JPH09126884A - Pyroelectric infrared sensor and its manufacture - Google Patents
Pyroelectric infrared sensor and its manufactureInfo
- Publication number
- JPH09126884A JPH09126884A JP7306798A JP30679895A JPH09126884A JP H09126884 A JPH09126884 A JP H09126884A JP 7306798 A JP7306798 A JP 7306798A JP 30679895 A JP30679895 A JP 30679895A JP H09126884 A JPH09126884 A JP H09126884A
- Authority
- JP
- Japan
- Prior art keywords
- film
- infrared sensor
- lower electrode
- anisotropic etching
- pyroelectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 239000004065 semiconductor Substances 0.000 claims abstract description 36
- 239000000758 substrate Substances 0.000 claims abstract description 32
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 29
- 238000000347 anisotropic wet etching Methods 0.000 claims abstract description 29
- 239000012528 membrane Substances 0.000 claims abstract description 29
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 29
- 239000010703 silicon Substances 0.000 claims abstract description 29
- 239000011800 void material Substances 0.000 claims abstract description 12
- 229910052782 aluminium Inorganic materials 0.000 claims description 29
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 29
- 229910000838 Al alloy Inorganic materials 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 16
- 239000004020 conductor Substances 0.000 abstract description 3
- 238000010030 laminating Methods 0.000 abstract description 2
- 238000005530 etching Methods 0.000 description 18
- 230000035945 sensitivity Effects 0.000 description 18
- 238000000059 patterning Methods 0.000 description 6
- 238000009413 insulation Methods 0.000 description 5
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- ONRPGGOGHKMHDT-UHFFFAOYSA-N benzene-1,2-diol;ethane-1,2-diamine Chemical compound NCCN.OC1=CC=CC=C1O ONRPGGOGHKMHDT-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- -1 tetramethylammonium hydride Chemical compound 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Landscapes
- Light Receiving Elements (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Radiation Pyrometers (AREA)
- Micromachines (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、シリコン半導体基
板に集積化された焦電型赤外線センサにおいて従来使用
されていたアルミニウム又はアルミニウム合金からなる
下部電極の代わりに、導電性でアルミニウム又はアルミ
ニウム合金よりも熱伝導率が小さく且つアルカリ系湿式
異方性エッチングに耐え得る材料からなる下部電極を使
用した焦電型赤外線センサ、並びにこの焦電型赤外線セ
ンサの製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention replaces a lower electrode made of aluminum or an aluminum alloy, which is conventionally used in a pyroelectric infrared sensor integrated on a silicon semiconductor substrate, with a conductive material made of aluminum or an aluminum alloy. The present invention also relates to a pyroelectric infrared sensor using a lower electrode made of a material having a small thermal conductivity and capable of withstanding alkaline wet anisotropic etching, and a method for manufacturing the pyroelectric infrared sensor.
【0002】[0002]
【従来の技術】従来、焦電型赤外線センサは単体として
製作される場合が多かった。このような単体型の焦電型
赤外線センサとしては、例えば、信号処理回路チップと
センサチップとを別に作り、これらを積層して貼り合わ
せたタイプのものや、前記の信号処理回路チップとセン
サチップとを適当な接続具を用いて電気的に接続したタ
イプのものが挙げられる。2. Description of the Related Art Conventionally, pyroelectric infrared sensors have often been manufactured as a single unit. As such a single type pyroelectric infrared sensor, for example, a type in which a signal processing circuit chip and a sensor chip are separately prepared, and these are laminated and bonded, or the signal processing circuit chip and the sensor chip described above. An example is a type in which and are electrically connected using an appropriate connecting tool.
【0003】単体型の焦電型赤外線センサにおいては、
製造時の制約が少ない(例えば、センサ製作工程と回路
製作工程との適合性を心配する必要がない)ので、構成
部品(例えば、電極)の材料を比較的任意に選択するこ
とができる。その反面、単体型の焦電型赤外線センサに
は、センサの配置上の制約が生じ、又、マルチチップ化
することにより、低ノズル化,高集積化が困難になり、
更に、システムとして2チップ必要であり、生産,組み
立てのコストが上昇するといった種々の不利益がある。In a standalone pyroelectric infrared sensor,
Since there are few restrictions during manufacturing (for example, there is no need to worry about compatibility between the sensor manufacturing process and the circuit manufacturing process), the materials of the components (for example, electrodes) can be selected relatively arbitrarily. On the other hand, the stand-alone pyroelectric infrared sensor has restrictions on the placement of the sensor, and it is difficult to achieve low nozzles and high integration due to the multi-chip structure.
Further, the system requires two chips, which has various disadvantages such as an increase in production and assembly costs.
【0004】近年のマイクロマシーニングにより、焦電
型赤外線センサを含む半導体装置、例えばシリコン半導
体装置においては、高集積化、微細化、高感度化、高機
能化等の種々の要望が成されており、このような要望を
満たすために、焦電型赤外線センサの構造は平面的な又
は単純な立体的な構造から高集積化された複雑な立体的
な構造に漸次移行されつつある。この場合、所望の立体
構造を形成するためには、乾式異方性エッチングや湿式
異方性エッチングなどの異方性エッチング技術が用いら
れる。Due to recent micromachining, various demands have been made for semiconductor devices including pyroelectric infrared sensors, such as silicon semiconductor devices, for high integration, miniaturization, high sensitivity, and high functionality. In order to meet such demands, the structure of the pyroelectric infrared sensor is gradually shifting from a planar or simple three-dimensional structure to a highly integrated and complicated three-dimensional structure. In this case, an anisotropic etching technique such as dry anisotropic etching or wet anisotropic etching is used to form a desired three-dimensional structure.
【0005】他方、従来より、シリコン半導体装置にお
ける電極又は配線材料としては、アルミニウム又はアル
ミニウム合金が多用されている。しかしながら、アルミ
ニウム又はアルミニウム合金はアルカリ系湿式異方性エ
ッチャント〔アルカリ系湿式異方性エッチング剤;例え
ば、KOH,TMAH(テトラメチルアンモニウムハイ
ドライド),EDP(エチレンジアミンピロカテコー
ル)等の水溶液〕に侵され易いため、電極又は配線材料
としてアルミニウム又はアルミニウム合金が使用される
半導体装置の製造においてアルカリ系湿式異方性エッチ
ングを適用する場合には、何らかの対策を必要としてい
た。そのため、このような半導体装置の製造工程は複雑
になり、又、アルカリ系湿式異方性エッチングによる汚
染(アルカリイオンによる半導体装置の汚染)防止のた
めに特別の装置を必要とするなどの種々の問題が生じ、
これらは半導体装置の製造コストを上げる原因となって
いた。それ故、アルミニウム又はアルミニウム合金の代
わりに使用でき、且つアルカリ系湿式異方性エッチング
に耐え得る材料が切望されている。On the other hand, conventionally, aluminum or aluminum alloy has been frequently used as an electrode or wiring material in a silicon semiconductor device. However, aluminum or an aluminum alloy is easily attacked by an alkaline wet anisotropic etchant [an alkaline wet anisotropic etching agent; for example, an aqueous solution of KOH, TMAH (tetramethylammonium hydride), EDP (ethylenediamine pyrocatechol), etc.]. Therefore, when applying the alkaline wet anisotropic etching in the manufacture of a semiconductor device in which aluminum or an aluminum alloy is used as an electrode or a wiring material, some measure is required. Therefore, the manufacturing process of such a semiconductor device becomes complicated, and a variety of devices such as a special device are required to prevent contamination by alkaline wet anisotropic etching (contamination of the semiconductor device by alkali ions). A problem arises,
These have been a cause of increasing the manufacturing cost of the semiconductor device. Therefore, there is a need for a material that can be used in place of aluminum or aluminum alloys and that can withstand alkaline wet anisotropic etching.
【0006】高集積化型の焦電型赤外線センサは、適当
な半導体基板、例えばシリコン半導体基板上に形成され
る。シリコン半導体基板上に形成される高集積化型の焦
電型赤外線センサには大別すると、 I.シリコン半導体基板上に積層形成されたセンサ素子
部を有するタイプ II.シリコン半導体基板上に積層形成されたセンサ素子
部の下に空隙が形成され、それにより、センサ素子部が
前記空隙上に保持されたメンブレン構造を有するタイプ
の二つがある。IIのタイプの焦電型赤外線センサにおい
て、空隙は、赤外線を受けることによって昇温する(又
は、降温した)メンブレンからの放熱を抑制する(熱絶
縁性を上げる)ための断熱層として設けられる。The highly integrated pyroelectric infrared sensor is formed on a suitable semiconductor substrate, for example, a silicon semiconductor substrate. The highly-integrated pyroelectric infrared sensor formed on a silicon semiconductor substrate is roughly classified into I. Type II having a sensor element portion laminated on a silicon semiconductor substrate II. There are two types, one having a membrane structure in which a void is formed below a sensor element portion laminated on a silicon semiconductor substrate, whereby the sensor element portion is held on the void. In the type II pyroelectric infrared sensor, the void is provided as a heat insulating layer for suppressing heat radiation (increasing thermal insulation) from the membrane that is heated (or cooled) by receiving infrared rays.
【0007】前記I,IIのタイプの焦電型赤外線センサ
の代表的な例について、以下に具体的な製造方法を述べ
る。 Iのタイプの焦電型赤外線センサ (i) シリコン半導体基板上に、熱絶縁性を上げるため
熱伝導率の低い材料からなる膜(熱絶縁層)を形成し、
該膜上に各部品を積層・形成して、センサを作製する。 IIのタイプの焦電型赤外線センサ (ii) シリコン半導体基板上の回路部を、酸化膜,窒化
膜等の異方性エッチングに耐性を持つ膜で保護し、異方
性エッチングを行ってメンブレン構造を形成し(前記膜
の下のシリコン半導体基板に空隙を形成する)、その
後、センサ下部電極として、アルミニウム又はアルミニ
ウム合金の成膜,パターニングを行う。 (iii) シリコン半導体基板上に支持層(例えば、酸化
膜)を形成し、該支持層上に、センサ下部電極として、
アルミニウム又はアルミニウム合金の成膜,パターニン
グを行い、次いで、下部電極を酸化膜,窒化膜等の異方
性エッチングに耐性を持つ膜で保護し、異方性エッチン
グを行ってメンブレン構造を形成し(前記支持層の下の
シリコン半導体基板に空隙を形成する)、その後、保護
膜を除去する。 (iv) シリコン半導体基板上に、支持層(例えば、酸化
膜)を形成し、該支持層上に、異方性エッチングにより
エッチングされる膜厚分を予め加えて、センサ下部電極
として、アルミニウム又はアルミニウム合金の成膜,パ
ターニングを行い、次いで、異方性エッチングを行い
(この際、余分な膜厚分が除去される)、所望膜厚の下
部電極を得る。 (v) シリコン半導体における下部電極の材料を、アル
ミニウム又はアルミニウム合金から白金(異方性エッチ
ングに耐性を持つ)に変更する。With respect to a typical example of the pyroelectric infrared sensor of the type I or II, a specific manufacturing method will be described below. Pyroelectric infrared sensor of type I (i) A film (thermal insulating layer) made of a material having low thermal conductivity is formed on a silicon semiconductor substrate in order to improve thermal insulation.
A sensor is manufactured by laminating and forming each part on the film. II type pyroelectric infrared sensor (ii) The circuit structure on the silicon semiconductor substrate is protected by an anisotropic etching resistant film such as an oxide film or a nitride film, and anisotropic etching is performed to form a membrane structure. Is formed (a void is formed in the silicon semiconductor substrate below the film), and thereafter, film formation or patterning of aluminum or an aluminum alloy is performed as a sensor lower electrode. (iii) A support layer (for example, an oxide film) is formed on a silicon semiconductor substrate, and a sensor lower electrode is formed on the support layer.
After forming and patterning aluminum or aluminum alloy, the lower electrode is protected by a film having resistance to anisotropic etching such as oxide film and nitride film, and anisotropic etching is performed to form a membrane structure ( A void is formed in the silicon semiconductor substrate below the support layer), and then the protective film is removed. (iv) A support layer (for example, an oxide film) is formed on a silicon semiconductor substrate, and a film for etching by anisotropic etching is added to the support layer in advance to form aluminum or An aluminum alloy film is formed and patterned, and then anisotropic etching is performed (at this time, an excessive film thickness is removed) to obtain a lower electrode having a desired film thickness. (v) The material of the lower electrode in the silicon semiconductor is changed from aluminum or aluminum alloy to platinum (which has resistance to anisotropic etching).
【0008】[0008]
【発明が解決しようとする課題】しかしながら、前述の
各方法及びその結果得られた焦電型赤外線センサは、下
記のような種々の問題点を有する。(i) の方法では、シ
リコン半導体基板上にセンサ素子部と回路部とを集積化
できるが、センサの感度は熱伝導率の低い材料からなる
膜(熱絶縁層)によって決まる。しかも、前記熱絶縁層
は、回路作製工程との適合性により制約を受ける(その
後の作製に用いる装置を汚染しないことが要求され
る)。又、(i) の方法により得られた焦電型赤外線セン
サは、メンブレン構造を有する焦電型赤外線センサ〔(i
i)〜(v) の方法により得られた焦電型赤外線センサ〕よ
りも熱コンダクタンスが大きいため感度が劣る。(ii)の
方法では、異方性エッチング後に下部電極のエッチング
を行うため、下部電極のエッチング工程で湿式エッチン
グを用いることができない(メンブレンの破壊や基板と
メンブレンの密着が起こるため)。又、メンブレン構造
が下部電極のパターニングに耐え得る強度を持っていな
ければならないので、ビーム支持メンブレン構造のよう
な構造強度の低いメンブレン構造を使用することができ
ない。更に、メンブレンが形成された後には、フォトリ
ソグラフィが困難である。すなわち、ホトレジストを上
手く塗れない(通常のホトレジストを使用する場合の塗
布方法であるスピンコートが上手く行かない)。露光す
べき面が平坦でないと上手く露光できない(焦点が合わ
ない)。現像におけるリンスができない(リンスは湿式
にて行われるので、メンブレンの破壊や密着が起こ
る)。ポストベークにより熱応力が発生して反り、座屈
が起き破壊され易い。(iii) の方法では、保護膜の形
成,エッチングホール(保護膜に設けた窓)の形成,異
方性エッチング後の保護膜の除去といった工程が製造時
に増加し、更に、保護膜除去工程は、構造強度の低いメ
ンブレンが耐えることができ且つ同一基板内に作製され
ている回路部に影響を与えないことが要求される。(iv)
の方法では、下部電極膜厚の制御が困難であり、又、異
方性エッチング後に均一膜厚の下部電極を残せない(パ
ターン依存性がある。同一基板内のバラツキもある)。
焦電型赤外線センサにおいては、この膜厚精度がセンサ
感度に大きく影響するので、センサ感度がバラツキ易
い。(v) の方法では、貴金属である白金の使用により、
製造コストが上がり、汚染もする。However, the above-mentioned methods and the pyroelectric infrared sensor obtained as a result thereof have various problems as described below. In the method (i), the sensor element portion and the circuit portion can be integrated on the silicon semiconductor substrate, but the sensitivity of the sensor is determined by the film (heat insulating layer) made of a material having low thermal conductivity. Moreover, the thermal insulation layer is restricted by the compatibility with the circuit manufacturing process (it is required that the device used for the subsequent manufacturing is not contaminated). The pyroelectric infrared sensor obtained by the method (i) is a pyroelectric infrared sensor having a membrane structure [(i
The pyroelectric infrared sensor obtained by the methods (i) to (v)] has a larger thermal conductance and is inferior in sensitivity. In the method (ii), since the lower electrode is etched after the anisotropic etching, wet etching cannot be used in the etching process of the lower electrode (because the membrane is broken or the substrate and the membrane are adhered to each other). Further, since the membrane structure must have a strength capable of withstanding the patterning of the lower electrode, a membrane structure having a low structural strength such as the beam supporting membrane structure cannot be used. Moreover, photolithography is difficult after the membrane is formed. That is, the photoresist cannot be applied well (spin coating, which is a coating method when using a normal photoresist, does not work well). If the surface to be exposed is not flat, it will not be exposed properly (out of focus). Rinsing is not possible during development (since the rinsing is wet, the membrane may be destroyed or adhered). Post-baking causes thermal stress, which causes warping, buckling, and damage. In the method (iii), the steps of forming a protective film, forming an etching hole (a window provided in the protective film), and removing the protective film after anisotropic etching are increased during manufacturing. It is required that the membrane having a low structural strength can withstand and that it does not affect the circuit portion manufactured in the same substrate. (iv)
In this method, it is difficult to control the film thickness of the lower electrode, and it is not possible to leave a lower electrode having a uniform film thickness after anisotropic etching (depending on the pattern. There are variations within the same substrate).
In the pyroelectric infrared sensor, the film thickness accuracy greatly affects the sensor sensitivity, so that the sensor sensitivity easily varies. In the method of (v), the use of platinum, which is a precious metal,
Manufacturing costs rise and there is also pollution.
【0009】本発明は前記従来技術の問題点を解決する
ためのものであり、その目的とするところは、アルカリ
系湿式異方性エッチングが不都合なく適用可能であり且
つアルミニウム又はアルミニウム合金からなる下部電極
を用いた従来の焦電型赤外線センサよりも性能の優れた
焦電型赤外線センサ、及び該焦電型赤外線センサを容易
に得ることができる製造方法を提供することにある。The present invention is intended to solve the above-mentioned problems of the prior art, and an object of the present invention is to apply alkali-type wet anisotropic etching without problems and to make a lower part made of aluminum or aluminum alloy. It is an object of the present invention to provide a pyroelectric infrared sensor having superior performance to a conventional pyroelectric infrared sensor using electrodes, and a manufacturing method capable of easily obtaining the pyroelectric infrared sensor.
【0010】[0010]
【課題を解決するための手段】すなわち、本発明の焦電
型赤外線センサは、シリコン半導体基板上に設けられた
メンブレン構造と、該メンブレン構造の下に形成された
空隙とを備えてなる焦電型赤外線センサにおいて、前記
メンブレン構造は、支持膜,導電性でアルミニウム又は
アルミニウム合金よりも熱伝導率が小さく且つアルカリ
系湿式異方性エッチングに耐え得る材料からなる下部電
極,焦電膜,上部電極が順次積層・形成されてなること
を特徴とする。又、本発明の焦電型赤外線センサの製造
方法は、シリコン半導体基板上に支持膜,導電性でアル
ミニウム又はアルミニウム合金よりも熱伝導率が小さく
且つアルカリ系湿式異方性エッチングに耐え得る材料か
らなる下部電極を順次積層・形成し、次いでアルカリ系
湿式異方性エッチングにより支持膜の下のシリコン半導
体基板に空隙を形成し、次いで下部電極上に焦電膜,上
部電極を順次積層・形成することにより、前記空隙上に
支持膜,下部電極,焦電膜及び上部電極からなるメンブ
レン構造を設けることを特徴とする。That is, a pyroelectric infrared sensor of the present invention is a pyroelectric sensor comprising a membrane structure provided on a silicon semiconductor substrate and a void formed under the membrane structure. Type infrared sensor, the membrane structure includes a support film, a lower electrode, a pyroelectric film, and an upper electrode which are conductive and have a thermal conductivity lower than that of aluminum or an aluminum alloy and can withstand alkaline wet anisotropic etching. Is sequentially laminated and formed. Further, the method for manufacturing a pyroelectric infrared sensor of the present invention comprises a support film on a silicon semiconductor substrate, a conductive material having a smaller thermal conductivity than aluminum or an aluminum alloy and capable of withstanding alkaline wet anisotropic etching. Layered and formed on the silicon semiconductor substrate below the supporting film by alkaline wet anisotropic etching, and then a pyroelectric film and an upper electrode are laminated and formed on the lower electrode in order. Thus, a membrane structure including a supporting film, a lower electrode, a pyroelectric film, and an upper electrode is provided on the void.
【0011】本発明においては、アルミニウム又はアル
ミニウム合金からなる層の代わりに導電性でアルミニウ
ム又はアルミニウム合金よりも熱伝導率が小さく且つア
ルカリ系湿式異方性エッチングに耐え得る材料からなる
下部電極を用いることにより、アルカリ系湿式異方性エ
ッチング時に下部電極が損傷しない。又、下部電極の熱
伝導率を従来の焦電型赤外線センサに比べて小さくする
ことにより、感度が向上する。以下、感度が向上する理
由を述べる。In the present invention, instead of the layer made of aluminum or an aluminum alloy, a lower electrode made of a material which is electrically conductive, has a lower thermal conductivity than that of aluminum or an aluminum alloy, and can withstand alkaline wet anisotropic etching is used. As a result, the lower electrode is not damaged during the alkaline wet anisotropic etching. Further, the sensitivity is improved by making the thermal conductivity of the lower electrode smaller than that of the conventional pyroelectric infrared sensor. The reason why the sensitivity is improved will be described below.
【0012】一般に、焦電型赤外線センサの電圧感度R
vは下記式(1)によって表される。Generally, the voltage sensitivity R of a pyroelectric infrared sensor is
v is represented by the following formula (1).
【数1】 式(1)中、各符号は以下の意味を表す。 η:輻射率 ω:角周波数 P:焦電係数 A:受光面積 R:合成抵抗(等価回路) G:熱コンダクタンス τT:熱時定数(=H/G) τE:電気時定数(=RC) H:熱容量 C:容量(等価回路) 図2に示すような電圧感度の周波数特性を持つ焦電型赤
外線センサの電圧感度Rvは、の領域では、下記式
(2):(Equation 1) In the formula (1), each symbol has the following meaning. η: Emissivity ω: Angular frequency P: Pyroelectric coefficient A: Light receiving area R: Combined resistance (equivalent circuit) G: Thermal conductance τT: Thermal time constant (= H / G) τE: Electric time constant (= RC) H : Heat capacity C: Capacity (equivalent circuit) The voltage sensitivity Rv of the pyroelectric infrared sensor having the frequency characteristic of voltage sensitivity as shown in FIG.
【数2】 の領域では、下記式(3):(Equation 2) In the area of, the following formula (3):
【数3】 の領域では、下記式(4):(Equation 3) In the area of, the following formula (4):
【数4】 で表される。ここで、Gは焦電型赤外線センサの熱コン
ダクタンスであり、センサ受光部からの伝達、輻射によ
る熱損失の合計を表す。焦電型赤外線センサのようにセ
ンサ受光部の温度上昇が少ないものでは、センサ受光部
からの伝達、輻射は無視することができるので、Gは熱
伝導によって決定される。熱伝導による熱コンダクタン
スは下記式(5):(Equation 4) It is represented by Here, G is the thermal conductance of the pyroelectric infrared sensor, and represents the total of the heat loss due to transmission and radiation from the sensor light receiving portion. In a pyroelectric infrared sensor such as a sensor in which the temperature rise of the light receiving portion is small, the transmission and radiation from the light receiving portion of the sensor can be neglected, so G is determined by heat conduction. The thermal conductance due to heat conduction is expressed by the following equation (5):
【数5】 によって表される。式(5)中、各符号は以下の意味を
表す。 λ:熱伝導率 W:幅 t:厚さ L:長さ 検出部の熱伝導率λが小さければ式(5)によって熱コ
ンダクタンスGが小さくなり、更に式(1)によって、
電圧感度Rvが大きくなることが判る。(Equation 5) Represented by In the formula (5), each symbol has the following meaning. λ: thermal conductivity W: width t: thickness L: length If the thermal conductivity λ of the detection unit is small, the thermal conductance G becomes small according to formula (5), and further according to formula (1),
It can be seen that the voltage sensitivity Rv increases.
【0013】[0013]
【発明の実施の形態】本発明で使用し得るアルカリ系湿
式異方性エッチャント(エッチング剤)としては、例え
ば、KOH,TMAH,EDP等の水溶液が挙げられ
る。アルカリ系湿式異方性エッチングにおける条件(例
えば、エッチャント濃度、処理温度、処理時間等)は適
宜選択する。BEST MODE FOR CARRYING OUT THE INVENTION Examples of the alkaline wet anisotropic etchant (etching agent) usable in the present invention include aqueous solutions of KOH, TMAH, EDP and the like. The conditions (eg, etchant concentration, processing temperature, processing time, etc.) in the alkaline wet anisotropic etching are appropriately selected.
【0014】本発明で使用するシリコン半導体基板は、
シリコン半導体の分野で通常使用されるものであってよ
い。シリコン半導体基板には、アルカリ系湿式異方性エ
ッチングにより、目的とする半導体装置の種類に応じて
選択された3次元構造を形成することができる。The silicon semiconductor substrate used in the present invention is
It may be one commonly used in the field of silicon semiconductors. A three-dimensional structure selected according to the type of a target semiconductor device can be formed on a silicon semiconductor substrate by alkaline wet anisotropic etching.
【0015】本発明における導電性でアルミニウム又は
アルミニウム合金よりも熱伝導率が小さく且つアルカリ
系湿式異方性エッチングに耐え得る材料としては、具体
的には、特定の金属又は金属化合物が挙げられる。前記
特定の金属としては、例えば、Co,Cr,Mo,N
i,Ta,Ti,TiN(窒化チタン),Wが挙げられ
る。前記特定の金属は、単独で又は組み合わせて使用す
ることができる。Specific examples of the material which is conductive and has a lower thermal conductivity than aluminum or aluminum alloy and can withstand alkaline wet anisotropic etching in the present invention include a specific metal or a metal compound. Examples of the specific metal include Co, Cr, Mo, N
Examples thereof include i, Ta, Ti, TiN (titanium nitride) and W. The specific metals can be used alone or in combination.
【0016】下記表1に、従来の下部電極材料であるア
ルミニウムと、本発明において下部電極材料として使用
することができる代表的な金属材料の熱伝導率を体積抵
抗率と共に示す。Table 1 below shows the thermal conductivity of aluminum, which is a conventional lower electrode material, and the typical metal materials that can be used as the lower electrode material in the present invention together with the volume resistivity.
【表1】 [Table 1]
【0017】下部電極材料の選択の際には、熱伝導率や
体積抵抗率(導電性の程度)に加えて、目的とする性能
に応じて更に考慮すべき事項があればそれを考慮して、
選択するとよい。When selecting the lower electrode material, in addition to the thermal conductivity and volume resistivity (degree of conductivity), if there are any further matters to be considered depending on the desired performance, consider them. ,
Good to choose.
【0018】導電性でアルミニウム又はアルミニウム合
金よりも熱伝導率が小さく且つアルカリ系湿式異方性エ
ッチングに耐え得る材料からなる下部電極の大きさ,形
状,厚さは、適宜選択する。The size, shape, and thickness of the lower electrode made of a material that is electrically conductive and has a lower thermal conductivity than aluminum or an aluminum alloy and can withstand alkaline wet anisotropic etching are appropriately selected.
【0019】本発明の焦電型赤外線センサの下部電極以
外の他の部材、すなわち、支持膜,焦電膜,上部電極の
材質,大きさ、形状、厚さも、適宜選択してよい。Materials, sizes, shapes and thicknesses of members other than the lower electrode of the pyroelectric infrared sensor of the present invention, that is, the supporting film, the pyroelectric film, and the upper electrode may be appropriately selected.
【0020】本発明の焦電型赤外線センサの製造方法に
おいては、同種分野で慣用の装置や設備を用いることが
できる。In the method for manufacturing a pyroelectric infrared sensor of the present invention, a device and equipment commonly used in the same field can be used.
【0021】[0021]
【実施例】以下の実施例により、本発明を更に詳細に説
明する。図1(a)に示すシリコン半導体基板1〔本例
では(100)基板,なお、(111)基板などであっ
てもよい〕の上面に、図1(b)の如く、CVD法によ
りPoly−Si(膜厚700Å)からなる犠牲層2を形成
し、所定形状にパターニングする。次いで、図1(c)
の如く、シリコン半導体基板1及び犠牲層2を覆って、
CVD法によりUSG(un-doped Silicate Glass ,膜
厚7000Å) からなる支持膜3を形成し、所定形状に
パターニングする。次いで、図1(d)の如く、その上
にチタン(Ti)膜800Å、更にその上に窒化チタン
(TiN)膜200Åを積層した膜1000Åをスパッ
タリングにより成膜し、所定形状にパターニングして下
部電極4及び配線5を形成する。この際、下部電極4及
び配線5の大きさを下方の支持膜3よりも小さくする。
図1(e)の如く、シリコン半導体基板1の上面側をE
DP用いたSiアルカリ系湿式異方性エッチングにより
エッチングして、犠牲層2を除去すると共に空隙6を形
成する。次いで、図1(f)の如く、支持膜3,下部電
極4及び配線5を覆って、厚さ6000ÅのPVDF
(ポリ弗化ビニリデン)焦電膜7を成膜する(成膜方法
は、例えば、特公平7−55300号参照)。図1
(g)の如く、PVDF焦電膜7の上に窒素雰囲気(圧
力2Torr)の抵抗加熱蒸着により金黒を1μmの厚さで
成膜し、上部電極8を形成する。図1(h)は図1
(g)を上面側から見た図である。赤外線検出部である
メンブレン9が、4本のビーム10によって空隙6上に
保持されているのが判る。代表的寸法は、ビーム長:6
9μm、ビーム幅:4μm、エッチング溝幅:2μm、
メンブレン:59μm角である。The present invention will be described in more detail with reference to the following examples. On the upper surface of the silicon semiconductor substrate 1 [(100) substrate in this example, which may be a (111) substrate, etc.] shown in FIG. A sacrifice layer 2 made of Si (film thickness 700Å) is formed and patterned into a predetermined shape. Next, FIG.
Like above, covering the silicon semiconductor substrate 1 and the sacrificial layer 2,
A support film 3 made of USG (un-doped Silicate Glass, film thickness 7000Å) is formed by the CVD method and patterned into a predetermined shape. Then, as shown in FIG. 1D, a titanium (Ti) film 800Å is formed thereon, and a film 1000Å in which a titanium nitride (TiN) film 200Å is further laminated thereon is formed by sputtering and patterned into a predetermined shape. The electrode 4 and the wiring 5 are formed. At this time, the size of the lower electrode 4 and the wiring 5 is made smaller than that of the supporting film 3 below.
As shown in FIG. 1E, the upper surface side of the silicon semiconductor substrate 1 is E
Etching is performed by Si alkaline wet anisotropic etching using DP to remove the sacrificial layer 2 and form the voids 6. Then, as shown in FIG. 1 (f), PVDF having a thickness of 6000Å is covered to cover the supporting film 3, the lower electrode 4 and the wiring 5.
A (polyvinylidene fluoride) pyroelectric film 7 is formed (for the film forming method, see, for example, Japanese Patent Publication No. 7-55300). FIG.
As shown in (g), gold black is deposited to a thickness of 1 μm on the PVDF pyroelectric film 7 by resistance heating vapor deposition in a nitrogen atmosphere (pressure 2 Torr) to form the upper electrode 8. 1 (h) is shown in FIG.
It is the figure which looked at (g) from the upper surface side. It can be seen that the membrane 9, which is an infrared detector, is held on the gap 6 by the four beams 10. Typical dimensions are beam length: 6
9 μm, beam width: 4 μm, etching groove width: 2 μm,
Membrane: 59 μm square.
【0022】本発明の焦電型赤外線センサでは、支持メ
ンブレンに窒化膜、下部電極にアルミニウムを使用した
従来の焦電型赤外線センサ* に比べて、熱絶縁構造の採
用による下部電極の熱伝導低減効果により、大気中では
熱コンダクタンスを従来の約1/70に低減することが
でき、その結果、電圧感度を従来の約70倍まで向上さ
せることができた。更に、真空中においては、熱コンダ
クタンスを従来の約1/3000に低減することがで
き、電圧感度を従来の約3000倍まで向上させること
ができた。* 従来のアルミニウム又はアルミニウム合金
からなる下部電極を有する焦電型赤外線センサでは、ア
ルミニウム又はアルミニウム合金がアルカリ系湿式異方
性エッチングに耐えられないため、アルカリ系湿式異方
性エッチング後に下部電極となるアルミニウム又はアル
ミニウム合金の成膜,パターニングを行なっていた。そ
のため、熱絶縁構造(熱コンダクタンス低減)における
多くの制約〔アルミニウム又はアルミニウム合金のパタ
ーニング、例えば、フォトリソグラフィ,ウェットプロ
セス等が困難である;熱絶縁構造は、アルミニウム又は
アルミニウム合金のパターニングプロセスに充分耐え得
る構造強度を持つことが必要である等〕を受け、センサ
高感度化の妨げとなっていた。In the pyroelectric infrared sensor of the present invention, the thermal conductivity of the lower electrode is reduced by adopting a heat insulating structure, as compared with the conventional pyroelectric infrared sensor * using a nitride film for the supporting membrane and aluminum for the lower electrode. Due to the effect, the thermal conductance in the atmosphere can be reduced to about 1/70 of the conventional value, and as a result, the voltage sensitivity can be improved to about 70 times that of the conventional value. Furthermore, in vacuum, the thermal conductance can be reduced to about 1/3000 of the conventional one, and the voltage sensitivity can be improved to about 3000 times that of the conventional one. * In a conventional pyroelectric infrared sensor with a lower electrode made of aluminum or aluminum alloy, aluminum or aluminum alloy cannot withstand alkaline wet anisotropic etching, so it becomes the lower electrode after alkaline wet anisotropic etching. Film formation and patterning of aluminum or aluminum alloy were performed. Therefore, many restrictions on the thermal insulation structure (reduction of thermal conductance) [difficulty of patterning aluminum or aluminum alloy, for example, photolithography, wet process, etc .; thermal insulation structure can withstand the patterning process of aluminum or aluminum alloy sufficiently. It is necessary to have a structural strength to be obtained], which has been an obstacle to increasing the sensitivity of the sensor.
【0023】本実施例においては、TiN/Ti積層膜
の成膜にスパッタリングを用いたが、電子ビーム蒸着な
どの他の成膜手段を用いてもよい。又、本実施例ではPo
ly−Siからなる犠牲層を用いたが、犠牲層を用いる必
要のない形状であっても本発明を適用することができ
る。更に、予め増幅,インピーダンス変換などの信号処
理回路を同一基板上に形成する集積化赤外線センサにも
本発明を適用することができる。なお、本実施例では代
表的寸法を記載したが、本発明は寸法によっては限定さ
れない。In the present embodiment, sputtering was used to form the TiN / Ti laminated film, but other film forming means such as electron beam evaporation may be used. Also, in this embodiment, Po
Although the sacrificial layer made of ly-Si is used, the present invention can be applied even if the sacrificial layer does not need to be used. Furthermore, the present invention can be applied to an integrated infrared sensor in which signal processing circuits for amplification, impedance conversion, etc. are previously formed on the same substrate. In addition, although the typical dimensions are described in the present embodiment, the present invention is not limited by the dimensions.
【0024】[0024]
【発明の効果】本発明の焦電型赤外線センサにおいて
は、導電性でアルミニウム又はアルミニウム合金よりも
熱伝導率が小さく且つアルカリ系湿式異方性エッチング
に耐え得る材料からなる下部電極を用いるため、アルカ
リ系湿式異方性エッチング前に下部電極の成膜及びパタ
ーニングを行なうことができる。それ故、従来の焦電型
赤外線センサでは実現不可能な、熱コンダクタンスの低
い構造(例えば、ビーム支持メンブレン構造など)が実
現され、焦電型赤外線センサの高感度化を達成すること
ができる。更に、アルカリ系湿式異方性エッチングに伴
う問題、例えば、下部電極の損傷(膜厚の減少など)が
起こらないので、寸法精度の優れた下部電極(及び下部
電極からの配線)を容易に得ることができ、従来の焦電
型赤外線センサに比べて信頼性及び耐久性が向上した。
又、本発明の焦電型赤外線センサでは、センサを多数並
べるイメージセンサなどにおいては、センサ間での感度
のバラツキを小さくすることができる。又、本発明の焦
電型赤外線センサは、下部電極材料としてアルミニウム
又はアルミニウム合金よりも熱伝導率が小さい材料を用
いるため、従来のアルミニウム又はアルミニウム合金か
らなる下部電極を有する焦電型赤外線センサに比べて、
下部電極からの熱伝導が抑制され、高感度化を達成する
ことができる。In the pyroelectric infrared sensor of the present invention, since the lower electrode made of a material which is electrically conductive and has a lower thermal conductivity than aluminum or aluminum alloy and can withstand alkaline wet anisotropic etching, The lower electrode can be formed and patterned before the alkaline wet anisotropic etching. Therefore, a structure having a low thermal conductance (for example, a beam supporting membrane structure), which cannot be realized by the conventional pyroelectric infrared sensor, is realized, and high sensitivity of the pyroelectric infrared sensor can be achieved. Further, since problems associated with alkaline wet anisotropic etching, such as damage to the lower electrode (such as reduction in film thickness) do not occur, it is possible to easily obtain the lower electrode (and the wiring from the lower electrode) having excellent dimensional accuracy. Therefore, the reliability and durability are improved as compared with the conventional pyroelectric infrared sensor.
Further, in the pyroelectric infrared sensor of the present invention, in an image sensor having a large number of sensors arranged side by side, variations in sensitivity among the sensors can be reduced. Further, since the pyroelectric infrared sensor of the present invention uses a material having a lower thermal conductivity than aluminum or an aluminum alloy as the lower electrode material, it can be used for a pyroelectric infrared sensor having a lower electrode made of conventional aluminum or aluminum alloy. Compared to,
Heat conduction from the lower electrode is suppressed, and higher sensitivity can be achieved.
【0025】本発明の焦電型赤外線センサの製造方法に
おいては、下部電極形成後の加工においてアルカリ系湿
式異方性エッチングが用いられるので、焦電型赤外線セ
ンサの加工の自由度が広がった。In the method for manufacturing a pyroelectric infrared sensor of the present invention, since alkaline wet anisotropic etching is used in the processing after forming the lower electrode, the degree of freedom in processing the pyroelectric infrared sensor is expanded.
【図1】本発明の一実施例を説明するための図である。FIG. 1 is a diagram for explaining an embodiment of the present invention.
【図2】焦電型赤外線センサの角周波数と電圧感度との
関係を示す図である。FIG. 2 is a diagram showing a relationship between angular frequency and voltage sensitivity of a pyroelectric infrared sensor.
1:シリコン半導体基板 2:犠牲層 3:支持膜 4:下部電極 5:配線 6:空隙 7:焦電膜 8:上部電極 9:メンブレン 10:ビーム 1: Silicon semiconductor substrate 2: Sacrificial layer 3: Support film 4: Lower electrode 5: Wiring 6: Gap 7: Pyroelectric film 8: Upper electrode 9: Membrane 10: Beam
Claims (2)
ブレン構造と、該メンブレン構造の下に形成された空隙
とを備えてなる焦電型赤外線センサにおいて、 前記メンブレン構造は、支持膜,導電性でアルミニウム
又はアルミニウム合金よりも熱伝導率が小さく且つアル
カリ系湿式異方性エッチングに耐え得る材料からなる下
部電極,焦電膜,上部電極が順次積層・形成されてなる
ことを特徴とする焦電型赤外線センサ。1. A pyroelectric infrared sensor comprising a membrane structure provided on a silicon semiconductor substrate and a void formed under the membrane structure, wherein the membrane structure is a support film and a conductive film. A pyroelectric type characterized in that a lower electrode, a pyroelectric film, and an upper electrode, which are made of a material having a lower thermal conductivity than aluminum or an aluminum alloy and can withstand alkaline wet anisotropic etching, are sequentially laminated and formed. Infrared sensor.
でアルミニウム又はアルミニウム合金よりも熱伝導率が
小さく且つアルカリ系湿式異方性エッチングに耐え得る
材料からなる下部電極を順次積層・形成し、次いでアル
カリ系湿式異方性エッチングにより支持膜の下のシリコ
ン半導体基板に空隙を形成し、次いで下部電極上に焦電
膜,上部電極を順次積層・形成することにより、前記空
隙上に支持膜,下部電極,焦電膜及び上部電極からなる
メンブレン構造を設けることを特徴とする焦電型赤外線
センサの製造方法。2. A support film and a lower electrode made of a material which is electrically conductive and has a lower thermal conductivity than aluminum or an aluminum alloy and can withstand alkaline wet anisotropic etching on a silicon semiconductor substrate. Next, a void is formed in the silicon semiconductor substrate below the supporting film by alkaline wet anisotropic etching, and then a pyroelectric film and an upper electrode are sequentially laminated and formed on the lower electrode to form a supporting film on the void. A method for manufacturing a pyroelectric infrared sensor, comprising providing a membrane structure including a lower electrode, a pyroelectric film, and an upper electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7306798A JPH09126884A (en) | 1995-10-31 | 1995-10-31 | Pyroelectric infrared sensor and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7306798A JPH09126884A (en) | 1995-10-31 | 1995-10-31 | Pyroelectric infrared sensor and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09126884A true JPH09126884A (en) | 1997-05-16 |
Family
ID=17961388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7306798A Pending JPH09126884A (en) | 1995-10-31 | 1995-10-31 | Pyroelectric infrared sensor and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09126884A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005050945A (en) * | 2003-07-31 | 2005-02-24 | Sanyo Electric Co Ltd | Semiconductor device and manufacturing method therefor |
KR100537124B1 (en) * | 2000-09-29 | 2005-12-16 | 가부시끼가이샤 도시바 | Infrared sensor and method for manufacturing the same |
JP2007248140A (en) * | 2006-03-14 | 2007-09-27 | Nippon Telegr & Teleph Corp <Ntt> | Thermal optical sensor and thermal optical sensor manufacturing method |
KR101008260B1 (en) * | 2008-06-27 | 2011-01-13 | (주)엔아이디에스 | Infrared sensor and manufacturing method of the same |
US8258597B2 (en) | 2010-03-26 | 2012-09-04 | Seiko Epson Corporation | Pyroelectric detector, pyroelectric detection device, and electronic instrument |
-
1995
- 1995-10-31 JP JP7306798A patent/JPH09126884A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100537124B1 (en) * | 2000-09-29 | 2005-12-16 | 가부시끼가이샤 도시바 | Infrared sensor and method for manufacturing the same |
JP2005050945A (en) * | 2003-07-31 | 2005-02-24 | Sanyo Electric Co Ltd | Semiconductor device and manufacturing method therefor |
JP4567954B2 (en) * | 2003-07-31 | 2010-10-27 | 三洋電機株式会社 | Semiconductor device and manufacturing method thereof |
JP2007248140A (en) * | 2006-03-14 | 2007-09-27 | Nippon Telegr & Teleph Corp <Ntt> | Thermal optical sensor and thermal optical sensor manufacturing method |
KR101008260B1 (en) * | 2008-06-27 | 2011-01-13 | (주)엔아이디에스 | Infrared sensor and manufacturing method of the same |
US8258597B2 (en) | 2010-03-26 | 2012-09-04 | Seiko Epson Corporation | Pyroelectric detector, pyroelectric detection device, and electronic instrument |
US8916948B2 (en) | 2010-03-26 | 2014-12-23 | Seiko Epson Corporation | Pyroelectric detector, pyroelectric detection device, and electronic instrument |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1198835B1 (en) | Dual wafer attachment process | |
US8080797B2 (en) | Bolometer and method of producing a bolometer | |
US20030102079A1 (en) | Method of joining components | |
US6870086B2 (en) | Thermo pile infrared ray sensor manufactured with screen print and method thereof | |
EP2261617B1 (en) | Photodetector | |
JPH08233660A (en) | Method and structure for forming array of heat sensor | |
CN108225576B (en) | Infrared detector and manufacturing method thereof | |
JP5975457B2 (en) | Three-dimensional structure and sensor | |
US6511859B1 (en) | IC-compatible parylene MEMS technology and its application in integrated sensors | |
US5310610A (en) | Silicon micro sensor and manufacturing method therefor | |
JP2003298150A (en) | Method for manufacturing magnetic tunnel junction element and magnetic tunnel junction device | |
JPH09126884A (en) | Pyroelectric infrared sensor and its manufacture | |
CN111579012A (en) | MEMS thermal flow sensor and manufacturing method thereof | |
JP2005028504A (en) | Micro electromechanical system (mems) element and method for manufacturing the same | |
JPH11211558A (en) | Sensor and sensor array | |
CA2229731C (en) | Method for fabrication of discrete dynode electron multipliers | |
JPH07286894A (en) | Method for manufacturing infrared ray detector | |
JP2002340684A (en) | Manufacturing method of thermal infrared solid-state image sensor, and thermal infrared solid-state image sensor | |
WO2003015183A1 (en) | Method for manufacturing thin-film structure | |
JP4590790B2 (en) | Manufacturing method of semiconductor sensor | |
JPH0765937B2 (en) | Sensor element and manufacturing method thereof | |
JP3061012B2 (en) | Micro bridge structure and manufacturing method thereof | |
JP2005033075A (en) | Manufacturing method of electronic device | |
JP4182630B2 (en) | Diaphragm structure, microtransducer, and manufacturing method thereof | |
JP2000346704A (en) | Bolometer type infrared detection element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050304 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070306 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070419 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070423 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071030 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071116 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101122 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111122 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111122 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121122 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121122 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131122 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |