JPH09137726A - Cooling device for multiple cylinder engine with suspending cylinder mechanism - Google Patents
Cooling device for multiple cylinder engine with suspending cylinder mechanismInfo
- Publication number
- JPH09137726A JPH09137726A JP29582295A JP29582295A JPH09137726A JP H09137726 A JPH09137726 A JP H09137726A JP 29582295 A JP29582295 A JP 29582295A JP 29582295 A JP29582295 A JP 29582295A JP H09137726 A JPH09137726 A JP H09137726A
- Authority
- JP
- Japan
- Prior art keywords
- cylinder
- cooling water
- switching
- engine
- passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Output Control And Ontrol Of Special Type Engine (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、運転状態に応じ
て、一部の気筒を休筒しうるようにした休筒機構付き多
気筒エンジンの冷却装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device for a multi-cylinder engine with a cylinder deactivation mechanism, which is capable of deactivating some of the cylinders in accordance with operating conditions.
【0002】[0002]
【従来の技術】従来より、軽負荷運転時において、全気
筒の内の半数までの気筒を適宜運転休止させることによ
り、燃費の向上を図るようにした休筒機構付きの多気筒
エンジンが採用されている。たとえば、図11に示すよ
うな水冷式V型8気筒エンジン11においては、全気筒
運転時には、気筒1−2−7−3−4−5−6−8の順
序で各気筒が稼働されているが、4つの気筒を休筒する
時には、気筒2,3および気筒5,8を休止するように
している。なお、この気筒2,3,5,8の休止には、
例えば休筒しようとする気筒への燃料供給と点火とを停
止することにより、休筒させるようにしている。2. Description of the Related Art Conventionally, a multi-cylinder engine with a cylinder deactivation mechanism has been adopted which is designed to improve fuel efficiency by appropriately suspending operation of up to half of all cylinders during light load operation. ing. For example, in the water-cooled V-type 8-cylinder engine 11 as shown in FIG. 11, when all cylinders are in operation, the cylinders are operated in the order of 1-2-7-3-4-5-6-8. However, when the four cylinders are deactivated, the cylinders 2 and 3 and the cylinders 5 and 8 are deactivated. In addition, when the cylinders 2, 3, 5 and 8 are stopped,
For example, the cylinder is deactivated by stopping the fuel supply and the ignition to the cylinder to be deactivated.
【0003】したがって、休筒時には、エンジン11の
一方側の列11aでは両端の気筒1,7が稼働し、他方
側の列11bでは内側の気筒4,6が稼働しており、そ
れぞれ、常時稼働する気筒(以下必要に応じて「動筒」
という)と休筒される気筒とが相隣接する形態となって
いる。ところで、一般に休筒機構付き多気筒エンジンの
水冷式冷却装置としては、全気筒にラジエータ12を経
由する冷却水が水ポンプ13により循環され、全気筒運
転時と一部休筒運転時とを問わず全気筒を冷却するよう
にしている。Therefore, when the cylinder is deactivated, the cylinders 1 and 7 at both ends of the engine 11 on one side of the column 11a are operating, and the cylinders 4 and 6 on the inside of the engine 11 are operating on the other side of the column 11b. Cylinder to be used (hereinafter referred to as "moving cylinder" if necessary)
That is) and the cylinder to be deactivated is adjacent to each other. By the way, generally, as a water-cooled cooling device for a multi-cylinder engine with a cylinder deactivation mechanism, cooling water passing through a radiator 12 is circulated by a water pump 13 in all cylinders, so that all cylinders are operated and some cylinders are deactivated. Instead, all the cylinders are cooled.
【0004】そして、このように休筒時においても各気
筒を冷却するようにしたものでは、休筒時に休筒部を通
る冷却水が温まらず冷却水全体の温度が下がるため、冷
却水の温度を利用して暖房を行なう車では、軽負荷運転
時の暖房が充分に得られないことになる。そこで、例え
ば実公平2−5059号公報のように、軽負荷運転時の
休筒切替と同時に、休筒部への冷却水の循環を停止し、
動筒部のみに冷却水を循環させて、冷却水全体の温度低
下を少なくすることが提案されている。In such a configuration in which each cylinder is cooled even when the cylinder is deactivated, the temperature of the entire cooling water does not rise and the temperature of the cooling water decreases when the cylinder is deactivated. A vehicle that uses the heating system will not be able to obtain sufficient heating during light load operation. Therefore, for example, as disclosed in Japanese Utility Model Publication No. 2-5059, at the same time as the cylinder deactivation switching during light load operation, the circulation of cooling water to the cylinder deactivation portion is stopped,
It has been proposed to circulate the cooling water only in the moving cylinder part to reduce the temperature drop of the entire cooling water.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、このよ
うな従来の水冷式休筒機構付き多気筒エンジンでは、休
筒時に休筒されている気筒への冷却が直ちに停止される
のみならず、動筒している気筒には常時冷却が行なわれ
ているので、図12の実線と点線で示すように、休筒部
と動筒部との温度差が大きく、しかも温度差の開きが不
均等になる。However, in such a conventional multi-cylinder engine with a water-cooled cylinder deactivation mechanism, not only the cylinders that are deactivated at the time of cylinder deactivation are immediately stopped, but also the moving cylinders. Since the cylinders that are operating are constantly cooled, the temperature difference between the idle cylinder portion and the moving cylinder portion is large, and the difference in temperature difference is uneven, as indicated by the solid and dotted lines in FIG. .
【0006】このように休筒部と動筒部との温度差が大
きくなり、両者の温度均衡が適切に保たれないと、過冷
時にはシリンダブロックとピストンとの隙間が大きくな
って異常音発生の原因となることがあり、過熱時にはフ
リクションの増大によるピストンとの軋み発生の原因と
なるおそれがあるため、前記した実公平2−5059号
公報に開示されるもののように、単に、全気筒運転と休
筒運転との切替時に直ちに休筒側の冷却水供給を切り替
えれば解決するというものではない。As described above, if the temperature difference between the idle cylinder part and the moving cylinder part becomes large and the temperature balance between them is not properly maintained, the gap between the cylinder block and the piston becomes large at the time of overcooling and abnormal noise is generated. However, as described above in Japanese Utility Model Publication No. 2-5059, only the all-cylinder operation can be performed because it may cause creaking with the piston due to increased friction when overheated. If the cooling water supply on the cylinder deactivation side is immediately switched when switching between the cylinder deactivation operation and the cylinder deactivation operation, the problem cannot be solved.
【0007】本発明は、このような課題に鑑み創案され
たもので、水冷式多気筒エンジンの全気筒運転時と休筒
運転時との気筒の切替に伴う冷却水の供給を、気筒の運
転切替から所定の遅延時間経過後に行なわすなど、冷却
水供給用切替制御弁の開閉のタイミングをきめ細かく制
御することにより、休筒部と動筒部との温度差のバラン
スを適切に保てるようにした、休筒機構付き多気筒エン
ジンの冷却装置を提供することを目的としている。The present invention was devised in view of the above problems, and supplies the cooling water accompanying the switching of the cylinders of the water-cooled multi-cylinder engine between the all-cylinder operation and the cylinder deactivation operation. By carefully controlling the opening and closing timing of the cooling water supply switching control valve, such as after a lapse of a predetermined delay time after switching, the temperature difference between the idle cylinder part and the moving cylinder part can be properly maintained. An object of the present invention is to provide a cooling device for a multi-cylinder engine with a cylinder deactivation mechanism.
【0008】[0008]
【課題を解決するための手段】このため、本発明の休筒
機構付きエンジンの冷却装置は、運転状態に応じて、一
部の気筒を休止しうるようにした休筒機構付き多気筒エ
ンジンにおいて、常時稼働する第1気筒群を冷却する第
1冷却水通路と、エンジンの運転状態に応じて稼働また
は休止に切り替えられる第2気筒群を冷却する第2冷却
水通路と、該第2気筒群の運転休止時に該第2冷却水通
路への冷却水の循環を停止または抑制する切替制御弁
と、該第2気筒群の休止または稼働への切替時から所定
の遅延時間経過後に該切替制御弁を切替制御する制御手
段とが設けられていることを特徴としている。Therefore, the cooling device for an engine with a cylinder deactivation mechanism of the present invention is a multi-cylinder engine with a cylinder deactivation mechanism in which a part of cylinders can be deactivated in accordance with an operating state. A first cooling water passage that cools a first cylinder group that is always operating, a second cooling water passage that cools a second cylinder group that is switched to active or inactive according to the operating state of the engine, and the second cylinder group Switching control valve that stops or suppresses the circulation of the cooling water to the second cooling water passage when the operation of the second cylinder group is stopped, and the switching control valve after a lapse of a predetermined delay time from the switching of the second cylinder group to the suspension or the operation. And a control means for switching control of the.
【0009】このとき、該遅延時間が、エンジン負荷状
態と水温状態に応じて設定されることが好ましく、ま
た、該第2気筒群を休止状態へ切り替えるときの休止切
替時遅延時間が、該第2気筒群を稼働状態へ切り替える
ときの稼働切替時遅延時間よりも長くなるように設定さ
れることが好ましい。さらに、該第2気筒群の休筒時
に、該第1気筒群を冷却する該第1冷却水通路への給水
が増量されるよう、該切替制御弁を通じて該第2冷却水
通路から該第1冷却水通路へ冷却水を供給しうる増給用
通路を設けることもできる。At this time, it is preferable that the delay time is set in accordance with the engine load state and the water temperature state, and the deactivation switching delay time when deactivating the second cylinder group is deactivated. It is preferable that the setting is made to be longer than the operation switching delay time when switching the two cylinder group to the operating state. Furthermore, when the second cylinder group is deactivated, the switching control valve is used to increase the amount of water supplied to the first cooling water passage for cooling the first cylinder group from the second cooling water passage to the first cooling water passage. It is also possible to provide a supply passage for supplying cooling water to the cooling water passage.
【0010】また、該制御手段が、該第2気筒群の休筒
時に、所定のタイミングで該切替制御弁を開閉作動させ
るよう構成することもできる。Further, the control means may be configured to open and close the switching control valve at a predetermined timing when the second cylinder group is deactivated.
【0011】[0011]
【発明の実施の形態】以下、図面により、本発明の実施
形態について説明すると、図1〜図10は本発明による
休筒機構付き多気筒エンジンの冷却装置の一実施形態を
示すもので、図1はエンジンの各気筒と各冷却水通路と
の接続構成を示す構成図、図2は本装置の制御構成を示
すブロック図、図3は休筒切替時における切替制御弁の
切替タイミングを示すグラフ、図4は休筒時の動筒部と
休筒部との温度変化を示す比較図、図5は動筒状態から
休筒状態への切替時の作用を説明するフローチャート、
図6は図5のフローチャートに関するマップ図、図7は
休筒状態から動筒状態への切替時の作用を説明するフロ
ーチャート、図8は図7のフローチャートに関するマッ
プ図、図9は本発明の他の実施形態による動筒状態から
休筒状態への切替時の作用を説明するフローチャート、
図10は図9のフローチャートに関するマップ図であ
り、各図中の同じ符号はほぼ同一部分を示している。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIGS. 1 to 10 show one embodiment of a cooling device for a multi-cylinder engine with a cylinder deactivation mechanism according to the present invention. 1 is a configuration diagram showing a connection configuration between each cylinder of the engine and each cooling water passage, FIG. 2 is a block diagram showing a control configuration of the present device, and FIG. 3 is a graph showing a switching timing of the switching control valve at the time of switching the cylinder deactivation. FIG. 4 is a comparative diagram showing the temperature change between the moving cylinder portion and the cylinder-removing portion when the cylinder is stopped, and FIG. 5 is a flowchart explaining the operation when switching from the moving-cylinder state to the cylinder-stopping state,
6 is a map diagram relating to the flow chart of FIG. 5, FIG. 7 is a flow chart explaining the operation at the time of switching from the cylinder deactivation state to the moving cylinder state, FIG. 8 is a map diagram relating to the flow chart of FIG. A flow chart for explaining the operation at the time of switching from the moving cylinder state to the deactivated cylinder state according to the embodiment of
FIG. 10 is a map diagram related to the flowchart of FIG. 9, and the same reference numerals in each figure indicate almost the same parts.
【0012】さて、図1において、11は水冷式V8型
多気筒エンジンを示すもので、このエンジン11におけ
るシリンダブロックの一方側の列11aには、気筒1,
3,5,7が順に配置され、他方側の列11bには、気
筒2,4,6,8が順に配置されており、このエンジン
11では、これらの気筒のうち、常時稼働運転される第
1気筒群1,7,4,6と、休筒時に稼働停止される第
2気筒群3,8,5,2とに分けられて、休筒機構付き
多気筒エンジンが構成されている。In FIG. 1, reference numeral 11 denotes a water-cooled V8 type multi-cylinder engine.
3, 5, 7 are arranged in order, and the cylinders 2, 4, 6, 8 are arranged in order in the other side row 11b. A multi-cylinder engine with a cylinder deactivation mechanism is configured by being divided into one cylinder group 1, 7, 4, 6 and a second cylinder group 3, 8, 5, 2 which is stopped during cylinder deactivation.
【0013】そして、ラジエータ12に接続される冷却
水導入路14に設けられた水ポンプ13を経て、常時運
転される一方側11aの気筒1,7用のウォータジャケ
ットのごとき冷却部(以下、冷却部というときはウォー
タジャケットのごときものをいう)と、他方側11bの
気筒4,6用の冷却部とに連通される第1冷却水通路A
が形成されている。Then, a cooling unit such as a water jacket for the cylinders 1 and 7 on the one side 11a which is constantly operated (hereinafter, referred to as "cooling") via a water pump 13 provided in a cooling water introduction passage 14 connected to the radiator 12. Section means a thing such as a water jacket) and the first cooling water passage A communicating with the cooling section for the cylinders 4 and 6 on the other side 11b.
Are formed.
【0014】また、水ポンプ13の下流側の第1冷却水
通路Aから分岐されて、一方側11aの気筒3用の冷却
部と他方側11bの気筒8用の冷却部とに連通される第
2冷却水通路B1と、一方側11aの気筒5用の冷却部
と他方側11bの気筒2用の冷却部に連結される第2冷
却水通路B2とが形成されている。そして、第2冷却水
通路B1と第2冷却水通路B2には、それぞれ電磁式の
切替制御弁15a,15bが設けられている。そして、
各切替制御弁15a,15bの開時(図示の作動弁体1
5が水平状態にあるとき)、即ち全気筒稼働時の通路形
成時には、第2冷却水通路B1とB2とが連通状態とな
る一方、各切替制御弁15a,15bの閉時(図示の作
動弁体15が垂直状態になるとき)、即ち休筒切替時の
通路形成時には、第2冷却水通路B1,B2の連通を閉
じて、切替制御弁上流側の第2冷却水通路が切替制御弁
15a,15bから側方の通路に連通されるようになっ
ている。The first cooling water passage A on the downstream side of the water pump 13 is branched to communicate with the cooling section for the cylinder 3 on the one side 11a and the cooling section for the cylinder 8 on the other side 11b. A second cooling water passage B1 and a second cooling water passage B2 connected to the cooling portion for the cylinder 5 on the one side 11a and the cooling portion for the cylinder 2 on the other side 11b are formed. Then, electromagnetic switching control valves 15a and 15b are provided in the second cooling water passage B1 and the second cooling water passage B2, respectively. And
When the switching control valves 15a and 15b are opened (the operation valve body 1 shown
5 is in a horizontal state), that is, when the passages are formed during operation of all cylinders, the second cooling water passages B1 and B2 are in communication with each other, while the switching control valves 15a and 15b are closed (operation valves shown in the figure). (When the body 15 is in the vertical state), that is, when the passage is formed when switching the cylinders, the communication between the second cooling water passages B1 and B2 is closed and the second cooling water passage on the upstream side of the switching control valve is switched to the switching control valve 15a. , 15b is connected to the side passage.
【0015】この側方の通路には、切替制御弁15a,
15bから第1冷却水通路Aに連通する増給用通路16
a,16bと冷却水導入路14に戻る還流通路17a,
17bとが設けられるとともに、一方の切替制御弁15
aから他方の切替制御弁15bの上流側に連通されるバ
イパス通路18が設けられている。この場合における、
切替制御弁15a側のバイパス通路18と増給用通路1
6aと還流通路17aの太さの関係は、バイパス通路1
8よりも増給用通路16aが太く、増給用通路16aよ
りも還流通路17aが太く設定されている。In this side passage, the switching control valve 15a,
Passage 16 for increasing supply, which communicates with the first cooling water passage A from 15b
a, 16b and a return passage 17a returning to the cooling water introduction passage 14,
17b is provided, and one switching control valve 15
A bypass passage 18 that communicates from a to the upstream side of the other switching control valve 15b is provided. In this case,
Bypass passage 18 on the side of switching control valve 15a and passage 1 for increasing pay
The relationship between the thickness of 6a and the thickness of the return passage 17a is as follows.
8, the increase passage 16a is thicker, and the return passage 17a is thicker than the increase passage 16a.
【0016】また、切替制御弁15b側においても、増
給用通路16bよりも還流通路17bの方が太く設定さ
れている。ところで、このように第2冷却水通路をB1
とB2に分けたのは、図示のV8気筒エンジンでは、気
筒3,8を第1段階で休筒し、気筒2,5を第2段階で
休筒するように2段階休筒を行なわせることがあるため
に冷却水系統を2つに分けて構成したもので、1段階の
みの休筒機構付き多気筒エンジンでは、第2冷却水通路
および切替制御弁は1つでよい。Also on the side of the switching control valve 15b, the return passage 17b is set to be thicker than the supply passage 16b. By the way, the second cooling water passage is
In the illustrated V8 cylinder engine, the cylinders 3 and 8 are deactivated in the first stage, and the cylinders 2 and 5 are deactivated in the second stage. Therefore, the cooling water system is divided into two parts. In a multi-cylinder engine with a cylinder deactivation mechanism having only one stage, only one second cooling water passage and one switching control valve are required.
【0017】そして、一方側11aの各気筒1,3,
5,7と、他方側11bの各気筒2,4,6,8から導
出される冷却水導出路19は1つに合流されて、ラジエ
ータ12に接続されている。なお、図中、20は冷却水
導入路14に設けられるサーモスタットであり、19a
は冷却水導出路19と冷却水導入路14をむすぶバイパ
ス路である。Then, each cylinder 1, 3 on the one side 11a
5, 7 and the cooling water outlet passages 19 led out from the respective cylinders 2, 4, 6, 8 on the other side 11b are joined together and connected to the radiator 12. In the figure, 20 is a thermostat provided in the cooling water introduction passage 14,
Is a bypass path connecting the cooling water outlet path 19 and the cooling water inlet path 14.
【0018】上記の構成により、通常運転時には、第1
冷却水通路Aを通って、矢印aのように冷却水が送られ
気筒1,7および気筒4,6を冷却し、同時に、切替制
御弁15a,15bのいずれもが開状態(作動弁体15
が水平の状態)にあって、第2冷水通路B1を通って矢
印b1のように流れる冷却水が気筒3,8を冷却すると
ともに、第2冷却水通路B2を通って矢印b2のように
流れる冷却水が気筒5,2を冷却するようになってい
る。With the above construction, the first
Cooling water is sent through the cooling water passage A as shown by the arrow a to cool the cylinders 1 and 7 and the cylinders 4 and 6, and at the same time, both of the switching control valves 15a and 15b are in the open state (the actuation valve body 15
Is in a horizontal state), the cooling water flowing through the second cold water passage B1 as shown by the arrow b1 cools the cylinders 3 and 8 and flows through the second cooling water passage B2 as shown by the arrow b2. Cooling water cools the cylinders 5 and 2.
【0019】そして、切替制御弁15a,15bが切り
替えられて閉状態(作動弁体15が垂直の状態)になる
と、大半の水は還流通路17a,17bを通って冷却水
導入路14へ戻されるとともに、一部の冷却水は増給用
通路16a,16bを通って第1冷却水通路Aに送ら
れ、第1冷却水通路Aへの冷却水の供給を増量させるよ
うになっている。When the switching control valves 15a and 15b are switched to the closed state (the operating valve body 15 is in the vertical state), most of the water is returned to the cooling water introducing passage 14 through the reflux passages 17a and 17b. At the same time, a part of the cooling water is sent to the first cooling water passage A through the supply passages 16a and 16b, and the supply of the cooling water to the first cooling water passage A is increased.
【0020】また、切替制御弁15a側の冷却水はバイ
パス通路18から第2冷却水通路B2側に送られて、第
1段階切替と第2段階切替を行なう場合の水流のバラン
スを調整するようにしている。さらに、冷却水導出路1
9の合流部近傍には、水温センサ21が設けられている
が、この水温センサ21は、冷却水通路の他の個所にも
適宜複数個を設けるようにしてもよいものである。Further, the cooling water on the side of the switching control valve 15a is sent from the bypass passage 18 to the side of the second cooling water passage B2 to adjust the balance of the water flow when the first stage switching and the second stage switching are performed. I have to. Furthermore, the cooling water outlet 1
A water temperature sensor 21 is provided in the vicinity of the confluence portion of 9, but a plurality of water temperature sensors 21 may be appropriately provided at other portions of the cooling water passage.
【0021】そして、この水温センサ21から取り出さ
れた温度情報と、エンジン負荷やエンジン回転数からエ
ンジン運転状態を検出する運転状態検出手段22での検
出結果に応じてエンジンを全気筒稼働状態と一部休筒状
態とに切り替える休筒制御手段24からの気筒切替信号
とを受けて、切替制御弁15a,15bを切替制御する
弁制御手段23が設けられている。Then, according to the temperature information extracted from the water temperature sensor 21 and the detection result of the operating state detecting means 22 for detecting the engine operating state from the engine load and the engine speed, the engine is judged to be in the all-cylinder operating state. Valve control means 23 is provided for switching control of the switching control valves 15a and 15b in response to a cylinder switching signal from the cylinder deactivation control means 24 for switching to the partial cylinder deactivation state.
【0022】すなわち、図2のブロック図に示すよう
に、休筒制御手段24からの気筒切替信号および水温セ
ンサ21の温度情報に応じて、弁制御手段23から切替
制御弁15a,15bに制御信号が送られて、第1冷却
水通路Aと第2冷却水通路B1,B2との切替が行なわ
れるようになっている。以下、上記弁制御手段23によ
る制御に基づき、冷却水系統における冷却水制御の状態
を説明する。That is, as shown in the block diagram of FIG. 2, in response to the cylinder switching signal from the cylinder deactivation control means 24 and the temperature information of the water temperature sensor 21, a control signal from the valve control means 23 to the switching control valves 15a and 15b. Is sent to switch between the first cooling water passage A and the second cooling water passages B1 and B2. Hereinafter, the state of the cooling water control in the cooling water system will be described based on the control by the valve control means 23.
【0023】まず、エンジンの気筒稼働状態から休筒状
態への切替時および休筒状態から気筒稼働状態への切替
時において、切替制御弁15a,15bの切替は、上記
エンジンの気筒作動状態切替よりも、所定の時間経過後
のある程度遅れた時間差をもって切替が行なわれるよう
にしている。これを図3について説明すると、エンジン
を気筒稼働状態(運転状態)から休筒状態へ切り替える
時には、切替制御弁15a,15bに30〜60秒のデ
ィレー(遅延)をかけて切替を行ない、また、エンジン
を休筒状態から気筒稼働状態へ切り替える時には、切替
制御弁15a,15bに5〜10秒のディレーをかけて
切替を行なうようにするものである。First, when the cylinder operating state of the engine is switched to the cylinder deactivated state and when the cylinder deactivated state is switched to the cylinder operating state, the switching control valves 15a and 15b are switched from the cylinder operating state switching of the engine. Also, the switching is performed with a certain time delay after the elapse of a predetermined time. This will be described with reference to FIG. 3. When switching the engine from the cylinder operating state (operating state) to the cylinder deactivated state, switching is performed by applying a delay (delay) of 30 to 60 seconds to the switching control valves 15a and 15b, and When switching the engine from the cylinder deactivated state to the cylinder operating state, the switching control valves 15a and 15b are delayed by 5 to 10 seconds for switching.
【0024】すなわち、図5に示すように、気筒稼働状
態から休筒状態への切替モードでは、切替スタートの
後、ステップc1で、図6に示すマップM1によるエン
ジン負荷(過去30秒の平均体積効率)と、現在の水温
の高低に応じて30〜60秒のディレーをかけ、ステッ
プc2で、切替制御弁15a,15bから増給用通路1
6a,16bを経由して第1冷却水通路Aに送られ、動
筒(気筒1,7,4,6)へ増量の冷却水を送るように
している。That is, as shown in FIG. 5, in the switching mode from the cylinder operating state to the cylinder deactivated state, after the switching is started, in step c1, the engine load (average volume in the last 30 seconds is calculated according to the map M1 shown in FIG. 6). Efficiency) and a delay of 30 to 60 seconds depending on the current water temperature level, and in step c2, the switching control valves 15a and 15b are used to increase the passage 1
The increased amount of cooling water is sent to the moving cylinders (cylinders 1, 7, 4, 6) by being sent to the first cooling water passage A via 6a and 16b.
【0025】また、図7に示すように休筒状態から気筒
稼働状態への切替モードでは、切替スタートの後、ステ
ップd1で、図8に示すマップM2によるエンジン負荷
(過去30秒の平均体積効率)と現在の水温の高低に応
じて5〜10秒程度のディレーをかけ、ステップd2
で、切替制御弁15a,15bから増給用通路16a,
16bを経由して第1冷却水通路Aに送られている動筒
(気筒NO.1,7,4,6)への冷却水の増量送水を停
止するようにしている。Further, in the switching mode from the cylinder deactivated state to the cylinder operating state as shown in FIG. 7, after the switching start, at step d1, the engine load (average volume efficiency of the past 30 seconds in the past 30 seconds is determined by the map M2 shown in FIG. ) And a delay of about 5 to 10 seconds depending on the current water temperature, and step d2
Then, from the switching control valves 15a, 15b to the increase passage 16a,
The increased amount of cooling water to the moving cylinders (cylinders No. 1, 7, 4, 6) being sent to the first cooling water passage A via 16b is stopped.
【0026】このように、気筒稼働状態から休筒状態へ
の切替時には、切替時点から所定の時間だけ経過した
後、すなわち休筒部では休筒部の温度をある程度低下さ
せた後に給水を止め、且つ、動筒部では動筒部の温度が
上昇してくる頃に動筒部への給水を増量するようにして
いるので、運転切替時の休筒部と動筒部との温度差のバ
ランスを適切に保つことができる。In this way, when switching from the cylinder operating state to the cylinder deactivated state, the water supply is stopped after a predetermined time has elapsed from the switching time, that is, after the temperature of the cylinder deactivated portion has been lowered to some extent. Moreover, in the moving cylinder part, the amount of water supplied to the moving cylinder part is increased when the temperature of the moving cylinder part rises, so the temperature difference between the idle cylinder part and the moving cylinder part at the time of operation switching is balanced. Can be kept properly.
【0027】また、休筒状態から気筒稼働状態への切替
時にも、運転切替時から所定の時間だけ経過した後に冷
却水路の切替を行なって、休筒部への給水を開始すると
ともに動筒部への増量給水を中止するようにしているの
で、この場合も運転切替時の休筒部と動筒部との温度差
のバランスを適切に保つことができる。したがって、本
実施形態による図4のグラフと、従来例による図12の
グラフを比較すると明瞭であるように、本実施形態で
は、休筒部と動筒部との温度差の開きを小さくし、しか
も殆ど並行したバランスのとれた状態としており、これ
によりシリンダブロックの熱歪みや変形を防止し、フリ
クションの増大によるピストンとの軋み、または隙間発
生によるピストンとの衝撃音の発生をなくし、休筒機構
付き多気筒エンジンの性能向上に寄与するとともに、燃
料消費の低減にもおおいに役立ち得る効果がある。Also, when switching from the cylinder deactivated state to the cylinder operating state, the cooling water passage is switched after a lapse of a predetermined time from the time of switching the operation to start the water supply to the cylinder deactivated portion and the moving cylinder portion. Since the increased water supply to the cylinder is stopped, the balance of the temperature difference between the idle cylinder part and the moving cylinder part at the time of operation switching can be appropriately maintained in this case as well. Therefore, as clear from the comparison between the graph of FIG. 4 according to the present embodiment and the graph of FIG. 12 according to the conventional example, in the present embodiment, the difference in temperature difference between the idle cylinder part and the moving cylinder part is reduced, In addition, the cylinder blocks are in a well-balanced state, which prevents thermal distortion and deformation of the cylinder block, eliminates creaking with the piston due to increased friction, or the generation of impact noise with the piston due to the formation of gaps This has the effect of contributing to the performance improvement of the multi-cylinder engine with a mechanism and also of being able to greatly contribute to the reduction of fuel consumption.
【0028】また、先に述べ、且つ、図3でもわかるよ
うに、第2気筒群すなわち休筒部を運転から休止に切り
替えるときの所定の遅延時間(閉ディレー時間)が30
〜60秒に設定され、休止から運転に切り替えるときの
所定の遅延時間(開ディレー時間)が5〜10秒に設定
されている如く、閉ディレー時間(気筒稼働状態から休
筒状態に切り替えるときの遅延時間)が、開ディレー時
間(休筒状態から気筒稼働状態に切り替えるときの遅延
時間)よりも長く設定されているのは、休筒部におけ
る、休筒状態への切替時の温度変化の移行が、気筒運転
状態への切替時の温度変化の移行よりも長くかかるため
で、こうした配慮の細かい制御を行なうことで、休筒部
と動筒部との温度差のバランスが保たれ、休筒機構付き
多気筒エンジンの性能向上に貢献しうる効果がある。Further, as described above and as can be seen from FIG. 3, a predetermined delay time (closed delay time) when the second cylinder group, that is, the cylinder deactivation section is switched from the operation to the deactivation is 30.
It is set to -60 seconds, and the predetermined delay time (open delay time) when switching from rest to operation is set to 5 to 10 seconds. The delay time is set longer than the open delay time (delay time when switching from the cylinder deactivated state to the cylinder operating state) because the transition of the temperature change in the cylinder deactivated portion when switching to the cylinder deactivated state. However, it takes longer than the transition of the temperature change at the time of switching to the cylinder operating state.By performing such careful control, the temperature difference between the cylinder deactivation section and the moving cylinder section can be maintained and the cylinder deactivation There is an effect that can contribute to the performance improvement of the multi-cylinder engine with a mechanism.
【0029】さらに、サイアミーズ型エンジンのよう
に、各気筒が互いに近接する多気筒エンジンにおいて
は、第2気筒群の休筒時には、第2冷却水通路B1,B
2への給水を、所定のタンミングにて給水と給水停止と
に切り替えるよう切替制御弁15a,15bを制御させ
るようにしている。これを図9,10について説明する
と、気筒稼働状態から休筒状態への切替モードでは、切
替スタートの後、ステップe1で図6に示すマップM1
によるエンジン負荷と水温の高低に応じてディレーをか
け、ステップe2で動筒部への給水を増量するが、この
時ステップe3で図10に示すマップM3による数段階
に分けたデューティ区分にしたがって、図3の点線Eに
示すように、休筒側への給水を断続して実行するように
する。Further, in a multi-cylinder engine in which the cylinders are close to each other, such as a Siamese type engine, the second cooling water passages B1 and B are provided when the second cylinder group is deactivated.
The switching control valves 15a and 15b are controlled so as to switch the water supply to the water supply 2 to the water supply and the water supply stop by a predetermined tamming. This will be described with reference to FIGS. 9 and 10. In the switching mode from the cylinder operating state to the cylinder deactivated state, the map M1 shown in FIG.
A delay is applied according to the engine load and the water temperature depending on the value, and the amount of water supplied to the moving cylinder portion is increased at step e2. At this time, at step e3, according to the duty classification divided into several stages according to the map M3 shown in FIG. As shown by the dotted line E in FIG. 3, the water supply to the cylinder deactivation side is intermittently executed.
【0030】すなわち、エンジン負荷が大きく水温が高
いデューティ大の状態では10秒に3秒程度のタイミン
グで冷却水を供給し、デューティ中の状態では10秒に
2秒程度のタイミングで冷却水を供給し、エンジン負荷
が小さく水温が低いデューティ小の状態では10秒に1
秒程度のタイミングで冷却水を供給するように、切替制
御弁15a,15bを開閉制御するようにしている。That is, the cooling water is supplied at a timing of about 3 seconds in 10 seconds in a large duty state where the engine load is high and the water temperature is high, and the cooling water is supplied at a timing of about 2 seconds in 10 seconds in a duty state. However, when the engine load is small and the water temperature is low and the duty is small, 1 in 10 seconds
The switching control valves 15a and 15b are controlled to be opened / closed so that the cooling water is supplied at a timing of about a second.
【0031】このように、動筒部と休筒部とが接近した
エンジンでは、休筒時においても、休筒部の温度が上昇
するので、水路の負荷,温度等に応じて休筒部への冷却
水の供給を断続的に行なうことにより、休筒時における
休筒部の温度が必要以上に上がらないようにするもので
ある。As described above, in an engine in which the moving cylinder portion and the cylinder deactivation portion are close to each other, the temperature of the cylinder deactivation portion rises even when the cylinder is deactivated. The cooling water is intermittently supplied so that the temperature of the cylinder deactivation portion during the cylinder deactivation does not rise more than necessary.
【0032】[0032]
【発明の効果】以上詳述したように、本発明の請求項1
記載の休筒機構付きエンジンの冷却装置によれば、運転
状態に応じて、一部の気筒を休止しうるようにした休筒
機構付き多気筒エンジンにおいて、常時稼働する第1気
筒群を冷却する第1冷却水通路と、エンジンの運転状態
に応じて稼働または休止に切り替えられる第2気筒群を
冷却する第2冷却水通路と、該第2気筒群の運転休止時
に該第2冷却水通路への冷却水の循環を停止または抑制
する切替制御弁と、該第2気筒群の休止または稼働への
切替時から所定の遅延時間経過後に該切替制御弁を切替
制御する制御手段とが設けられているので、第2気筒群
の休止または稼働の切替が行なわれても、直ちに第2気
筒群への冷却水の供給が停止または開始されるのでな
く、やや遅れた時間差をもって停止または開始されるた
め、休筒状態への切替に際しては第2気筒群の冷却を迅
速に行ない、全筒稼働状態への切替に際しては第2気筒
群の冷却を遅らせて行なわせることになる。As described in detail above, claim 1 of the present invention
According to the cooling device for an engine with a cylinder deactivation mechanism described above, in a multi-cylinder engine with a cylinder deactivation mechanism in which some cylinders can be deactivated in accordance with an operating state, the first cylinder group that is always operating is cooled. A first cooling water passage, a second cooling water passage for cooling the second cylinder group which is switched to be operated or stopped in accordance with the operating state of the engine, and to the second cooling water passage when the operation of the second cylinder group is stopped. A switching control valve for stopping or suppressing the circulation of the cooling water, and a control means for controlling the switching of the switching control valve after a lapse of a predetermined delay time from the switching of the second cylinder group to the pause or the operation. Therefore, even if the second cylinder group is deactivated or the operation is switched, the supply of the cooling water to the second cylinder group is not immediately stopped or started, but is stopped or started with a slightly delayed time difference. , Switching to a cylinder suspension In rapidly perform cooling of the second cylinder group, upon switching to the all-cylinder operating state it will be performed by delaying the cooling of the second cylinder group.
【0033】したがって、シリンダブロックが部分的且
つ不均等に過熱,過冷されることがなくなり、休筒部と
動筒部との温度差のバランスを良くし、シリンダブロッ
クとピストンとのフリクションの増加を防止し得るとと
もに、燃料使用量の低減にも役立ち得る利点がある。ま
た、本発明の請求項2記載の休筒機構付きエンジンの冷
却装置によれば、該遅延時間が、エンジン負荷状態と水
温状態に応じて設定されているので、各気筒群が過熱ま
たは過冷されないよう冷却水の状態変化に応じて適切な
冷却水の供給を行ない得る利点がある。Therefore, the cylinder block is not partially and unevenly overheated or overcooled, the temperature difference between the idle cylinder part and the moving cylinder part is well balanced, and the friction between the cylinder block and the piston is increased. There is an advantage that the fuel consumption can be prevented and the fuel consumption can be reduced. According to the cooling device for an engine with a cylinder deactivation mechanism according to claim 2 of the present invention, since the delay time is set according to the engine load state and the water temperature state, each cylinder group is overheated or overcooled. There is an advantage that the cooling water can be appropriately supplied according to the change in the state of the cooling water so as not to be caused.
【0034】また、本発明の請求項3記載の休筒機構付
きエンジンの冷却装置によれば、該第2気筒群を休止状
態へ切り替えるときの休止切替時遅延時間が、該第2気
筒群を稼働状態へ切り替えるときの稼働切替時遅延時間
よりも長くなるように設定されているので、休筒状態へ
の切替時における休筒部の温度の降下時間と、全気筒稼
働状態への切替時における休筒部の温度の温まる上昇時
間との違いに合わせるよう、冷却水の供給停止と供給開
始とを行なわせることにより、常に休筒部と動筒部との
温度差のバランスを良好に保ち得る利点がある。According to the third aspect of the present invention, there is provided the cooling system for an engine with a cylinder deactivation mechanism, wherein the switching delay time at the time of switching the second cylinder group to the deactivated state is set to the second cylinder group. Since it is set to be longer than the operation switching delay time when switching to the operating state, the temperature decrease time of the cylinder deactivation part when switching to the cylinder deactivating state and the time when switching to the all cylinders operating state By stopping and starting the supply of the cooling water so as to match the difference between the rising time of the temperature of the idle cylinder part and the rising time, the balance of the temperature difference between the idle cylinder part and the moving cylinder part can always be kept good. There are advantages.
【0035】また、本発明の請求項4記載の休筒機構付
きエンジンの冷却装置によれば、該第2気筒群の休筒時
に、該第1気筒群を冷却する該第1冷却水通路への給水
が増量されるよう、該切替制御弁を通じて該第2冷却水
通路から該第1冷却水通路へ冷却水を供給しうる増給用
通路が設けられているので、休筒時には動筒部への給水
を増量し、動筒部が過熱されないようにすることによ
り、休筒部と動筒部との温度差のバランスを適切に保つ
のに役立ち得る利点がある。According to a fourth aspect of the present invention, there is provided a cooling device for an engine with a cylinder deactivation mechanism, wherein when the cylinder deactivation of the second cylinder group is performed, the first cooling water passage for cooling the first cylinder group is introduced. Since a supply passage for supplying cooling water from the second cooling water passage to the first cooling water passage through the switching control valve is provided so as to increase the supply water of the By increasing the amount of water supplied to the moving cylinder to prevent the moving cylinder from being overheated, there is an advantage that it can help maintain an appropriate balance of the temperature difference between the idle cylinder and the moving cylinder.
【0036】そして、本発明の請求項5記載の休筒機構
付きエンジンの冷却装置によれば、該制御手段が、該第
2気筒群の休筒時に、所定のタイミングで該切替制御弁
を開閉作動させるよう構成されているので、休筒時にも
休筒部が動筒部の影響により過熱されないよう防止する
ことにより、休筒部と動筒部との温度差のバランスを適
切に保たせ得る利点がある。According to a fifth aspect of the present invention, there is provided an engine cooling device with a cylinder deactivation mechanism, wherein the control means opens and closes the switching control valve at a predetermined timing when the cylinder of the second cylinder group is deactivated. Since it is configured to operate, it is possible to properly maintain the balance of the temperature difference between the idle cylinder part and the moving cylinder part by preventing the idle cylinder part from being overheated due to the influence of the moving cylinder part even when the cylinder is idle. There are advantages.
【図1】本発明の一実施形態を示す本冷却装置の構成図
である。FIG. 1 is a configuration diagram of a cooling device according to an embodiment of the present invention.
【図2】本発明の一実施形態にかかる制御構成を示すブ
ロック図である。FIG. 2 is a block diagram showing a control configuration according to an embodiment of the present invention.
【図3】本発明の一実施形態による休筒時と動筒時との
切替制御弁の切替タイミング図である。FIG. 3 is a switching timing chart of the switching control valve between a cylinder deactivated state and a moving cylinder state according to the embodiment of the present invention.
【図4】本発明の一実施形態による休筒時の動筒部と休
筒部との温度変化の比較図である。FIG. 4 is a comparison diagram of temperature changes between a moving cylinder part and a cylinder-free part when the cylinder is stopped according to an embodiment of the present invention.
【図5】本発明の一実施形態による動筒状態から休筒状
態への切替時の作用を説明するフローチャートである。FIG. 5 is a flow chart illustrating an operation at the time of switching from the moving cylinder state to the deactivated cylinder state according to the embodiment of the present invention.
【図6】図5のフローチャートに関するマップ図であ
る。FIG. 6 is a map diagram related to the flowchart of FIG.
【図7】本発明の一実施形態による休筒状態から動筒状
態への切替時の作用を説明するフローチャートである。FIG. 7 is a flowchart illustrating an operation at the time of switching from the cylinder-inactive state to the moving-cylinder state according to the embodiment of the present invention.
【図8】図7のフローチャートに関するマップ図であ
る。8 is a map diagram relating to the flowchart of FIG. 7. FIG.
【図9】本発明の他の実施形態による動筒状態から休筒
状態への切替時の作用を説明するフローチャートであ
る。FIG. 9 is a flowchart illustrating an operation at the time of switching from the moving cylinder state to the deactivated cylinder state according to another embodiment of the present invention.
【図10】図9のフローチャートに関するマップ図であ
る。FIG. 10 is a map diagram relating to the flowchart of FIG.
【図11】従来の一般的な水冷V8エンジンの気筒配置
を示す模式的平面図である。FIG. 11 is a schematic plan view showing a cylinder arrangement of a conventional general water-cooled V8 engine.
【図12】従来例による休筒切替時の動筒部と休筒部と
の温度変化の比較図である。FIG. 12 is a comparison diagram of temperature changes between a moving cylinder portion and a cylinder-removing portion when switching cylinders according to a conventional example.
1〜8 気筒 11 水冷式V8エンジン 11a V8エンジンの一方側の気筒列 11b V8エンジンの他方側の気筒列 12 ラジエータ 13 水ポンプ 14 冷却水導入路 15 作動弁体 15a,15b 切替制御弁 16a,16b 増給用通路 17a,17b 還流通路 18 バイパス通路 19 冷却水導出路 19a バイパス路 20 サーモスタット 21 水温センサ 22 運転状態検出手段 23 弁制御手段 24 休筒制御手段 A 第1冷却水通路 B1,B2 第2冷却水通路 M1,M2,M3 マップ a,b1,b2 冷却水の流れ方向 1 to 8 cylinders 11 water-cooled V8 engine 11a V8 one-sided cylinder row 11b V8 engine other-sided cylinder row 12 radiator 13 water pump 14 cooling water introduction path 15 actuating valve body 15a, 15b switching control valve 16a, 16b Supply passage 17a, 17b Recirculation passage 18 Bypass passage 19 Cooling water outlet 19a Bypass passage 20 Thermostat 21 Water temperature sensor 22 Operating state detecting means 23 Valve control means 24 Cylinder control means A 1st cooling water passage B1, B2 2nd Cooling water passage M1, M2, M3 map a, b1, b2 Cooling water flow direction
Claims (5)
うるようにした休筒機構付き多気筒エンジンにおいて、 常時稼働する第1気筒群を冷却する第1冷却水通路と、 エンジンの運転状態に応じて稼働または休止に切り替え
られる第2気筒群を冷却する第2冷却水通路と、 該第2気筒群の運転休止時に該第2冷却水通路への冷却
水の循環を停止または抑制する切替制御弁と、 該第2気筒群の休止または稼働への切替時から所定の遅
延時間経過後に該切替制御弁を切替制御する制御手段と
が設けられていることを特徴とする、休筒機構付き多気
筒エンジンの冷却装置。1. A multi-cylinder engine with a cylinder deactivation mechanism, wherein a part of cylinders can be deactivated in accordance with an operating state, a first cooling water passage for cooling a constantly operating first cylinder group, and an engine A second cooling water passage that cools the second cylinder group that is switched to active or inactive according to the operating state, and stops or suppresses the circulation of cooling water to the second cooling water passage when the operation of the second cylinder group is stopped. And a control means for controlling the switching of the switching control valve after a lapse of a predetermined delay time from the switching of the second cylinder group to rest or operation. Cooling system for multi-cylinder engine with mechanism.
状態に応じて設定されていることを特徴とする、請求項
1記載の休筒機構付き多気筒エンジンの冷却装置。2. The cooling device for a multi-cylinder engine with a cylinder deactivation mechanism according to claim 1, wherein the delay time is set according to an engine load state and a water temperature state.
きの休止切替時遅延時間が、該第2気筒群を稼働状態へ
切り替えるときの稼働切替時遅延時間よりも長くなるよ
うに設定されていることを特徴とする、請求項1記載の
休筒機構付き多気筒エンジンの冷却装置。3. The idle switching delay time when switching the second cylinder group to the idle state is set to be longer than the operation switching delay time when switching the second cylinder group to the operating state. The cooling device for a multi-cylinder engine with a cylinder deactivation mechanism according to claim 1, wherein:
を冷却する該第1冷却水通路への給水が増量されるよ
う、該切替制御弁を通じて該第2冷却水通路から該第1
冷却水通路へ冷却水を供給しうる増給用通路が設けられ
ていることを特徴とする、請求項1記載の休筒機構付き
多気筒エンジンの冷却装置。4. When the second cylinder group is deactivated, the switching control valve is used to increase the amount of water supplied to the first cooling water passage for cooling the first cylinder group from the second cooling water passage. The first
2. The cooling device for a multi-cylinder engine with a cylinder deactivation mechanism according to claim 1, further comprising: a supply passage for supplying cooling water to the cooling water passage.
に、所定のタイミングで該切替制御弁を開閉作動させる
よう構成されていることを特徴とする、請求項1記載の
休筒機構付き多気筒エンジンの冷却装置。5. The cylinder according to claim 1, wherein the control means is configured to open / close the switching control valve at a predetermined timing when the cylinder of the second cylinder group is cylinder-free. Cooling system for multi-cylinder engine with mechanism.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29582295A JPH09137726A (en) | 1995-11-14 | 1995-11-14 | Cooling device for multiple cylinder engine with suspending cylinder mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29582295A JPH09137726A (en) | 1995-11-14 | 1995-11-14 | Cooling device for multiple cylinder engine with suspending cylinder mechanism |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09137726A true JPH09137726A (en) | 1997-05-27 |
Family
ID=17825628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29582295A Withdrawn JPH09137726A (en) | 1995-11-14 | 1995-11-14 | Cooling device for multiple cylinder engine with suspending cylinder mechanism |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09137726A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006144757A (en) * | 2004-11-24 | 2006-06-08 | Honda Motor Co Ltd | Variable-cylinder internal combustion engine |
JP2007132313A (en) * | 2005-11-11 | 2007-05-31 | Toyota Motor Corp | Cooling controller of internal combustion engine |
JP2016065494A (en) * | 2014-09-25 | 2016-04-28 | スズキ株式会社 | Control device of internal combustion engine |
JP2018053867A (en) * | 2016-09-30 | 2018-04-05 | 株式会社Subaru | Multi-cylinder engine cooling device |
JP2018053869A (en) * | 2016-09-30 | 2018-04-05 | 株式会社Subaru | Multi-cylinder engine cooling device |
JP2018091164A (en) * | 2016-11-30 | 2018-06-14 | 株式会社Subaru | Multi-cylinder engine cooling device |
-
1995
- 1995-11-14 JP JP29582295A patent/JPH09137726A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006144757A (en) * | 2004-11-24 | 2006-06-08 | Honda Motor Co Ltd | Variable-cylinder internal combustion engine |
JP2007132313A (en) * | 2005-11-11 | 2007-05-31 | Toyota Motor Corp | Cooling controller of internal combustion engine |
JP4640124B2 (en) * | 2005-11-11 | 2011-03-02 | トヨタ自動車株式会社 | Cooling control device for internal combustion engine |
JP2016065494A (en) * | 2014-09-25 | 2016-04-28 | スズキ株式会社 | Control device of internal combustion engine |
JP2018053867A (en) * | 2016-09-30 | 2018-04-05 | 株式会社Subaru | Multi-cylinder engine cooling device |
JP2018053869A (en) * | 2016-09-30 | 2018-04-05 | 株式会社Subaru | Multi-cylinder engine cooling device |
JP2018091164A (en) * | 2016-11-30 | 2018-06-14 | 株式会社Subaru | Multi-cylinder engine cooling device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080060592A1 (en) | Split Cooling System for an Internal Combustion Engine | |
JP3844249B2 (en) | Engine cooling system | |
KR20180000150A (en) | A exhaust side block insert, a cylinder block assembly including the same and heat management system of engine including the same | |
JP2011047305A (en) | Internal combustion engine | |
JP2005188288A (en) | Exhaust gas circulating device of internal combustion engine | |
US20100043762A1 (en) | Method for controlling the exhaust gas recirculation of an internal combustion engine | |
JPH09137726A (en) | Cooling device for multiple cylinder engine with suspending cylinder mechanism | |
JPH08218873A (en) | Cooling device for internal combustion engine | |
JPS6121537Y2 (en) | ||
JP2002089265A (en) | Cooling device for internal combustion engine | |
JP2009002166A (en) | Cooling system for exhaust manifold | |
JP2004270652A (en) | Engine cooling device | |
JPH0533646A (en) | Cooling structure of engine | |
JPH11182241A (en) | Cooling device for internal combustion engine | |
GB2442742A (en) | Cooling system for an internal combustion engine comprising an exhaust gas cooler | |
JP2003120296A (en) | Cooling system of engine | |
JP3821349B2 (en) | Engine cooling system | |
JP3928936B2 (en) | Thermostat device | |
JP4163985B2 (en) | Engine cooling system circuit | |
JPS62101816A (en) | Cooling device for engine | |
JPH08296439A (en) | Cooling device for internal combustion engine | |
JPS59101531A (en) | Shutter device for radiator | |
JP3541662B2 (en) | Internal combustion engine | |
JP2000073875A (en) | Egr device for diesel engine | |
JP2002188443A (en) | Cooling device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20030204 |