288734A (en) | Phased array antenna and method and compensating performance of phased array antenna | |
JP2001203525A (en) | Antenna system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080111 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090111 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |