JPH09124514A - Method for concentrating methane of anaerobic digestion fermentation gas and apparatus therefor - Google Patents
Method for concentrating methane of anaerobic digestion fermentation gas and apparatus thereforInfo
- Publication number
- JPH09124514A JPH09124514A JP7284918A JP28491895A JPH09124514A JP H09124514 A JPH09124514 A JP H09124514A JP 7284918 A JP7284918 A JP 7284918A JP 28491895 A JP28491895 A JP 28491895A JP H09124514 A JPH09124514 A JP H09124514A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- module
- stage
- methane
- separation membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/10—Working-up natural gas or synthetic natural gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D53/225—Multiple stage diffusion
- B01D53/226—Multiple stage diffusion in serial connexion
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C7/00—Purification; Separation; Use of additives
- C07C7/144—Purification; Separation; Use of additives using membranes, e.g. selective permeation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Water Supply & Treatment (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【0001】[0001]
【発明の属する分野】本願発明は、嫌気性消化醗酵ガス
等のメタンと炭酸ガスを主成分とする混合ガスからメタ
ンを濃縮回収する技術に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for concentrating and recovering methane from a mixed gas containing methane and carbon dioxide as main components such as anaerobic digestion fermentation gas.
【0002】[0002]
【発明の背景】廃棄物からエネルギーを回収する方法と
して、たとえば下水汚泥や屎尿汚泥等の嫌気性消化によ
って発生する炭化水素含有ガスを原料とし、燃料電池に
よって発電を行うことが考えられる。すなわち、このよ
うな嫌気性消化醗酵ガスは、メタンと炭酸ガスを主成分
とする混合ガスであり、この混合ガス中のメタンを簡便
に分離することができれば、このメタンをさらに分解し
て水素ガスを得、燃料電池においてこの水素ガスを燃料
として発電を行うことができる。BACKGROUND OF THE INVENTION As a method of recovering energy from waste, for example, it is conceivable to use a hydrocarbon-containing gas generated by anaerobic digestion of sewage sludge or human waste sludge as a raw material to generate electricity by a fuel cell. That is, such an anaerobic digestion fermentation gas is a mixed gas containing methane and carbon dioxide as main components, and if methane in this mixed gas can be easily separated, the methane is further decomposed to produce hydrogen gas. Thus, the hydrogen gas can be used as a fuel for power generation in the fuel cell.
【0003】嫌気性消化醗酵ガス中のメタンの濃縮回収
において炭酸ガスを除去する場合、たとえば化学吸収
法、物理吸収法、PSA法、ガス分離膜を使用した分離
法等を採用することができるが、これらの炭酸ガス除去
法のうち、ガス分離膜を使用した分離法が、システムを
簡単に構成できること、装置が比較的小規模で実現でき
る点において有利である。When carbon dioxide is removed in the concentration recovery of methane in the anaerobic digestion fermentation gas, for example, a chemical absorption method, a physical absorption method, a PSA method, a separation method using a gas separation membrane and the like can be adopted. Of these carbon dioxide gas removal methods, the separation method using a gas separation membrane is advantageous in that the system can be simply constructed and the apparatus can be realized in a relatively small scale.
【0004】それ故に、特開昭61−53994号公報
(文献)、特開平4−177013号公報(文献
)、特公平6−89349号公報(文献)等に開示
されている技術においては、メタン、炭酸ガス混合ガス
中の炭酸ガスを除去するためにガス分離膜が採用されて
いる。すなわち、文献においては、ごみ埋め立て地か
らメタンを回収するために、嫌気性消化醗酵ガスを炭酸
ガスを通しやすいガス分離膜に通している。また、文献
においても、嫌気性排水処理装置から発生するメタ
ン、炭酸ガス混合ガスからメタンを回収するために、膜
分離装置が用いられている。さらに、文献において
は、水添脱硫した炭化水素を低温水蒸気改質してメタン
を主成分とする都市ガス用の代替天然ガスを製造する方
法において、低温水蒸気改質して得られるメタン、炭酸
ガス含有改質ガスからメタンを主成分とするガスを得る
ために、膜分離装置が用いられている。Therefore, in the techniques disclosed in Japanese Patent Application Laid-Open No. 61-53994 (reference), Japanese Patent Application Laid-Open No. 4-177013 (reference), Japanese Patent Publication No. 6-89349 (reference) and the like, methane is used. A gas separation membrane is used to remove carbon dioxide gas in the carbon dioxide gas mixture. That is, in the literature, in order to recover methane from a landfill, the anaerobic digestion fermentation gas is passed through a gas separation membrane that allows easy passage of carbon dioxide gas. Also in the literature, a membrane separation device is used to recover methane from a mixed gas of methane and carbon dioxide gas generated from an anaerobic wastewater treatment device. Further, in the literature, in a method of low-temperature steam reforming a hydrodesulfurized hydrocarbon to produce an alternative natural gas containing methane as a main component for city gas, methane and carbon dioxide gas obtained by low-temperature steam reforming are obtained. A membrane separator is used to obtain a gas containing methane as a main component from the contained reformed gas.
【0005】しかしながら、上記各文献には、炭酸ガス
を除去することによるメタンの濃縮分離にガス分離膜が
使用されているものの、ガス分離膜を使用したシステム
における処理量、収率等の分離性能に関する検討はいま
だなされていない。However, in each of the above-mentioned documents, although the gas separation membrane is used for concentrating and separating methane by removing carbon dioxide gas, the separation performance such as throughput and yield in the system using the gas separation membrane. No consideration has been made yet.
【0006】一方、燃料電池において効率的な発電を行
うためには、燃料電池部に供給される原料ガス組成とし
て、炭酸ガス濃度が10%以下、メタン濃度が90%以
上であることが望ましく、また、メタンの収率として
は、85%、望ましくは90%以上が期待されている。
膜分離装置を使用した簡単なシステムにおいてこれほど
のメタン分離性能および収率をもつものは、これまでに
存在しない。On the other hand, in order to efficiently generate power in the fuel cell, it is desirable that the composition of the raw material gas supplied to the fuel cell section is such that the carbon dioxide concentration is 10% or less and the methane concentration is 90% or more. Further, the yield of methane is expected to be 85%, preferably 90% or more.
No simple system using a membrane separator has such a methane separation performance and yield so far.
【0007】本願発明は、このような事情のもとで考え
出されたものであり、メタンおよび炭酸ガスを主成分と
する嫌気性消化醗酵ガスから、ガス分離膜を利用した簡
易なシステムにより、メタンの高濃度、高収率分離回収
を実現することをその課題とする。The present invention has been devised under such circumstances, and a simple system using a gas separation membrane from an anaerobic digestion fermentation gas containing methane and carbon dioxide as main components is obtained. The task is to achieve high concentration and high yield separation and recovery of methane.
【0008】[0008]
【発明の開示】本願発明の第1の側面によれば、ガス分
離膜を使用して嫌気性消化醗酵ガスからメタンを濃縮回
収する方法が提供され、この方法は、分離膜モジュール
を前段モジュールと後段モジュールとの2段直列とし、
嫌気性消化醗酵ガスをたとえば2〜4×105 Paで前段
モジュールへ加圧供給するとともに、前段モジュールの
透過側圧力をたとえば0.2〜0.9×105 Paに減圧
する一方、前段モジュールの非透過ガスを残圧によって
後段モジュールへ供給するとともに、後段モジュールの
透過ガスを前段モジュールへリサイクルし、後段モジュ
ールの非透過ガスをメタル濃縮ガスとして回収するもの
である。後段モジュールの透過側は、好ましくは大気圧
とされる。DISCLOSURE OF THE INVENTION According to a first aspect of the present invention, there is provided a method for concentrating and recovering methane from an anaerobic digestion fermentation gas using a gas separation membrane, which comprises a separation membrane module as a pre-stage module. 2 stages in series with the latter stage module,
The anaerobic digestion fermentation gas is supplied under pressure to the pre-stage module at, for example, 2 to 4 × 10 5 Pa, and the permeate pressure of the pre-stage module is reduced to, for example, 0.2 to 0.9 × 10 5 Pa, while the pre-stage module is The non-permeate gas of No. 2 is supplied to the latter-stage module by residual pressure, the permeate gas of the latter-stage module is recycled to the former-stage module, and the non-permeate gas of the latter-stage module is recovered as a metal concentrated gas. The permeate side of the latter-stage module is preferably at atmospheric pressure.
【0009】前段モジュールに供給する嫌気性消化醗酵
ガスのメタン濃度が50〜70%である場合、前段モジ
ュールの非透過ガスのメタン濃度は75〜85%に上昇
する。そして、後段モジュールへの供給ガス量の20〜
40%に相当する後段モジュールの透過ガスを前段モジ
ュールへリサイクルさせる場合、後段モジュールの非透
過ガスとして回収されるガス中のメタン濃度は、90%
以上となり、メタン収率は85%以上となる。When the methane concentration of the anaerobic digestion fermentation gas supplied to the former module is 50 to 70%, the methane concentration of the non-permeate gas of the former module rises to 75 to 85%. Then, the amount of gas supplied to the subsequent module is 20 to
When the permeated gas of the rear module corresponding to 40% is recycled to the front module, the methane concentration in the gas recovered as the non-permeated gas of the rear module is 90%.
As described above, the methane yield is 85% or more.
【0010】本願発明方法においては、後段モジュール
の透過ガスを前段モジュールにリサイクルさせることに
よりメタン収率を高め、2段の膜モジュールを直列に使
用することによりメタン濃度を著しく高め、これによ
り、高収率での高濃度メタン回収を可能としている。た
だし、前段モジュールへの供給圧力および前段モジュー
ルの透過側圧力を適切にバランスさせることが高収率か
つ高濃度のメタン回収を行う上できわめて重要であるこ
とが見出されている。すなわち、前段モジュールへの供
給圧力が2×105 Pa未満であり、透過側圧力が0.2
×105 Pa未満であると、90%以上のメタン濃度、8
5%以上のメタン収率を得ることができない。また、前
段モジュールへの供給圧力が4×105 Paを越えると、
前段モジュールでの透過ガス中に含まれるメタン量が増
えるためにかえってメタン収率が悪化する。このような
検討の結果、前段モジュールへの供給圧力の最適範囲が
2〜4×105 Pa、前段モジュールの透過側圧力の最適
範囲が0.2〜0.9×10 5 Paであることが見出され
たのである。In the method of the present invention, the latter stage module
To recycle the permeated gas of
Increase the methane yield and use two-stage membrane modules in series.
The methane concentration is significantly increased by using
This enables high-concentration methane recovery with high yield. Was
However, the supply pressure to the front stage module and the front stage module
Is it a high yield to properly balance the pressure on the permeate side
It is extremely important for the recovery of high-concentration methane.
Have been found. That is, supply to the preceding module
Supply pressure is 2 × 10FiveLess than Pa, permeate pressure 0.2
× 10FiveIf it is less than Pa, methane concentration of 90% or more, 8
It is not possible to obtain a methane yield of 5% or more. Also before
Supply pressure to the stage module is 4 × 10FiveWhen Pa is exceeded,
The amount of methane contained in the permeated gas in the previous module increased.
Therefore, the yield of methane deteriorates. like this
As a result of examination, the optimum range of the supply pressure to the preceding module was
2-4 x 10FiveOptimum pressure on the permeate side of the front stage module
Range is 0.2 to 0.9 x 10 FiveFound to be Pa
It was.
【0011】本願発明の好ましい実施形態においては、
前段モジュールに対する後段モジュールの膜面積比を2
〜4倍としている。後段モジュールの膜面積が前段モジ
ュールの膜面積の2倍より小さいと、炭酸ガスの透過が
不十分となって所期のメタン濃度を得ることができず、
4倍より大きいと透過量が多くなってリサイクル量が増
え、その結果装置が大型化するので経済的ではなくな
る。In a preferred embodiment of the present invention,
The film area ratio of the rear module to the front module is 2
~ 4 times. If the membrane area of the latter module is smaller than twice the membrane area of the former module, the permeation of carbon dioxide will be insufficient and the desired methane concentration cannot be obtained.
If it is more than 4 times, the amount of permeation increases, the amount of recycling increases, and as a result, the apparatus becomes large, which is not economical.
【0012】本願発明において使用する分離膜モジュー
ルは、たとえば、酢酸セルロース、ポリスルホン、ポリ
アミド、ポリイミド等、メタンを透過しにくく炭酸ガス
を透過しやすい分離膜であれば、種類を限定することな
く、いずれであっても好適に使用することができる。The separation membrane module used in the present invention is not limited to any kind as long as it is a separation membrane such as cellulose acetate, polysulfone, polyamide, polyimide or the like, which is permeable to methane and permeable to carbon dioxide gas. However, it can be preferably used.
【0013】本願発明の第2の側面によれば、ガス分離
膜を使用して嫌気性消化醗酵ガスからメタンを濃縮回収
するための装置が提供され、この装置は、コンプレッサ
が介装されるとともに嫌気性消化醗酵ガスが供給される
供給管と、この供給管に入口が接続された前段の分離膜
モジュールと、この前段の分離膜モジュールの透過側出
口に接続されかつ減圧ポンプを有する排気管と、上記前
段の分離膜モジュールの非透過側出口に一端が接続され
た非透過ガス管と、この非透過ガス管の他端に入口が接
続された後段の分離膜モジュールと、この後段の分離膜
モジュールの透過側出口に一端が接続され、上記供給管
の上記コンプレッサよりも上流側に他端が接続されたリ
サイクル管と、上記後段の分離膜モジュールの非透過側
出口に接続された製品ガス管と、を備えたものである。According to a second aspect of the present invention, there is provided an apparatus for concentrating and recovering methane from an anaerobic digestion fermentation gas using a gas separation membrane, the apparatus including a compressor interposed therebetween. A supply pipe to which the anaerobic digestion fermentation gas is supplied, a pre-stage separation membrane module whose inlet is connected to this supply pipe, and an exhaust pipe which is connected to the permeate side outlet of the pre-stage separation membrane module and has a decompression pump. A non-permeable gas pipe whose one end is connected to the non-permeate side outlet of the preceding separation membrane module, a post-separation membrane module whose inlet is connected to the other end of the non-permeation gas pipe, and a post-separation membrane One end was connected to the permeate side outlet of the module, and the other end was connected to the supply pipe upstream of the compressor, and the recycle pipe was connected to the non-permeate side outlet of the latter separation membrane module. And goods gas pipe, in which with a.
【0014】このメタン濃縮回収装置の作動について
は、後に詳述するが、上記した本願発明の第1の側面に
よるメタン濃縮回収方法が実質的に実現できる。The operation of this methane concentration / recovery device will be described in detail later, but the methane concentration / recovery method according to the first aspect of the present invention can be substantially realized.
【0015】本願発明のその他の特徴および利点は、図
面を参照して以下に行う詳細な説明よりさらに明らかと
なろう。Other features and advantages of the present invention will become more apparent from the detailed description given below with reference to the drawings.
【0016】[0016]
【発明の実施の形態】図1は、本願発明に係るメタン濃
縮回収装置の構成の一形態を示す。このメタン濃縮回収
装置10は、直列配置された2段のガス分離膜モジュー
ル11,12を備えている。前段の分離膜モジュール1
1の入口には、嫌気性消化醗酵ガスが供給される供給ガ
ス管13が接続されており、この供給ガス管13には、
コンプレッサ14が介装されている。この前段の分離膜
モジュール11の透過側出口には、排気管15が接続さ
れ、この排気管15には、真空ポンプ等の減圧ポンプ1
6が介装されている。前段の分離膜モジュール11の非
透過側出口には、非透過ガス管17の一端が接続され、
この非透過ガス管17の他端は、後段の分離膜モジュー
ル12の入口に接続されている。この後段の分離膜モジ
ュール12の透過側出口には、リサイクル管18の一端
が接続され、このリサイクル管18の他端は、上記供給
ガス管13における上記コンプレッサ14よりも上流側
に接続されている。また、この後段の分離膜モジュール
12の非透過側出口は、製品ガス管19に至っている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of the structure of a methane concentrating and recovering apparatus according to the present invention. The methane concentration / recovery apparatus 10 includes two stages of gas separation membrane modules 11 and 12 arranged in series. Separation membrane module 1 in the previous stage
A supply gas pipe 13 to which the anaerobic digestion fermentation gas is supplied is connected to the inlet of 1, and the supply gas pipe 13 is
The compressor 14 is interposed. An exhaust pipe 15 is connected to the permeate side outlet of the separation membrane module 11 at the preceding stage, and the exhaust pipe 15 is connected to the decompression pump 1 such as a vacuum pump.
6 are interposed. One end of the non-permeable gas pipe 17 is connected to the non-permeate side outlet of the separation membrane module 11 in the previous stage,
The other end of the non-permeable gas pipe 17 is connected to the inlet of the separation membrane module 12 in the subsequent stage. One end of a recycle pipe 18 is connected to the permeate side outlet of the separation membrane module 12 at the latter stage, and the other end of the recycle pipe 18 is connected to the supply gas pipe 13 upstream of the compressor 14. . The non-permeate side outlet of the separation membrane module 12 at the latter stage reaches the product gas pipe 19.
【0017】コンプレッサ14による前段の分離膜モジ
ュール11へのガス供給圧力は、好ましくは2〜4×1
05 Paに設定される。減圧ポンプ16によって、上記分
離膜モジュール11の透過側の圧力が好ましくは0.2
〜0.9×105 Paに減圧される。また、後段の分離膜
モジュール12の膜面積は、前段の分離膜モジュール1
1の膜面積よりも大に設定され、その比は、好ましくは
2〜4倍に設定される。The gas supply pressure of the compressor 14 to the upstream separation membrane module 11 is preferably 2 to 4 × 1.
It is set to 0 5 Pa. The pressure on the permeate side of the separation membrane module 11 is preferably 0.2 by the decompression pump 16.
The pressure is reduced to ˜0.9 × 10 5 Pa. Further, the membrane area of the separation membrane module 12 in the latter stage is equal to that of the separation membrane module 1 in the former stage.
The film area is set to be larger than 1, and the ratio is preferably set to 2 to 4 times.
【0018】次に、上記装置を用いて嫌気性消化醗酵ガ
スのメタン濃縮回収を行う方法の一形態について説明す
る。Next, one mode of a method for concentrating and recovering anaerobic digestion fermentation gas with methane using the above apparatus will be described.
【0019】供給ガス管13からは、たとえばメタン濃
度が60%の嫌気性消化醗酵ガスが供給され、このガス
は、リサイクル管18から合流するガスと合わせて、コ
ンプレッサ14によってたとえば2〜4×105 Paに加
圧されて前段の分離膜モジュール11に供給される。こ
の前段のモジュール11においては、透過側が減圧ポン
プ16によって上述のように0.2〜0.9×105 Pa
に減圧されているため、炭酸ガスが効率的に除去され、
排気される。この前段の分離膜モジュール11の非透過
側でメタン濃縮されたガスは、非透過ガス管17を介し
て後段の分離膜モジュール12に供給され、その非透過
側においてさらにメタン濃縮される。後段の分離膜モジ
ュール12の透過側は、好ましくは大気圧とされるが、
後段の分離膜モジュール12への供給ガス量の20〜4
0%がリサイクル管18を介して供給ガス管13にリサ
イクルされる。すなわち、この後段の分離膜モジュール
12の透過ガスに残存するメタンがそのまま排気される
ことなく、再濃縮のためにリサイクルされる。その結
果、前段の分離膜モジュール11の非透過側出口におけ
るメタン濃度は75〜85%となり、後段の分離膜モジ
ュール12の非透過側出口における製品ガスのメタン濃
度は90%以上となる。また、メタン収率は、85%以
上となる。From the supply gas pipe 13, for example, an anaerobic digestion fermentation gas having a methane concentration of 60% is supplied, and this gas is combined with the gas joined from the recycle pipe 18 by the compressor 14 to, for example, 2 to 4 × 10. It is pressurized to 5 Pa and supplied to the separation membrane module 11 in the preceding stage. In the module 11 at the preceding stage, the permeate side is controlled by the decompression pump 16 as described above at 0.2 to 0.9 × 10 5 Pa.
Since the pressure is reduced to 2, carbon dioxide is efficiently removed,
Exhausted. The methane-enriched gas on the non-permeation side of the separation membrane module 11 on the upstream side is supplied to the separation membrane module 12 on the downstream side via the non-permeable gas pipe 17, and is further concentrated on the non-permeation side. The permeate side of the separation membrane module 12 in the subsequent stage is preferably at atmospheric pressure,
The amount of gas supplied to the separation membrane module 12 in the subsequent stage is 20 to 4
0% is recycled to the supply gas pipe 13 via the recycle pipe 18. That is, the methane remaining in the permeated gas of the separation membrane module 12 at the latter stage is recycled as it is for reconcentration without being exhausted as it is. As a result, the methane concentration at the non-permeation side outlet of the upstream separation membrane module 11 is 75 to 85%, and the methane concentration of the product gas at the non-permeation side outlet of the subsequent separation membrane module 12 is 90% or more. Moreover, the methane yield is 85% or more.
【0020】以下に、本願発明に係る嫌気性消化醗酵ガ
スのメタン濃縮回収方法の有利性を示すために、いくつ
かの実施例と比較例を説明する。Several examples and comparative examples will be described below in order to show the advantages of the method for methane concentration and recovery of anaerobic digestion fermentation gas according to the present invention.
【0021】《実施例1》それぞれがポリイミド中空糸
膜モジュール(宇部興産株式会社製)である前段モジュ
ール11(25mmφ×214mml)と後段モジュール1
2(25mmφ×642mml)を用い膜面積比を1:3と
した。メタン濃度60%、炭酸ガス濃度40%の混合ガ
スをコンプレッサ14により供給圧力3×105 Paに加
圧し、供給量400l/Hrで供給した。前段モジュール
11の透過ガスは減圧ポンプ16により0.6×105
Paに減圧吸引して排気した。後段モジュール12への供
給ガス量の30%にあたる透過ガスをリサイクル管18
を介して供給ガス管13にリサイクルした。その結果、
前段モジュール11の非透過ガス中のメタン濃度は80
%であり、リサイクルガス中のメタン濃度は55%であ
った。後段モジュール12の非透過ガスとしての製品ガ
ス中のメタン濃度は92%であり、メタン収率は90%
であった。<< Example 1 >> A pre-stage module 11 (25 mmφ × 214 mml) and a post-stage module 1 each of which is a polyimide hollow fiber membrane module (manufactured by Ube Industries, Ltd.)
2 (25 mmφ × 642 mml) and the film area ratio was 1: 3. A mixed gas having a methane concentration of 60% and a carbon dioxide concentration of 40% was pressurized to a supply pressure of 3 × 10 5 Pa by a compressor 14 and supplied at a supply amount of 400 l / Hr. The permeate gas of the front-stage module 11 is 0.6 × 10 5 by the decompression pump 16.
It was vacuumed to Pa and evacuated. A recycle pipe 18 is used for the permeated gas equivalent to 30% of the amount of gas supplied to the latter-stage module 12.
It was recycled to the supply gas pipe 13 via. as a result,
The methane concentration in the non-permeable gas of the front module 11 is 80
%, And the methane concentration in the recycled gas was 55%. The methane concentration in the product gas as the non-permeation gas of the rear module 12 is 92%, and the methane yield is 90%.
Met.
【0022】《実施例2》それぞれがポリイミド中空糸
膜モジュールである前段モジュール11(25mmφ×2
14mml)と後段モジュール12(25mmφ×428mm
l)を用い膜面積比を1:2とした。メタン濃度60
%、炭酸ガス濃度40%の混合ガスをコンプレッサ14
により供給圧力4×105 Paに加圧し、供給量400l
/Hrで供給した。前段モジュール11の透過ガスは減圧
ポンプ16により0.9×105 Paに減圧吸引して排気
した。後段モジュール12への供給ガス量の23%にあ
たる透過ガスをリサイクル管18を介して供給ガス管1
3にリサイクルした。その結果、前段モジュール11の
非透過ガス中のメタン濃度は77%であり、リサイクル
ガス中のメタン濃度は50%であった。後段モジュール
12の非透過ガスとしての製品ガス中のメタン濃度は9
0%であり、メタン収率は86%であった。Example 2 Pre-stage module 11 (25 mmφ × 2), each of which is a polyimide hollow fiber membrane module
14 mml) and the rear module 12 (25 mmφ x 428 mm)
The film area ratio was set to 1: 2 using the above method. Methane concentration 60
%, A mixed gas with a carbon dioxide concentration of 40% is compressed by the compressor 14
To increase the supply pressure to 4 × 10 5 Pa and supply amount 400 l
/ Hr. The permeated gas of the first-stage module 11 was sucked under reduced pressure to 0.9 × 10 5 Pa by the reduced pressure pump 16 and exhausted. Permeate gas equivalent to 23% of the amount of gas supplied to the latter-stage module 12 is supplied through the recycle pipe 18 to the supply gas pipe 1
Recycled to 3. As a result, the methane concentration in the non-permeable gas of the former module 11 was 77%, and the methane concentration in the recycled gas was 50%. The methane concentration in the product gas as the non-permeation gas of the rear module 12 is 9
It was 0%, and the methane yield was 86%.
【0023】《実施例3》それぞれがポリイミド中空糸
膜モジュールである前段モジュール11(25mmφ×2
14mml)と後段モジュール12(50mmφ×214mm
l)との膜面積比を1:4とし、メタン濃度60%、炭
酸ガス濃度40%の混合ガスをコンプレッサ14により
供給圧力2×105 Paに加圧して供給した。前段モジュ
ール11の透過ガスは減圧ポンプ16により0.2×1
05 Paに減圧吸引して排気した。後段モジュール12へ
の供給ガス量の38%にあたる透過ガスをリサイクル管
18を介して供給ガス管13にリサイクルした。その結
果、前段モジュール11の非透過ガス中のメタン濃度は
82%であり、リサイクルガス中のメタン濃度は59%
であった。後段モジュール12の非透過ガスとしての製
品ガス中のメタン濃度は90%であり、メタン収率は8
9%であった。Example 3 Pre-stage module 11 (25 mmφ × 2), each of which is a polyimide hollow fiber membrane module
14 mml) and the rear module 12 (50 mmφ x 214 mm)
A mixed gas having a membrane area ratio of 1) with that of 1) was set to 1: 4, and a mixed gas having a methane concentration of 60% and a carbon dioxide concentration of 40% was pressurized by a compressor 14 to a supply pressure of 2 × 10 5 Pa and supplied. The permeated gas of the front module 11 is 0.2 × 1 by the decompression pump 16.
It was vacuumed to 0 5 Pa and evacuated. The permeated gas, which corresponds to 38% of the amount of gas supplied to the latter-stage module 12, was recycled to the supply gas pipe 13 via the recycle pipe 18. As a result, the methane concentration in the non-permeated gas of the front-stage module 11 was 82%, and the methane concentration in the recycled gas was 59%.
Met. The methane concentration in the product gas as the non-permeation gas of the rear module 12 was 90%, and the methane yield was 8%.
9%.
【0024】《比較例1》それぞれがポリイミド中空糸
膜モジュールである前段モジュール11と後段モジュー
ル12との膜面積比を1:3とし、メタン濃度60%、
炭酸ガス濃度40%の混合ガスをコンプレッサ14によ
り供給圧力1.2×105 Paに加圧して供給した。前段
モジュール11の透過ガスは減圧ポンプ16により0.
15×105 Paに減圧吸引して排気した。後段モジュー
ル12への供給ガス量の16%にあたる透過ガスをリサ
イクル管18を介して供給ガス管13にリサイクルし
た。その結果、後段モジュール12の非透過ガスとして
の製品ガス中のメタン濃度は86%であり、メタン収率
は80%であった。なお、混合ガスの加圧には、コンプ
レッサに代えてブロアを用いた。<< Comparative Example 1 >> The membrane area ratio of the front-stage module 11 and the rear-stage module 12 each of which is a polyimide hollow fiber membrane module was set to 1: 3, and the methane concentration was 60%.
A mixed gas having a carbon dioxide concentration of 40% was pressurized by a compressor 14 to a supply pressure of 1.2 × 10 5 Pa and supplied. The permeated gas of the front-stage module 11 was reduced to 0.
It was vacuumed to 15 × 10 5 Pa and evacuated. Permeate gas equivalent to 16% of the amount of gas supplied to the latter-stage module 12 was recycled to the supply gas pipe 13 via the recycle pipe 18. As a result, the methane concentration in the product gas as the non-permeation gas of the latter-stage module 12 was 86%, and the methane yield was 80%. A blower was used instead of the compressor for pressurizing the mixed gas.
【0025】《比較例2》それぞれがポリイミド中空糸
膜モジュールである前段モジュール11と後段モジュー
ル12との膜面積比を1:3とし、メタン濃度60%、
炭酸ガス濃度40%の混合ガスをコンプレッサ14によ
り供給圧力4.5×105 Paに加圧して供給した。前段
モジュール11の透過ガスは大気圧で排気した。後段モ
ジュール12への供給ガス量の50%にあたる透過ガス
をリサイクル管18を介して供給ガス管13にリサイク
ルした。その結果、後段モジュール12の非透過ガスと
しての製品ガス中のメタン濃度は90%であり、メタン
収率は81%であった。<< Comparative Example 2 >> The membrane area ratio of the front-stage module 11 and the rear-stage module 12 each of which is a polyimide hollow fiber membrane module was set to 1: 3, and the methane concentration was 60%.
A mixed gas having a carbon dioxide gas concentration of 40% was pressurized by a compressor 14 to a supply pressure of 4.5 × 10 5 Pa and supplied. The permeated gas of the front module 11 was exhausted at atmospheric pressure. Permeate gas equivalent to 50% of the amount of gas supplied to the latter-stage module 12 was recycled to the supply gas pipe 13 via the recycle pipe 18. As a result, the methane concentration in the product gas as the non-permeation gas of the latter-stage module 12 was 90%, and the methane yield was 81%.
【図1】本願発明のメタン濃縮回収装置の一形態を示す
模式図である。FIG. 1 is a schematic diagram showing an embodiment of a methane concentration / recovery apparatus of the present invention.
10 嫌気性消化醗酵ガスのメタン濃縮装置 11 前段のガス分離膜モジュール 12 後段のガス分離膜モジュール 13 供給ガス管 14 コンプレッサ 16 減圧ポンプ 18 リサイクル管 19 製品ガス管 10 Methane concentrator for anaerobic digestion fermentation gas 11 Gas separation membrane module in the first stage 12 Gas separation membrane module in the second stage 13 Supply gas pipe 14 Compressor 16 Decompression pump 18 Recycle pipe 19 Product gas pipe
Claims (4)
スからメタンを濃縮回収する方法であって、分離膜モジ
ュールを前段モジュールと後段モジュールとの2段直列
とし、嫌気性消化醗酵ガスを前段モジュールへ加圧供給
するとともに、前段モジュールの透過側圧力を減圧して
炭酸ガスを透過排気する一方、前段モジュールの非透過
ガスを残圧によって後段モジュールへ供給するととも
に、後段モジュールの透過ガスを前段モジュールへリサ
イクルし、後段モジュールの非透過ガスをメタン濃縮ガ
スとして回収することを特徴とする、嫌気性消化醗酵ガ
スのメタン濃縮方法。1. A method for concentrating and recovering methane from an anaerobic digestion fermentation gas using a gas separation membrane, wherein a separation membrane module is a two-stage series of a front stage module and a rear stage module, and the anaerobic digestion fermentation gas is While supplying pressure to the front stage module, the permeate side pressure of the front stage module is reduced to permeate and exhaust carbon dioxide gas, while the non-permeate gas of the front stage module is supplied to the rear stage module by residual pressure and the permeate gas of the rear stage module is supplied. A method for concentrating anaerobic digestion fermentation gas with methane, which comprises recycling the non-permeate gas from the latter module as a methane-concentrated gas and recycling it to the former module.
105 Paとし、前段モジュールの透過側圧力を0.2〜
0.9×105 Paとし、後段モジュールの透過側を大気
圧とする、請求項1に記載の方法。2. The supply pressure to the preceding module is 2 to 4 ×
The pressure on the permeate side of the preceding module is set to 0.25 to 10 5 Pa.
The method according to claim 1, wherein the pressure is 0.9 × 10 5 Pa and the permeation side of the latter-stage module is at atmospheric pressure.
る膜面積比を2〜4倍とするとともに、後段モジュール
からのリサイクル率を後段モジュールに対する供給ガス
量の20〜40%とすることにより、前段モジュールか
ら後段モジュールへ供給されるガス中のメタン濃度を7
5〜85%とする、請求項1または2に記載の方法。3. The ratio of the membrane area of the post-stage module to the pre-stage module is 2 to 4 times, and the recycling rate from the post-stage module is set to 20 to 40% of the amount of gas supplied to the post-stage module, whereby the post-stage module is separated from the post-stage module. Adjust the methane concentration in the gas supplied to the module to 7
The method according to claim 1 or 2, which is 5 to 85%.
性消化醗酵ガスが供給される供給管と、この供給管に入
口が接続された前段の分離膜モジュールと、この前段の
分離膜モジュールの透過側出口に接続されかつ減圧ポン
プを有する排気管と、上記前段の分離膜モジュールの非
透過側出口に一端が接続された非透過ガス管と、この非
透過ガス管の他端に入口が接続された後段の分離膜モジ
ュールと、この後段の分離膜モジュールの透過側出口に
一端が接続され、上記供給管の上記コンプレッサよりも
上流側に他端が接続されたリサイクル管と、上記後段の
分離膜モジュールの非透過側出口に接続された製品ガス
管と、を備えることを特徴とする、嫌気性消化醗酵ガス
のメタン濃縮装置。4. A supply pipe to which an anaerobic digestion fermentation gas is supplied while a compressor is interposed, a pre-stage separation membrane module having an inlet connected to the supply pipe, and a permeation side of the pre-stage separation membrane module. An exhaust pipe connected to the outlet and having a decompression pump, a non-permeable gas pipe having one end connected to the non-permeate side outlet of the separation membrane module in the preceding stage, and an inlet connected to the other end of the non-permeable gas pipe A separation membrane module in the latter stage, a recycling pipe having one end connected to the permeate side outlet of the separation membrane module in the latter stage, and the other end connected to the upstream side of the compressor of the supply pipe, and the separation membrane module in the latter stage And a product gas pipe connected to the non-permeate side outlet of the anaerobic digestion fermentation gas methane concentrator.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7284918A JPH09124514A (en) | 1995-11-01 | 1995-11-01 | Method for concentrating methane of anaerobic digestion fermentation gas and apparatus therefor |
AU73345/96A AU7334596A (en) | 1995-11-01 | 1996-10-18 | Method and apparatus for concentrating methane in anaerobic digestive fermentation gas |
PCT/JP1996/003050 WO1997016399A1 (en) | 1995-11-01 | 1996-10-18 | Method and apparatus for concentrating methane in anaerobic digestive fermentation gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7284918A JPH09124514A (en) | 1995-11-01 | 1995-11-01 | Method for concentrating methane of anaerobic digestion fermentation gas and apparatus therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09124514A true JPH09124514A (en) | 1997-05-13 |
Family
ID=17684750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7284918A Pending JPH09124514A (en) | 1995-11-01 | 1995-11-01 | Method for concentrating methane of anaerobic digestion fermentation gas and apparatus therefor |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPH09124514A (en) |
AU (1) | AU7334596A (en) |
WO (1) | WO1997016399A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007254572A (en) * | 2006-03-23 | 2007-10-04 | Ngk Insulators Ltd | Methane concentration system and its operation method |
JP2008260739A (en) * | 2007-04-13 | 2008-10-30 | Noritake Co Ltd | Methane concentration apparatus and methane concentration method |
JP2009242773A (en) * | 2008-03-14 | 2009-10-22 | Air Water Inc | Methane gas concentration device, method therefor, fuel gas production device and method therefor |
JP2013095726A (en) * | 2011-11-03 | 2013-05-20 | Toho Gas Co Ltd | Methane concentration method and methane concentration device of biogas |
KR101531605B1 (en) * | 2014-09-18 | 2015-06-26 | 한국화학연구원 | A second-stage membrane process and an apparatus for the production of high purity methane gas using low operation pressure and temperature conditions |
WO2016043427A1 (en) * | 2014-09-18 | 2016-03-24 | 한국화학연구원 | Multistage membrane separation and purification process and apparatus for separating high purity methane gas |
US10047310B2 (en) | 2014-09-18 | 2018-08-14 | Korea Research Institute Of Chemical Technology | Multistage membrane separation and purification process and apparatus for separating high purity methane gas |
US11458435B2 (en) * | 2018-06-18 | 2022-10-04 | Japan Oil, Gas And Metals National Corporation | Acidic gas separation device and acidic gas separation method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015081406A1 (en) * | 2013-12-02 | 2015-06-11 | Braskem S.A. | Fermentation hydrocarbon gas products separation via membrane |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51147480A (en) * | 1975-06-14 | 1976-12-17 | Toshiba Corp | A separating apparatus for mixed gas |
US4518399A (en) * | 1984-08-24 | 1985-05-21 | Monsanto Company | Process for recovering gases from landfills |
JPH0689349B2 (en) * | 1991-07-22 | 1994-11-09 | 三菱化工機株式会社 | Alternative natural gas manufacturing method |
-
1995
- 1995-11-01 JP JP7284918A patent/JPH09124514A/en active Pending
-
1996
- 1996-10-18 WO PCT/JP1996/003050 patent/WO1997016399A1/en active Application Filing
- 1996-10-18 AU AU73345/96A patent/AU7334596A/en not_active Abandoned
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007254572A (en) * | 2006-03-23 | 2007-10-04 | Ngk Insulators Ltd | Methane concentration system and its operation method |
JP2008260739A (en) * | 2007-04-13 | 2008-10-30 | Noritake Co Ltd | Methane concentration apparatus and methane concentration method |
JP2009242773A (en) * | 2008-03-14 | 2009-10-22 | Air Water Inc | Methane gas concentration device, method therefor, fuel gas production device and method therefor |
JP2013095726A (en) * | 2011-11-03 | 2013-05-20 | Toho Gas Co Ltd | Methane concentration method and methane concentration device of biogas |
KR101531605B1 (en) * | 2014-09-18 | 2015-06-26 | 한국화학연구원 | A second-stage membrane process and an apparatus for the production of high purity methane gas using low operation pressure and temperature conditions |
WO2016043427A1 (en) * | 2014-09-18 | 2016-03-24 | 한국화학연구원 | Multistage membrane separation and purification process and apparatus for separating high purity methane gas |
CN106687195A (en) * | 2014-09-18 | 2017-05-17 | 韩国化学研究院 | Multistage membrane separation and purification process and apparatus for separating high purity methane gas |
US10047310B2 (en) | 2014-09-18 | 2018-08-14 | Korea Research Institute Of Chemical Technology | Multistage membrane separation and purification process and apparatus for separating high purity methane gas |
CN106687195B (en) * | 2014-09-18 | 2020-08-11 | 韩国化学研究院 | Multi-stage membrane separation and purification process and device for separating high-purity methane gas |
US11458435B2 (en) * | 2018-06-18 | 2022-10-04 | Japan Oil, Gas And Metals National Corporation | Acidic gas separation device and acidic gas separation method |
Also Published As
Publication number | Publication date |
---|---|
WO1997016399A1 (en) | 1997-05-09 |
AU7334596A (en) | 1997-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6500241B2 (en) | Hydrogen and carbon dioxide coproduction | |
EP2366447B1 (en) | Method and apparatus for producing hydrogen and recovering carbon dioxide | |
CN115943119A (en) | Ammonia cracking of green hydrogen | |
US20080078294A1 (en) | Integrated Separation And Purification Process | |
US6946016B2 (en) | PSA sharing | |
JP2007254572A (en) | Methane concentration system and its operation method | |
JP2006522588A (en) | Self-contained streamline methane and / or high purity hydrogen generation system | |
JP2006509345A (en) | Exhaust gas treatment method for solid oxide fuel cell power plant | |
US20210198104A1 (en) | Method for the preparation of ammonia synthesis gas | |
JP2010529905A (en) | Apparatus and system for treating gas mixtures by permeation | |
JPH09124514A (en) | Method for concentrating methane of anaerobic digestion fermentation gas and apparatus therefor | |
CN112262106A (en) | Methanol production method | |
KR102318737B1 (en) | Improvement of h2 recovery ration by combination of membrane and psa method | |
JP2002042848A (en) | Fuel cell device | |
CN115837215A (en) | Method and system for extracting and preparing high-purity helium from natural gas or BOG | |
JP2014051427A (en) | Carbon dioxide recovery system and carbon dioxide recovery method | |
JP2013095727A (en) | Methane concentration method and methane concentration device of biogas | |
JPH09206541A (en) | Separation of oxygen and argon in air and device therefor | |
JP7468822B1 (en) | Gas separation system and method for producing methane-enriched gas | |
CN221593261U (en) | Device for recycling natural gas and hydrogen by low-temperature method | |
CN118790954A (en) | System and method for extracting high-quality hydrogen from tail gas | |
CN219128858U (en) | System for extracting and preparing high-purity helium from natural gas or BOG | |
CN219586052U (en) | Membrane method biogas purification system for leachate treatment | |
JP2022176139A (en) | gas separation process | |
KR20000018557A (en) | Method for generating electricity in anaerobic sewage disposal. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051213 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060418 |