JPH09134875A - Exposure method and system - Google Patents
Exposure method and systemInfo
- Publication number
- JPH09134875A JPH09134875A JP8229597A JP22959796A JPH09134875A JP H09134875 A JPH09134875 A JP H09134875A JP 8229597 A JP8229597 A JP 8229597A JP 22959796 A JP22959796 A JP 22959796A JP H09134875 A JPH09134875 A JP H09134875A
- Authority
- JP
- Japan
- Prior art keywords
- exposure
- photosensitive material
- pattern
- enhancing layer
- original plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 239000000463 material Substances 0.000 claims abstract description 36
- 230000002708 enhancing effect Effects 0.000 claims abstract description 25
- 230000003287 optical effect Effects 0.000 claims abstract description 23
- 238000009826 distribution Methods 0.000 claims description 17
- 239000011230 binding agent Substances 0.000 claims description 13
- 238000002834 transmittance Methods 0.000 claims description 12
- 239000011248 coating agent Substances 0.000 claims description 10
- 238000000576 coating method Methods 0.000 claims description 10
- 239000012954 diazonium Substances 0.000 claims description 10
- 150000001989 diazonium salts Chemical class 0.000 claims description 10
- SQDFHQJTAWCFIB-UHFFFAOYSA-N n-methylidenehydroxylamine Chemical compound ON=C SQDFHQJTAWCFIB-UHFFFAOYSA-N 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 6
- 230000035945 sensitivity Effects 0.000 claims description 3
- 101100506034 Fibrobacter succinogenes (strain ATCC 19169 / S85) cel-3 gene Proteins 0.000 abstract description 6
- 239000000758 substrate Substances 0.000 abstract description 5
- 230000001965 increasing effect Effects 0.000 abstract description 3
- 230000005540 biological transmission Effects 0.000 abstract 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 4
- 101150026317 cel3 gene Proteins 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000006552 photochemical reaction Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 239000004373 Pullulan Substances 0.000 description 1
- 229920001218 Pullulan Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- SJGALSBBFTYSBA-UHFFFAOYSA-N oxaziridine Chemical compound C1NO1 SJGALSBBFTYSBA-UHFFFAOYSA-N 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 229920000548 poly(silane) polymer Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000019423 pullulan Nutrition 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/016—Diazonium salts or compounds
- G03F7/021—Macromolecular diazonium compounds; Macromolecular additives, e.g. binders
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
- G03F7/032—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
- G03F7/033—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
- H01L21/0273—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
- H01L21/0274—Photolithographic processes
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、半導体の製造に用
いられる露光装置、及び露光方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure apparatus and an exposure method used for manufacturing a semiconductor.
【0002】[0002]
【従来の技術】半導体製造技術の進歩に伴い、半導体集
積回路の集積度の向上が図られてきた。集積度の向上の
為には、投影露光の解像度を上げる必要がある。解像度
を上げる方法として、投影露光装置の露光波長を短波長
化するか、投影露光装置の開口数を大きくするかのどち
らかが考えられる。現在にいたっては、投影露光装置の
露光波長はエキシマレーザーの領域に達し、開口数は約
0.5程度となっている。2. Description of the Related Art With the progress of semiconductor manufacturing technology, the degree of integration of semiconductor integrated circuits has been improved. In order to improve the degree of integration, it is necessary to increase the resolution of projection exposure. As a method of increasing the resolution, it is conceivable to shorten the exposure wavelength of the projection exposure apparatus or increase the numerical aperture of the projection exposure apparatus. At present, the exposure wavelength of the projection exposure apparatus reaches the excimer laser region, and the numerical aperture is about 0.5.
【0003】[0003]
【発明が解決しようとする課題】しかし、どちらの方法
も、光学系による解像限界を越えた解像度を得ることは
不可能であった。本発明では、従来では、不可能であっ
た投影光学系の解像限界を越えて解像度を向上させる技
術を提供することを目的とする。However, neither of the methods was able to obtain a resolution exceeding the resolution limit of the optical system. An object of the present invention is to provide a technique for improving resolution by exceeding the resolution limit of a projection optical system, which has been impossible in the past.
【0004】[0004]
【課題を解決するための手段】上記課題を解決するため
に、本発明では、原版上のパターンを投影光学系によっ
て所定の感光素材上に投影露光する露光方法において、
感光素材の投影露光される側に光量に応じて透過率の変
化するコントラスト増強層を塗布し、前記コントラスト
増強層の塗布された感光素材にパターンを一回投影露光
し、その後、前記コントラスト増強層を前記感光素材よ
り剥がし、再び、前記感光素材の投影露光される側にコ
ントラスト増強層を塗布し、前記露光の時とは異なるパ
ターンを前記感光素材に投影露光することにより、投影
光学系の解像限界を越える高解像のパターンを形成する
ことを特徴とする露光方法を提供する。In order to solve the above problems, the present invention provides an exposure method in which a pattern on an original plate is projected and exposed on a predetermined photosensitive material by a projection optical system.
A contrast-enhancing layer whose transmittance changes according to the amount of light is applied to the projection-exposed side of the light-sensitive material, and the pattern is exposed once to the light-sensitive material coated with the contrast-enhancing layer, and then the contrast-enhancing layer. Is peeled off from the photosensitive material, the contrast enhancing layer is applied again to the side of the photosensitive material to be projected and exposed, and a pattern different from that at the time of the exposure is projected and exposed on the photosensitive material to solve the projection optical system. Provided is an exposure method characterized by forming a high-resolution pattern exceeding the image limit.
【0005】また、本発明では、原版の所定パターンを
投影光学系によって所定の感光素材上に投影する露光装
置において、前記感光素材の投影露光される側に光量に
応じて透過率の変化するコントラスト増強層を塗布する
塗布手段と、各露光終了毎に前記コントラスト増強層を
前記感光素材より剥がす剥離手段とを有し、前記感光素
材上に投影される原版のパターンが各露光毎に異なるこ
とにより、前記所定のパターンよりも微細なパターンの
潜像濃度分布を形成することを特徴とする露光装置をも
提供する。Further, according to the present invention, in an exposure apparatus for projecting a predetermined pattern of an original onto a predetermined photosensitive material by a projection optical system, a contrast whose transmittance changes according to the amount of light on the projection exposed side of the photosensitive material. A coating means for coating the enhancement layer and a peeling means for peeling the contrast enhancement layer from the photosensitive material after each exposure, and the pattern of the original plate projected on the photosensitive material is different for each exposure. There is also provided an exposure apparatus characterized by forming a latent image density distribution of a pattern finer than the predetermined pattern.
【0006】[0006]
【発明の実施の形態】以下では、実施例によって投影光
学系の解像限界を越えた解像パターンをレジストに形成
する方法を説明する。図1はコントラスト増強層として
ジアゾニウム塩を用いた場合の実施例における露光体の
模式断面図であり、図1を参照しながら説明を行う。基
板1上にレジスト2を塗布し、更にその上にコントラス
ト増強層(英語でContrast EnhancingLayerと呼ぶの
で、以下ではCELと称する。)3を塗布する。以下で
は、この様に積層したものを露光体と称することにす
る。BEST MODE FOR CARRYING OUT THE INVENTION A method of forming a resolution pattern on a resist which exceeds the resolution limit of a projection optical system will be described below with reference to embodiments. FIG. 1 is a schematic cross-sectional view of an exposed body in an example in which a diazonium salt is used as a contrast enhancing layer, which will be described with reference to FIG. A resist 2 is applied on a substrate 1, and a contrast enhancing layer (hereinafter referred to as CEL in English because it is called Contrast Enhancing Layer) 3 is further applied thereon. Hereinafter, such a laminated body will be referred to as an exposed body.
【0007】本実施例では、基板は半導体素子作製用の
シリコンウエハーを用い、レジストは線型な感度特性を
もつノボラック系のi線用レジストを用い、CELは前
述の通りジアゾニウム塩を主成分としたものを用いてい
る。実際に、CELとしては、文献(技術情報協会発行
レジスト材料、プロセス技術)や文献(中瀬真 他著
電子通信学会技術研究報告84巻 241号 SSD84-97 A
BCモデルによるCELの特性評価)や文献(B.F.Grif
fing and P.R.West IEEE Electron Devices Letters, V
ol. EDL-4, No. 1, JANUARY 1983, p14-16)に記載され
た物質が使用可能である。特に、ジアゾニウム塩以外の
物質名を挙げると、ニトロン、ポリシラン、スチリルピ
リジニウム塩などが挙げられる。[0007] In this embodiment, the substrate is a silicon wafer for manufacturing semiconductor devices, resist using an i-ray resist of novolak with linear sensitivity characteristics, CEL before
As described above, the main component is a diazonium salt. Actually, as CEL, there are documents (resist materials and process technologies issued by the Institute of Technology Information) and documents (Makoto Nakase et al. Technical Report of the Institute of Electronics and Communication Engineers, Vol. 84, No. 241, SSD84-97 A.
Characteristic evaluation of CEL by BC model) and literature (BFGrif
fing and PRWest IEEE Electron Devices Letters, V
ol. EDL-4, No. 1, JANUARY 1983, p14-16) can be used. In particular, nitrone, polysilane, styrylpyridinium salt and the like can be mentioned as the substance names other than the diazonium salt.
【0008】CELとは、光退色性の化合物を利用した
ものであり、光の入射以前は光の透過率の低い状態であ
るが、入射した光量の増加に伴って光の透過率を増し、
ある光量で100%に近い透過率に達する特性を有して
いる。ジアゾニウム塩を主成分としたCELは、以下に
示す光化学反応により透明な物質及び窒素に分解する。CEL is a compound that uses a photobleaching compound and has a low light transmittance before the incidence of light. However, the light transmittance increases as the amount of incident light increases.
It has the characteristic of reaching a transmittance close to 100% with a certain amount of light. CEL containing a diazonium salt as a main component decomposes into a transparent substance and nitrogen by the photochemical reaction shown below.
【0009】[0009]
【化1】 Embedded image
【0010】CELを含む一般的なレジストを特徴づけ
るパラメーターとして、A、B及びCの各係数と厚さd
とがある。これらパラメーターの意味は、文献(F.H. D
ill, W. P. Hornberger, P.S. Hauge, J. M. Shaw, IEE
E Transactions of Electron Devices, Vol. ED-22, N
o. 7, July 1975, p445-452)に説明されている。本実
施例中に使用するCELでは、A=11.1μm-1、B
=0.192μm-1、C=0.033cm2 /mJ及び
d=0.5μmのCELを用いた。As parameters that characterize common resists including CEL, the coefficients of A, B and C and the thickness d
There is. The meaning of these parameters can be found in the literature (FHD
ill, WP Hornberger, PS Hauge, JM Shaw, IEE
E Transactions of Electron Devices, Vol. ED-22, N
o. 7, July 1975, p445-452). In the CEL used in this example, A = 11.1 μm −1 , B
A CEL of = 0.192 μm −1 , C = 0.033 cm 2 / mJ and d = 0.5 μm was used.
【0011】この条件のときのCELの透過率Tが露光
量I・t(Iは光の強度、tは露光時間)によって変化
する様子をシミュレーションによって計算した。この結
果を図2に示す。図2を見ると、露光量100mJ/c
m2 付近から曲線が立ち上がり、露光量300mJ/c
m2 付近で一定の値に飽和することが分かる。このよう
なCELを通して露光すると、レジストへの透過光量D
は、A simulation was performed to calculate how the transmittance T of the CEL under these conditions changes depending on the exposure amount I · t (I is the light intensity and t is the exposure time). The result is shown in FIG. Looking at FIG. 2, the exposure amount is 100 mJ / c
The curve rises from around m 2 and the exposure dose is 300 mJ / c
It can be seen that the value saturates at a constant value near m 2 . When exposed through such a CEL, the amount of light transmitted through the resist D
Is
【0012】[0012]
【数1】 (Equation 1)
【0013】で与えられる。図3に、本実施例における
CEL上への露光量I・tとレジストへの透過光量Dと
の関係を示す。これは、図2の関係からシミュレーショ
ンによって求めた結果である。このとき、レジスト中で
は、縦軸の透過光量Dに比例した潜像の濃度が形成され
る。この図3を見ると分かる通り、あるしきい値までの
露光量では光はレジストに達せず、それ以上になると透
過光量Dが突然増加し始める。この関係を露光量のべき
多項式で表そうとすると、近似的に5次の多項式が必要
になる。すなわち、5次の非線形性が本実施例では実現
されている。Is given by FIG. 3 shows the relationship between the exposure amount I · t on the CEL and the transmitted light amount D to the resist in this embodiment. This is the result obtained by simulation from the relationship of FIG. At this time, the latent image density is formed in the resist in proportion to the transmitted light amount D on the vertical axis. As can be seen from FIG. 3, the light does not reach the resist at the exposure amount up to a certain threshold value, and when it exceeds the threshold value, the transmitted light amount D suddenly starts to increase. In order to express this relationship by a power polynomial of the exposure dose, a polynomial of the fifth degree is approximately required. That is, fifth-order nonlinearity is realized in this embodiment.
【0014】このような状況で、先程の露光体を用い
て、先ず第1のパターンを露光する。最上部のCEL
に、投影光学系の解像限界に近いパターンを露光する。
解像限界のパターンの周期Pは投影露光に用いる波長を
λ、投影光学系の開口数をNAとすると、P= λ/2N
Aである。本実施例ではλ=365nm、NA=0.6で、
P=304nmである。理想的な位相シフトマスクを用
いた場合には、この回折限界パターンは露光強度Iを位
置xの関数としてIn such a situation, first, the first pattern is exposed using the above-mentioned exposed body. CEL on top
Then, a pattern close to the resolution limit of the projection optical system is exposed.
Assuming that the wavelength used for projection exposure is λ and the numerical aperture of the projection optical system is NA, the period P of the resolution limit pattern is P = λ / 2N
A. In this embodiment, λ = 365 nm and NA = 0.6,
P = 304 nm. When an ideal phase shift mask is used, this diffraction-limited pattern has the exposure intensity I as a function of the position x.
【0015】[0015]
【数2】 I(x)=I0 (1+ cos(2πx/P)) と表すことができる。本実施例ではI0 =50mW/c
m2 である。この強度の露光光を用いて、露光体上に3
秒間露光する。(数1においては、a=3となる。) ここで、CELへの露光量I・tの露光量分布は、図4
に示すようになる。図4及び以降に示す図5、図6、図
7、図8、図11には目盛りをふっていないが、これら
の図の全ての横軸の位置xは同一である。## EQU2 ## It can be expressed as I (x) = I 0 (1 + cos (2πx / P)). In this example, I 0 = 50 mW / c
m 2 . Using the exposure light of this intensity, 3
Expose for 2 seconds. (In Expression 1, a = 3.) Here, the exposure amount distribution of the exposure amount I · t to the CEL is shown in FIG.
It becomes as shown in. Although FIG. 4, FIG. 5, FIG. 6, FIG. 7, FIG. 8 and FIG. 11 which will be shown below are not scaled, all the positions x on the horizontal axis in these figures are the same.
【0016】この露光量分布がCELを通ってレジスト
に達すると、図3の関係を用いて、レジストへの透過光
量Dは図5で与えられるものになる。図5に示す分布で
は、図4に示す露光量分布谷の部分が近似的に平坦化さ
れた様になっている。この第1回目の露光で、レジスト
中にDに比例した潜像の濃度が形成される。つぎに、露
光体のCELを剥がす。レジストは水に不溶であるのに
対してCELは可溶であるので、純水のシャワーによっ
てレジストを保持したままCELのみをはがすことがで
きる。When this exposure amount distribution reaches the resist through the CEL, the transmitted light amount D to the resist is given by FIG. 5 using the relationship of FIG. In the distribution shown in FIG. 5, the valley portion of the exposure amount distribution shown in FIG. 4 is approximately flattened. By this first exposure, the density of the latent image proportional to D is formed in the resist. Next, the CEL of the exposed body is peeled off. Since the resist is insoluble in water but the CEL is soluble, it is possible to remove only the CEL while holding the resist by showering pure water.
【0017】続いて、再び同じ材質で同じ厚さのCEL
を塗布する。その後、第2回目の露光を行う。第2回目
の露光は、第1回目の露光パターンと同じ様に解像限界
の周期Pを持ち、同じ強度のパターンであるが、第1回
目の露光とは半周期ずれたパターンを用いる。数式で
は、Subsequently, the CEL made of the same material and having the same thickness is again used.
Is applied. After that, the second exposure is performed. The second exposure uses a pattern having the resolution limit period P and the same intensity as the first exposure pattern, but uses a pattern shifted by a half period from the first exposure. In the formula,
【0018】[0018]
【数3】 I2 (x)=I0 (1− cos(2πx/P)) の形で与えられる。露光強度の振幅I0 は、第1回目と
同じ50mW/cm2 である。露光時間も第1回目の露
光と同じ3秒とする。第2回目露光のCEL上への露光
量I2 ・tの露光量分布を図6に示す。図6は、図4と
比べると、周期が半分ずれている。It is given in the form of I 2 (x) = I 0 (1-cos (2πx / P)). The amplitude I 0 of the exposure intensity is 50 mW / cm 2 which is the same as the first time. The exposure time is also 3 seconds, which is the same as the first exposure. The exposure amount distribution of the exposure amount I 2 · t on the CEL in the second exposure is shown in FIG. In FIG. 6, the cycle is shifted by half compared to FIG. 4.
【0019】第1回目の露光と同じ様に、図3に示すC
ELの効果によって、レジストへの第2回目の露光の透
過光量の分布が図7に示す様になり、この透過光量に比
例した潜像の濃度がレジストに形成される。第1回目と
第2回目との露光によって与えられたレジストへの総光
量によるパターンは、図5と図7とに示した透過光量の
和になり、図8に示すものとなる。潜像の濃度は、この
総光量に比例したものになる。この潜像の濃度のパター
ンのコントラストは0.68である。Similar to the first exposure, C shown in FIG. 3 is used.
Due to the effect of EL, the distribution of the transmitted light amount of the second exposure on the resist is as shown in FIG. 7, and the density of the latent image proportional to this transmitted light amount is formed on the resist. The pattern of the total amount of light to the resist given by the first and second exposures is the sum of the amounts of transmitted light shown in FIGS. 5 and 7, and is as shown in FIG. The latent image density is proportional to this total light amount. The contrast of the latent image density pattern is 0.68.
【0020】本実施例の方法によって、図8で分かる通
り、解像限界のパターンの周期Pの1/2の周期のパタ
ーンが形成される。第2回目の露光が終了したら、再
び、純水のシャワーによってCELのみをはがし、現像
液に浸す。次に、上記実施例とは異なる実施例を示す。According to the method of this embodiment, as can be seen from FIG. 8, a pattern having a period half the period P of the resolution limit pattern is formed. After the second exposure is completed, only the CEL is peeled off again by showering with pure water and immersed in the developing solution. Next, an embodiment different from the above embodiment will be described.
【0021】上記実施例と同じ構造、同じ材料で、CE
Lの厚みを0.8μmに変更した露光体を用いる。露光
強度の分布は同じもので、1回目と2回目との露光時間
をそれぞれ4秒とする。この場合のCELの透過率の変
化は、図9で示すものとなる。図9を見ると、露光量2
00mJ/cm2 付近から曲線が立ち上がり、露光量3
50mJ/cm 2 付近で一定の値に飽和することが分か
る。また、CEL上への露光量I・tと、レジストへの
透過光量Dの関係は図10で与えられる。露光量250
mJ/cm2 付近から、透過光量Dが突然増加し始め
る。With the same structure and the same material as in the above embodiment, CE
An exposed body in which the thickness of L is changed to 0.8 μm is used. exposure
The intensity distribution is the same, the exposure time of the first and second exposure
For 4 seconds. In this case, the change in transmittance of CEL
The conversion is as shown in FIG. Looking at FIG. 9, the exposure amount 2
00mJ / cmTwoThe curve rises from the vicinity and the exposure amount is 3
50 mJ / cm TwoIt turns out that it saturates to a certain value in the vicinity
You. In addition, the exposure amount It · t on the CEL and
The relationship of the transmitted light amount D is given in FIG. Exposure 250
mJ / cmTwoFrom around, the amount of transmitted light D suddenly started to increase.
You.
【0022】前記実施例と同様に2回露光を行った後の
潜像の濃度のパターンは、図11で与えられるものにな
る。本実施例では、コントラストは0.925である。
尚、レジストとして、入射光の強度の2乗に比例する潜
像の濃度を形成するもの(2次の非線型レジスト)を用
いた場合には、露光量と潜像の濃度の関係は、図3の縦
軸をさらに2乗した関係となり、第1回目の露光と第2
回目の露光とで形成される潜像のパターンは、より鮮明
化したものになる。その結果、多重露光(同一のレジス
トに2回以上露光を行うこと)の後の最終的に得られる
パターンのコントラストが上がることになる。The density pattern of the latent image after the exposure is performed twice as in the above embodiment is as shown in FIG. In this embodiment, the contrast is 0.925.
When a resist (second-order non-linear resist) that forms a latent image density proportional to the square of the intensity of incident light is used as the resist, the relationship between the exposure amount and the latent image density is shown in FIG. 3 is the square of the vertical axis, and the first exposure and the second
The latent image pattern formed by the second exposure becomes clearer. As a result, the contrast of the pattern finally obtained after multiple exposure (exposure of the same resist more than once) is increased.
【0023】レジストとして線型のものを用い多重露光
を行う場合にも、2次の非線型レジストを用い多重露光
を行う場合にも、CELを用いずに2次の非線型レジス
トのみを用い多重露光を行うた場合のコントラストの値
0.33よりは大きなコントラストを得ることができ
る。以上ではジアゾニウム塩を主成分としたCELを用
いたが、ニトロンを主成分としたCELを用いる場合の
実施例を以下に示す。尚、ニトロンを主成分としたCE
Lは、特開昭59−104642号公報に開示されたも
のがあり、CEM388WS(信越化学の商標)が入手
可能である。ニトロンを用いた場合は、以下に示す光化
学反応を起こし、オキサジリジンという物質に変化す
る。In the case of performing multiple exposure using a linear resist as well as in the case of performing multiple exposure using a secondary non-linear resist, multiple exposure using only the secondary non-linear resist without using CEL It is possible to obtain a contrast larger than the contrast value of 0.33 in the case of performing. In the above, the CEL containing the diazonium salt as the main component was used, but an example of using the CEL containing nitrone as the main component will be described below. CE containing nitrone as a main component
L is disclosed in JP-A-59-104642, and CEM388WS (trademark of Shin-Etsu Chemical) is available. When nitrone is used, it undergoes the photochemical reaction shown below and changes into a substance called oxaziridine.
【0024】[0024]
【化2】 Embedded image
【0025】ニトロンを用いた場合は、露光体を図13
に示すような構造にする。すなわち、基板1上にレジス
ト2を塗布し、その上にバインダー4を塗布し、更にそ
の上に、CEL3を塗布する。この様な構造にするの
は、ニトロンを用いたCEL3そのものは水を浸透する
が、水には不溶性だからである。しかし、バインダー4
は水に可溶性であるため、水はCEL3に浸透した後バ
インダー4を溶かし、CEL3をレジスト2から剥離す
ることが可能になる。このとき、バインダー4として
は、プルラン及びポリビニルピロリドンが使用可能であ
る。When the nitrone is used, the exposed body is shown in FIG.
The structure is as shown in. That is, the resist 2 is coated on the substrate 1, the binder 4 is coated thereon, and the CEL 3 is further coated thereon. The reason why such a structure is adopted is that the CEL3 itself using nitrone penetrates water but is insoluble in water. But binder 4
Is soluble in water, it becomes possible to separate CEL3 from resist 2 by dissolving binder 4 after water permeates CEL3. At this time, as the binder 4, pullulan and polyvinylpyrrolidone can be used.
【0026】第1回目の露光及び第2回目の露光は、ジ
アゾニウム塩を主成分としたCEL同様に行う。第2回
目の露光の後は、上述の方法で再びCEL3をレジスト
2から剥離し、現像液に浸すことにより、光学系の解像
限界を越えたパターンを得る。図12には、ジアゾニウ
ム塩を主成分としたCELによる露光体を用いて光強度
分布が異なる複数回の露光を行うための露光装置の概略
構成を示す。光源11からの照明光束は楕円鏡12によ
り集光され、ミラー13によりコリメータレンズ14に
導かれ、ほぼ平行光束となってフライアイインテグレー
タ15に入射する。フライアイインテグレータ15を射
出した光束はミラー16によりメインコンデンサー17
に導かれ、原版としてのレチクル18aを均一に照明す
る。原版18a上の所定のパターンが投影光学系19に
よって露光体20上に投影露光される。露光体20は、
予め塗布手段であるCEL塗布機24によってCELが
塗布された状態となっている。ここで、レチクル18a
は露光の後に、レチクルローダー21によって異なるパ
ターンを有するレチクル18bと交換される。また、露
光体20も、ウエハローダー22によって、剥離手段で
あるシャワー23のところまで持って行かれ、純水のシ
ャワーによってCELが剥離される。その後、CEL塗
布機24のところへ戻され、再びCELが塗布される。
この様にして再び出来上がった露光体を元の位置に戻し
て、第2の露光がなされる。The first exposure and the second exposure are performed in the same manner as CEL containing a diazonium salt as a main component. After the second exposure, the CEL 3 is peeled off from the resist 2 again by the above-mentioned method and immersed in a developing solution to obtain a pattern exceeding the resolution limit of the optical system. FIG. 12 shows a schematic configuration of an exposure apparatus for performing a plurality of exposures with different light intensity distributions by using an exposed body of CEL containing a diazonium salt as a main component. The illumination light flux from the light source 11 is condensed by the elliptical mirror 12, guided to the collimator lens 14 by the mirror 13, becomes a substantially parallel light flux, and enters the fly-eye integrator 15. The light flux emitted from the fly-eye integrator 15 is reflected by the mirror 16 to the main condenser 17
Is guided to uniformly illuminate the reticle 18a as the original plate. A predetermined pattern on the original 18a is projected and exposed on the exposure body 20 by the projection optical system 19. The exposed body 20 is
The CEL is applied in advance by the CEL applicator 24, which is the application means. Here, the reticle 18a
After exposure, the reticle 18b having a different pattern is exchanged by the reticle loader 21 after the exposure. The exposed body 20 is also brought to the shower 23, which is a peeling means, by the wafer loader 22, and the CEL is peeled off by the shower of pure water. After that, it is returned to the CEL coating machine 24, and CEL is coated again.
The exposed body thus completed is returned to the original position and the second exposure is performed.
【0027】レチクルローダー21によって異なるパタ
ーンを交換する変わりに、レチクル18aによる第1の
露光の後に、レチクル18aを投影光学系19の光軸Ax
に対して垂直方向に所定量だけ移動させて第2の露光を
行うこととしても良い。尚、同一のレチクルパターンを
複数回露光する場合には、レチクルを移動する代わり
に、複数の露光毎に露光体自体を移動する構成とするこ
とも可能であることは言うまでもない。Instead of exchanging different patterns by the reticle loader 21, the reticle 18a is moved to the optical axis Ax of the projection optical system 19 after the first exposure by the reticle 18a.
Alternatively, the second exposure may be performed by moving in the vertical direction by a predetermined amount. Needless to say, in the case of exposing the same reticle pattern a plurality of times, instead of moving the reticle, the exposure body itself may be moved for every plurality of exposures.
【0028】複数回露光間でのアライメントは、潜像を
観察してアライメントする所謂潜像アライメントが有効
である。また、ニトロンを主成分としたCELを用いる
場合は、CEL塗布機24によってCELを塗布する前
に、バインダー塗布手段によってバインダーを塗布す
る。その他の工程等は、ジアゾニウム塩を主成分とした
CELをもちいた場合と同様である。For the alignment between a plurality of exposures, so-called latent image alignment is effective in which the latent image is observed and aligned. When CEL containing nitrone as a main component is used, the binder is applied by the binder application unit before the CEL is applied by the CEL applicator 24. Other steps and the like are the same as in the case of using CEL containing a diazonium salt as a main component.
【0029】[0029]
【発明の効果】以上の様に、本発明では、投影光学系の
解像限界を越えて解像度を向上させることが可能になっ
た。As described above, according to the present invention, the resolution can be improved by exceeding the resolution limit of the projection optical system.
【図1】図1は、ジアゾニウム塩を主成分としたCEL
を用いたときの露光体の構造を示す模式断面図である。FIG. 1 is a CEL containing a diazonium salt as a main component.
It is a schematic cross section which shows the structure of the exposure body at the time of using.
【図2】図2は、実施例におけるCELへの露光量とC
ELの透過率との関係を示すグラフである。FIG. 2 is a graph showing the exposure amount to CEL and C in the example.
It is a graph which shows the relationship with EL transmittance.
【図3】図3は、実施例におけるCELへの露光量とC
ELを通ってレジストへ達する透過光量の関係を示すグ
ラフである。FIG. 3 is a graph showing the exposure amount to CEL and C in the example.
7 is a graph showing the relationship of the amount of transmitted light that reaches the resist through EL.
【図4】図4は、実施例における第1回目の露光の際の
CELへの露光量の分布を示すグラフである。FIG. 4 is a graph showing the distribution of the exposure amount on the CEL at the time of the first exposure in the example.
【図5】図5は、実施例における第1回目の露光の際の
レジストへ達する透過光量の分布を示すグラフである。FIG. 5 is a graph showing the distribution of the amount of transmitted light reaching the resist during the first exposure in the example.
【図6】図6は、実施例における第2回目の露光の際の
CELへの露光量の分布を示すグラフである。FIG. 6 is a graph showing the distribution of the exposure amount to the CEL at the time of the second exposure in the example.
【図7】図7は、実施例における第2回目の露光の際の
レジストへ達する透過光量の分布を示すグラフである。FIG. 7 is a graph showing the distribution of the amount of transmitted light that reaches the resist during the second exposure in the example.
【図8】図8は、実施例における合計2回のの露光の後
にレジスト中に形成された潜像の濃度の分布を示すグラ
フである。FIG. 8 is a graph showing a density distribution of a latent image formed in a resist after a total of two exposures in the example.
【図9】図9は、他の実施例におけるCELへの露光量
とCELの透過率との関係を示すグラフである。FIG. 9 is a graph showing the relationship between the exposure amount of CEL and the transmittance of CEL in another example.
【図10】図10は、他の実施例におけるCELへの露
光量とCELを通ってレジストへ達する透過光量との関
係を示すグラフである。FIG. 10 is a graph showing the relationship between the exposure amount to the CEL and the amount of transmitted light reaching the resist through the CEL in another example.
【図11】図11は、他の実施例における合計2回の露
光の後にレジスト中に形成された潜像の濃度の分布を示
すグラフである。FIG. 11 is a graph showing a density distribution of a latent image formed in a resist after a total of two exposures in another example.
【図12】図12は、本発明による装置の実施例を示し
た図である。FIG. 12 is a diagram showing an embodiment of the device according to the present invention.
【図13】図13は、ニトロンを主成分としたCELを
用いたときの露光体の構造を示す模式断面図である。FIG. 13 is a schematic cross-sectional view showing the structure of an exposed body when a CEL containing nitrone as a main component is used.
1 基板 2 感光素材 3 CEL 4 バインダー 23 シャワー 24 CEL塗布機 1 substrate 2 photosensitive material 3 CEL 4 binder 23 shower 24 CEL coating machine
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/30 565 573 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01L 21/30 565 573
Claims (13)
定の感光素材上に投影露光する露光方法において、 感光素材の投影露光される側に、光量に応じて透過率の
変化するコントラスト増強層を塗布し、 前記コントラスト増強層の塗布された感光素材にパター
ンを一回投影露光し、 その後、前記コントラスト増強層を前記感光素材より剥
がし、 再び、前記感光素材の投影露光される側に、コントラス
ト増強層を塗布し、 前記露光の時とは異なるパターンを前記感光素材に投影
露光することにより、投影光学系の解像限界を越える高
解像のパターンを形成することを特徴とする露光方法。1. An exposure method in which a pattern on an original plate is projected and exposed on a predetermined photosensitive material by a projection optical system, and a contrast enhancing layer whose transmittance changes according to the amount of light is provided on the side of the photosensitive material to be projected and exposed. After the coating, the pattern is exposed once to the photosensitive material coated with the contrast enhancing layer, then the contrast enhancing layer is peeled off from the photosensitive material, and the contrast enhancing layer is again exposed to the contrast enhancing layer. An exposure method characterized by forming a high-resolution pattern that exceeds the resolution limit of a projection optical system by applying a layer and projecting and exposing a pattern different from that at the time of the exposure onto the photosensitive material.
成分とした物質であることを特徴とする請求項1記載の
露光方法。2. The exposure method according to claim 1, wherein the contrast enhancing layer is a substance containing nitrone as a main component.
バインダーを塗布することを特徴とする請求項1又は2
記載の露光方法。3. Before applying the contrast enhancing layer,
3. A binder is applied, wherein the binder is applied.
Exposure method according to the above.
塩を主成分とした物質であることを特徴とする請求項1
記載の露光方法。4. The contrast enhancing layer is a substance containing a diazonium salt as a main component.
Exposure method according to the above.
ことを特徴とする請求項1乃至4に記載の露光方法。5. The exposure method according to claim 1, wherein the photosensitive material has a linear sensitivity characteristic.
ることを特徴とする請求項1乃至4に記載の露光方法。6. The exposure method according to claim 1, wherein the photosensitive material has a non-linear sensitivity characteristic.
所定の感光素材上に投影する露光装置において、 前記感光素材の投影露光される側に光量に応じて透過率
の変化するコントラスト増強層を塗布する塗布手段と、 各露光終了毎に前記コントラスト増強層を前記感光素材
より剥がす剥離手段とを有し、 前記感光素材上に投影される原版のパターンが各露光毎
に異なることにより、前記所定のパターンよりも微細な
パターンの潜像濃度分布を形成することを特徴とする露
光装置。7. An exposure apparatus for projecting a predetermined pattern of an original plate onto a predetermined photosensitive material by a projection optical system, wherein a contrast enhancing layer whose transmittance changes according to the amount of light is applied to the projection exposed side of the photosensitive material. Coating means and a peeling means for peeling the contrast enhancing layer from the photosensitive material after each exposure, and the pattern of the original plate projected on the photosensitive material is different for each exposure. An exposure apparatus that forms a latent image density distribution that is finer than a pattern.
間にバインダーを塗布するためのバインダー塗布手段を
更に有することを特徴とする請求項7記載の露光装置。8. The exposure apparatus according to claim 7, further comprising a binder coating unit for coating a binder between the contrast enhancing layer and the photosensitive material.
所定の感光素材上に投影する露光装置において、 前記感光素材の投影露光される側に光量に応じて透過率
の変化するコントラスト増強層を塗布する塗布手段と、 各露光終了毎に前記コントラスト増強層を前記感光素材
より剥がす剥離手段と、を有し、 前記原版として第1パターンを有する第1原版と第2パ
ターンを有する第2原版とを有し、 前記感光素材に対して前記第1原版による第1露光後に
前記第2原版による第2露光を行うことにより、前記感
光素材上に前記第1パターン及び第2パターンよりも微
細なパターンの潜像濃度分布を形成することを特徴とす
る露光装置。9. An exposure apparatus for projecting a predetermined pattern of an original plate onto a predetermined photosensitive material by a projection optical system, wherein a contrast enhancing layer whose transmittance changes according to the amount of light is applied to the projection exposed side of the photosensitive material. A first original plate having a first pattern and a second original plate having a second pattern as the original plate, and a peeling unit for peeling the contrast enhancing layer from the photosensitive material after each exposure. The photosensitive material is subjected to a second exposure by the second original plate after a first exposure by the first original plate, thereby forming a finer pattern than the first pattern and the second pattern on the photosensitive material. An exposure apparatus which forms a latent image density distribution.
の間にバインダーを塗布するためのバインダー塗布手段
を更に有することを特徴とする請求項9記載の露光装
置。10. The exposure apparatus according to claim 9, further comprising a binder coating unit for coating a binder between the contrast enhancing layer and the photosensitive material.
パターンを有し、前記第1露光の後に前記第1原版を前
記第2原版に交換して第2露光を行うことを特徴とする
請求項9又は10記載の露光装置。11. The first original plate and the second original plate have different patterns, and after the first exposure, the first original plate is replaced with the second original plate to perform the second exposure. The exposure apparatus according to claim 9 or 10.
あり、前記第1露光の後に前記第1原版を前記投影光学
系の光軸に垂直方向に所定量だけ移動させて第2露光を
行うことを特徴とする請求項9又は10記載の露光装
置。12. The first original plate and the second original plate are the same, and after the first exposure, the first original plate is moved by a predetermined amount in a direction perpendicular to the optical axis of the projection optical system to obtain a second original plate. The exposure apparatus according to claim 9 or 10, which performs exposure.
あり、前記第1露光の後にコントラスト増強層を塗布し
た感光素材を前記投影光学系の光軸に垂直方向に所定量
だけ移動させて第2露光を行うことを特徴とする請求項
9又は10記載の露光装置。13. The first original plate and the second original plate are the same, and a photosensitive material coated with a contrast enhancing layer after the first exposure is moved by a predetermined amount in a direction perpendicular to the optical axis of the projection optical system. The exposure apparatus according to claim 9, wherein the second exposure is performed.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8229597A JPH09134875A (en) | 1995-09-05 | 1996-08-30 | Exposure method and system |
KR1019960038473A KR19980017970A (en) | 1995-05-05 | 1996-09-05 | Exposure method and exposure device |
US08/708,580 US5902716A (en) | 1995-09-05 | 1996-09-05 | Exposure method and apparatus |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22839995 | 1995-09-05 | ||
JP7-228399 | 1995-09-05 | ||
JP8229597A JPH09134875A (en) | 1995-09-05 | 1996-08-30 | Exposure method and system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09134875A true JPH09134875A (en) | 1997-05-20 |
Family
ID=26528227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8229597A Pending JPH09134875A (en) | 1995-05-05 | 1996-08-30 | Exposure method and system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH09134875A (en) |
KR (1) | KR19980017970A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2005017483A1 (en) * | 2003-08-18 | 2007-10-04 | 株式会社ニコン | Illuminance distribution evaluation method, optical member manufacturing method, illumination optical apparatus, exposure apparatus, and exposure method |
-
1996
- 1996-08-30 JP JP8229597A patent/JPH09134875A/en active Pending
- 1996-09-05 KR KR1019960038473A patent/KR19980017970A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2005017483A1 (en) * | 2003-08-18 | 2007-10-04 | 株式会社ニコン | Illuminance distribution evaluation method, optical member manufacturing method, illumination optical apparatus, exposure apparatus, and exposure method |
JP4599632B2 (en) * | 2003-08-18 | 2010-12-15 | 株式会社ニコン | Illuminance distribution evaluation method, optical member manufacturing method, illuminance measuring apparatus, exposure apparatus, and exposure method |
Also Published As
Publication number | Publication date |
---|---|
KR19980017970A (en) | 1998-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0907105A2 (en) | Method for fabricating photomasks having a phase shift layer | |
JPH075675A (en) | Mask and manufacturing method thereof | |
EP0543569A1 (en) | Fabrication of phase-shifting lithographic masks | |
JP2002075857A (en) | Method of forming resist pattern | |
JP2910157B2 (en) | How to optimize photoresist contrast | |
US8546069B2 (en) | Method for enhancing lithographic imaging of isolated and semi-isolated features | |
JPH09134875A (en) | Exposure method and system | |
JPH09218500A (en) | Manufacture of resist patterns | |
JP2560773B2 (en) | Pattern formation method | |
JP3734052B2 (en) | Exposure method and exposure apparatus | |
KR100552559B1 (en) | Reticle, semiconductor exposure apparatus and method, and semiconductor device manufacturing method | |
US6492069B1 (en) | Method for forming an attenuated phase-shifting mask | |
EP0282201A2 (en) | Pattern forming method | |
KR960002243B1 (en) | How to form a resist mask pattern by light irradiation | |
JPH01106049A (en) | Pattern forming method | |
JP3876460B2 (en) | Exposure method and exposure apparatus | |
KR101179518B1 (en) | Mask for euv exposure process and method for fabricating the same | |
JPH02238457A (en) | Formation of thick-film resist pattern | |
JPH0385544A (en) | Resist pattern forming method | |
JP2589346B2 (en) | Pattern formation method | |
JPH0458245A (en) | Mask for forming fine pattern and production thereof | |
JPS58132926A (en) | Formation of pattern | |
JPH0553322A (en) | Pattern forming method | |
JPH01130527A (en) | Formation of resist pattern | |
JPH01238659A (en) | Pattern forming method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050315 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070821 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080401 |