JPH09111404A - Low strain type carburized and quenched steel stock for gear - Google Patents
Low strain type carburized and quenched steel stock for gearInfo
- Publication number
- JPH09111404A JPH09111404A JP28938295A JP28938295A JPH09111404A JP H09111404 A JPH09111404 A JP H09111404A JP 28938295 A JP28938295 A JP 28938295A JP 28938295 A JP28938295 A JP 28938295A JP H09111404 A JPH09111404 A JP H09111404A
- Authority
- JP
- Japan
- Prior art keywords
- gear
- quenching
- carburized
- steel material
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Gears, Cams (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【発明の属する技術分野】この発明は、例えば、自動
車、建設機械、産業機械等の歯車用鋼材として好適な、
浸炭焼入れ時の歪み量が極めて小さい、低歪み型浸炭焼
入れ歯車用鋼材に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is suitable for use as a steel material for gears of automobiles, construction machines, industrial machines and the like.
The present invention relates to a low distortion type steel material for a carburized and quenched gear having a very small amount of distortion during carburizing and quenching.
【0002】[0002]
【従来の技術】例えば、最近の自動車においては、運転
時における静粛性が著しく向上しているが、それにもか
かわらず運転時に騒音が生ずる。これは、主として歯車
から発生するギヤノイズによるものである。ギヤノイズ
は、歯車の噛み合いの不具合によって発生するものであ
り、このような歯車の噛み合いの不具合は、所定形状に
成形された歯車半製品に対し、その表面を硬化するため
に浸炭焼入れまたは浸炭窒化焼入れ(以下、浸炭焼入れ
と総称する)処理を施した時に生ずる歪みの結果発生す
る。2. Description of the Related Art For example, in recent automobiles, quietness during driving is remarkably improved, but noise is generated during driving. This is mainly due to gear noise generated from gears. The gear noise is generated due to a gear meshing defect. Such gear meshing defect is caused by carburizing and quenching or nitrocarburizing to harden the surface of a semi-finished gear formed into a predetermined shape. (Hereinafter collectively referred to as carburizing and quenching).
【0003】即ち、歯車用鋼材に対する浸炭焼入れ時
に、マルテンサイトの生成による変態応力、即ち、オー
ステナイト組織からマルテンサイト組織に変態する時に
生ずる体積膨張に起因する応力が発生するため、鋼材に
歪みが生ずることを避けることができず、その結果、歯
車の寸法精度を高く維持することができないためにギア
ノイズが発生する。特に、自動車のトランスミッション
用ギヤにおいては、騒音に対して極めて厳しい制限があ
るにもかかわらず、その形状が小さく且つ肉厚が薄いた
め、ギヤ内部の組織はベイナイトを一部含むマルテンサ
イト主体の組織になっているために、浸炭焼入れ時に歪
みが生じやすく、これが歯車騒音の最大の発生原因にな
っている。That is, during carburizing and quenching of a steel material for a gear, a transformation stress due to the formation of martensite, that is, a stress due to volume expansion generated when the austenite structure is transformed into a martensite structure, is generated, so that the steel material is distorted. This cannot be avoided, and as a result, gear noise occurs because the dimensional accuracy of the gear cannot be maintained high. In particular, in a transmission gear for an automobile, despite its extremely strict noise limits, its structure is small and its wall thickness is thin, so that the structure inside the gear is mainly composed of martensite including bainite. , Distortion is likely to occur during carburizing and quenching, which is the largest cause of gear noise.
【0004】そこで、歯車の寸法精度の向上を図るため
に、浸炭焼入れされた歯車半成品を機械切削加工して、
浸炭層を部分的に除去し、焼入れ歪み量を低減させる歯
形修正処理を施す方法がある。しかしながら、このよう
な機械研削による歯形修正では、製造工程が増えること
により生産性が大幅に低下するのみならず、機械研削加
工により製造コストが大幅に高騰するうえ、表面硬さや
残留応力にむらが生ずるので、品質上からも問題があ
る。[0004] Therefore, in order to improve the dimensional accuracy of the gear, the carburized and hardened gear semi-finished product is machine-cut,
There is a method of partially removing the carburized layer and performing a tooth shape correction process for reducing the amount of quenching distortion. However, such correction of the tooth profile by mechanical grinding not only significantly reduces the productivity due to an increase in the number of manufacturing processes, but also significantly increases the manufacturing cost due to the mechanical grinding process, and causes unevenness in surface hardness and residual stress. Therefore, there is a problem in quality.
【0005】上述した点から、歯車用鋼材は、浸炭焼入
れ後、歯形修正処理を施さずに使用されることが多く、
従って、浸炭焼入れされた歯車半成品の寸法精度向上の
ために、焼入れ歪みを低減することが必要とされてい
る。このような浸炭焼入れ歪み量は、鋼材の焼入れ性に
よって大きく影響される。更に、浸炭焼入れは、通常約
920 ℃の高温で行われるので、浸炭中にオーステナイト
結晶粒が粗大化することも、歪み発生原因の一つとされ
ている。更に、最近では、浸炭時間を短縮して生産性を
向上させるために、浸炭温度を高め、これに伴い焼入温
度もたかめる方法が試行されている。[0005] In view of the above, gear steel is often used after carburizing and quenching without performing a tooth shape correction process.
Therefore, in order to improve the dimensional accuracy of a carburized and hardened gear semi-finished product, it is necessary to reduce hardening distortion. Such carburizing and quenching distortion is greatly affected by the hardenability of the steel material. Furthermore, carburizing and quenching is usually about
Since the heat treatment is performed at a high temperature of 920 ° C., coarsening of austenite crystal grains during carburization is also considered to be one of the causes of distortion. Furthermore, recently, in order to shorten the carburizing time and improve the productivity, a method of increasing the carburizing temperature and thereby increasing the quenching temperature has been tried.
【0006】歯車用鋼材の焼入れ歪み量を低減する方法
については、従来から種々の研究がなされており、例え
ば、焼入れ性がジョミニーバンドの下限になるように鋼
材の化学成分組成を特定の狭い範囲内にコントロールし
て焼入れ性を低く抑える方法が知られ、また、特開平4
−247848号公報および特開昭59−123743号公報等は、浸
炭および保温中の結晶粒粗大化を抑制するために、鋼中
に、Al、Ti、Nb等の結晶粒微細化元素を適正量添加する
ことにより結晶粒を微細に調整する方法( 以下、先行技
術1という)を開示している。Various studies have been made on methods for reducing the amount of quenching distortion of steel materials for gears. For example, for example, the chemical composition of steel materials is limited to a specific narrow range so that the hardenability becomes the lower limit of the Jominy band. A method is known in which the hardenability is controlled to a low level by controlling the temperature within the steel.
No. 247848 and Japanese Unexamined Patent Publication No. 59-123743 disclose that, in order to suppress grain coarsening during carburization and heat retention, an appropriate amount of grain refining elements such as Al, Ti, and Nb are contained in steel. It discloses a method of finely adjusting crystal grains by adding (hereinafter referred to as Prior Art 1).
【0007】また、特開平5−70925 号公報は、Si、M
n、Cr、MoおよびV 等の化学成分組成を特定範囲に限定
した鋼からなる歯車半成品に対し浸炭窒化処理を施した
後、これを歯表面部即ち浸炭窒化部(以下、同じ)のA
r1変態点以下の温度域まで冷却する。次いで、歯表面部
のAr3変態点以上で且つ歯内部即ち非浸炭部(以下、同
じ)のAr1変態点以下である温度域に保持することによ
り、歯表面部をオ−ステナイト状態に保ちつつ歯内部を
微細なフェライト・パーライトにし、次いで、焼入れを
し、そして、焼戻しをすることにより、歯表面部の浸炭
窒化部をマルテンサイトにし、既に変態を終了している
歯内部を焼きの入っていないフェライトと微細パーライ
トに維持するという方法 (以下、先行技術2という)が
開示されている。図4に、歯車の歯内部、歯表面部およ
び歯車芯部を説明する概略斜視図を示す。Japanese Patent Application Laid-Open No. Hei 5-70925 discloses Si, M
After performing a carbonitriding process on a semi-finished gear made of steel having a chemical composition limited to a specific range such as n, Cr, Mo, and V, it is subjected to A of a tooth surface portion, that is, a carbonitrided portion (hereinafter the same).
r 1 is cooled to a temperature range of below the transformation point. Next, the tooth surface is maintained in an austenite state by maintaining it in a temperature range that is equal to or higher than the Ar 3 transformation point of the tooth surface portion and equal to or lower than the Ar 1 transformation point of the tooth interior, that is, the non-carburized portion (hereinafter, the same). While making the inside of the tooth fine ferrite pearlite, then quenching and tempering, the carbonitrided part of the tooth surface becomes martensite, and the inside of the tooth that has already undergone transformation is quenched. A method of maintaining ferrite and fine pearlite which are not present (hereinafter referred to as Prior Art 2) is disclosed. FIG. 4 is a schematic perspective view illustrating the inside of the gear teeth, the tooth surface, and the gear core.
【0008】また、例えば特開平3−260048号公報は、
タフトライドやガス窒化、ガス軟窒化などの低温で行な
う窒化処理により熱処理歪みの低減を図る方法(以下、
先行技術3という)を開示している。[0008] For example, Japanese Patent Application Laid-Open No. 3-260048 discloses that
A method of reducing heat treatment distortion by nitriding at a low temperature such as tuftride, gas nitriding, or gas nitrocarburizing (hereinafter, referred to as
Prior art 3).
【0009】[0009]
【発明が解決しようとする課題】しかしながら、上述し
た各先行技術には、下記問題がある。先行技術1は、結
晶粒を微細に調整することにより浸炭および保温中の結
晶粒粗大化を抑制することができるので、歯内部におけ
る焼入れ歪みのバラツキを小さくすることができ、且
つ、焼入れ歪みを均一化することができるという利点を
有する。しかしながら、先行技術1は、マルテンサイト
変態に伴う歪みの発生を抑制するのに限界があり、歪み
を十分に小さくすることができないという問題を有す
る。However, the above-described prior arts have the following problems. In the prior art 1, since the crystal grains are finely adjusted, the coarsening of the crystal grains during carburization and heat retention can be suppressed, so that the variation of the quenching distortion inside the teeth can be reduced, and the quenching distortion can be reduced. This has the advantage that it can be made uniform. However, the prior art 1 has a problem in that it is not possible to sufficiently reduce the strain because there is a limit in suppressing the occurrence of strain associated with the martensitic transformation.
【0010】先行技術2は、歯内部をフェライト・パー
ライト組織にすることによりマルテンサイト発生に伴う
体積膨張による焼入れ歪みを軽減することができるとい
う利点を有する。しかしながら、先行技術2は、歯内部
即ち非浸炭部がフェライト・パーライト組織であるため
に、十分な靱性を確保することが困難であり、且つ、熱
処理温度を厳格に管理しなければならないので、熱処理
操作が複雑となり、生産性を阻害するのみならず、コス
ト高になるという問題を有する。The prior art 2 has an advantage that quenching distortion due to volume expansion caused by martensite generation can be reduced by forming a ferrite-pearlite structure inside the tooth. However, in prior art 2, since the inside of the tooth, that is, the non-carburized portion has a ferrite-pearlite structure, it is difficult to secure sufficient toughness, and the heat treatment temperature must be strictly controlled. There is a problem that the operation becomes complicated, not only hindering the productivity but also increasing the cost.
【0011】先行技術3は、表面に硬い窒素化合物層を
形成させることができるので、良好な耐磨耗性を有する
表面硬化層を得ることができ、また、500〜700℃
の低温域で処理するので処理部品の変形が小さいという
利点を有する。しかしながら、先行技術3は、硬化層深
さが浅く、十分な硬化層を得るには50〜100時間に
も及ぶ長時間の窒化処理が必要であるため、生産性を阻
害するのみならず、コスト高になるという欠点を有す
る。In the prior art 3, since a hard nitrogen compound layer can be formed on the surface, a surface hardened layer having good abrasion resistance can be obtained.
Since the processing is performed in the low temperature range, there is an advantage that the deformation of the processing component is small. However, the prior art 3 has a shallow hardened layer depth and requires a long nitriding treatment of 50 to 100 hours to obtain a sufficient hardened layer. It has the disadvantage of being high.
【0012】従って、この発明の目的は、上述した問題
を解決し、通常の効率的な浸炭処理をし、そして、焼入
れおよび焼戻し処理をした後の歪みの発生量が極めて小
さく、従って、寸法精度の高い歯車が得られ、その結
果、使用時にギヤノイズが発生しない、自動車、建設機
械、産業機械等の歯車を、容易に且つ効率的に熱処理を
行ない経済的に製造することができる、低歪み型浸炭焼
入れ歯車用鋼を提供することにある。[0012] Accordingly, an object of the present invention is to solve the above-mentioned problems, to reduce the amount of distortion after ordinary and efficient carburizing and quenching and tempering, and therefore to reduce the dimensional accuracy. Low distortion type that can easily and efficiently heat-treat gears of automobiles, construction machines, industrial machines, and the like that do not generate gear noise during use. It is an object of the present invention to provide a carburized and hardened gear steel.
【0013】[0013]
【課題を解決するための手段】本発明者等は、上述した
問題を解決すべく鋭意研究を重ねた結果、下記知見を得
た。Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and have obtained the following findings.
【0014】歯車用鋼材の浸炭焼入れ歪み量に影響を及
ぼす主要因子は、オーステナイト組織がマルテンサイト
組織に変態するときに生ずる体積膨張に起因する歪みに
あることから、本発明者等は、焼入れ前の加熱時にオー
ステナイト組織中にフェライトを10〜70%混在さ
せ、浸炭焼入れ後の組織をフェライト・マルテンサイト
二相組織とすることにより、焼入れ歪み量が劇的に低減
することを見出した。The main factor affecting the amount of carburizing and quenching strain of steel for gears is the strain caused by volume expansion that occurs when the austenite structure is transformed into martensite structure. It has been found that the ferrite / martensite two-phase structure after carburizing and quenching is used to mix the ferrite into the austenitic structure at the time of heating and the amount of quenching strain is dramatically reduced.
【0015】この発明においては、容易で且つ経済的な
浸炭焼入れの熱処理条件で歯車を製造することができる
鋼材を提供することも重要な目標の一つである。しか
も、この発明の鋼材は、浸炭焼入れにより、マルテンサ
イト組織中にフェライトが混在する組織になることが必
須要件である。従って、この発明の鋼材のAc3 変態温度
は、通常の浸炭焼入れ温度領域よりも高くなっているこ
とが必要である。[0015] In the present invention, it is also an important object to provide a steel material capable of producing gears under heat treatment conditions of easy and economical carburizing and quenching. Moreover, it is an essential requirement that the steel material of the present invention has a structure in which ferrite is mixed in a martensite structure by carburizing and quenching. Therefore, the steel material of the present invention needs to have an Ac 3 transformation temperature higher than a normal carburizing and quenching temperature range.
【0016】そこで、鋼中Si、Mn、Cr、Mo、Al、V 等の
元素の、Ac3変態温度に及ぼす影響について詳細に検討
した結果、これらの元素の含有量を適正に限定すること
により、通常の浸炭条件でも容易にフェライト・マルテ
ンサイト二相組織が得られ、且つ、フェライト強化元素
を適正量添加することにより、歯内部即ち非浸炭部が強
化され、且つ、歯表面部の疲労強度が向上するので、歯
元の疲労強度を低下させることなく焼入れ歪み量を劇的
に低減し得ることを知見した。Therefore, as a result of detailed study on the influence of elements such as Si, Mn, Cr, Mo, Al, and V in steel on the Ac 3 transformation temperature, by appropriately limiting the contents of these elements. A ferrite / martensite two-phase structure can be easily obtained even under normal carburizing conditions, and by adding an appropriate amount of a ferrite strengthening element, the inside of the tooth, that is, the non-carburized part is strengthened, and the fatigue strength of the tooth surface part is increased. Therefore, it was found that the quenching strain amount can be dramatically reduced without lowering the fatigue strength of the tooth root.
【0017】この発明は、上記知見に基づいてなされた
ものであって、請求項1記載の発明の低歪み型浸炭焼入
れ歯車用鋼材は、C :0.10〜0.35wt.%、Si:0.50〜2.5
wt.%、Mn:0.20〜2.50wt.%、Cr:0.01〜2.50wt.%、およ
び、Mo:0.01〜0.70wt.%を含有し、残部:鉄および不可
避不純物からなる化学成分組成を有し、しかも、下記
(1) 式: Ac3 =920-203 √C+44.7Si+31.5Mo-30Mn-11Cr+40Al+13.1W+104V+40Ti ------------ (1) によって算出されるAc3 点パラメーターが、850 〜960
℃の範囲内にあり、下記(2) 式: DI =7.95√C(1+0.70Si)(1+3.3Mn)(1+2.16Cr)(1+3.0Mo)(1+5.0V) ------------ (2) によって算出される理想臨界直径 (DI ) が30〜250mm
の範囲内にある化学成分組成を有する鋼材であって、前
記鋼材に対して、温度850〜1000℃の範囲内で浸
炭処理を施し、次いで、温度800〜950℃の範囲内
で焼入れ処理を施し、そして、次いで、焼戻し処理を施
し、このようにして得られえた前記鋼材の非浸炭部の組
織が、フェライトを10〜70面積%含むマルテンサイ
トよりなる二相組織であることに特徴を有するものであ
る。なお、この発明において、上記(1)式および
(2)式によりAc3 点パラメーターおよび理想臨界直径
(DI ) を算出するとき、(1)式および(2)式の右
辺には所定の成分元素に係る項があるが、化学成分組成
については限定のない成分元素であるAl、W、Vおよ
びTiの含有量は0(零)であるとして算定するものと
する。以下、請求項2〜5記載の発明についてもこれと
同様とする。また、後述する実施例での比較鋼および従
来鋼についてもこれと同様とする。The present invention has been made on the basis of the above findings, and the steel material for a low distortion type carburized and quenched gear according to the first aspect of the present invention is characterized in that: C: 0.10 to 0.35 wt.%, Si: 0.50 to 2.5
wt.%, Mn: 0.20-2.50 wt.%, Cr: 0.01-2.50 wt.%, and Mo: 0.01-0.70 wt.%, with the balance being a chemical composition consisting of iron and unavoidable impurities And the following
(1) Formula: Ac 3 = 920-203 √C + 44.7Si + 31.5Mo-30Mn-11Cr + 40Al + 13.1W + 104V + 40Ti ------------ Calculated by (1) Ac 3- point parameter is 850 to 960
(2) Equation: D I = 7.95√C (1 + 0.70Si) (1 + 3.3Mn) (1 + 2.16Cr) (1 + 3.0Mo) (1 + 5.0V)- ----------- The ideal critical diameter (D I ) calculated by (2) is 30-250mm
A steel material having a chemical composition within the range of, wherein the steel material is subjected to a carburizing treatment within a temperature range of 850 to 1000 ° C., and then subjected to a quenching treatment within a temperature range of 800 to 950 ° C. Then, it is characterized in that the structure of the non-carburized part of the steel material obtained as described above is subjected to a tempering treatment and is a two-phase structure composed of martensite containing 10 to 70 area% of ferrite. Is. In the present invention, the Ac 3 point parameter and the ideal critical diameter are calculated by the above equations (1) and (2).
When calculating (D I ), there are terms related to a predetermined component element on the right side of the formulas (1) and (2), but the chemical component composition is not limited, but Al, W, V The content of Ti and Ti shall be calculated as 0 (zero). Hereinafter, the same applies to the second to fifth aspects of the present invention. The same applies to comparative steels and conventional steels in examples described later.
【0018】請求項2記載の発明の低歪み型浸炭焼入れ
歯車用鋼材は、請求項1記載の歯車用鋼材に、更に付加
的に、下記化学成分組成からなる群: タングステン(W) :0.01〜0.70wt.%、および、 バナジウム(V) :0.01〜1.0 wt.% から選んだ少なくとも1つの元素を含有しているもので
ある。The steel material for a low distortion type carburized and quenched gear according to the second aspect of the present invention further includes, in addition to the steel material for a gear according to the first aspect, a group consisting of the following chemical components: tungsten (W): 0.01 to 0.70 wt.% And Vanadium (V): It contains at least one element selected from 0.01 to 1.0 wt.%.
【0019】請求項3記載の発明の低歪み型浸炭焼入れ
歯車用鋼材は、請求項1記載の発明の歯車用鋼材に、更
に付加的に、下記化学成分組成からなる群: アルミニウム(Al):0.005 〜2.0 wt.%、 チタン(Ti) :0.005 〜1.0 wt.%、 ニオブ(Nb) :0.005 〜0.50wt.%、および、 ジルコニウム(Zr):0.005 〜0.50wt.% から選んだ少なくとも1つの元素を含有しているもので
ある。The steel material for a low-strain type carburized and quenched gear according to the third aspect of the present invention further includes, in addition to the steel material for a gear according to the first aspect, a group consisting of the following chemical components: aluminum (Al): 0.005 to 2.0 wt.%, Titanium (Ti): 0.005 to 1.0 wt.%, Niobium (Nb): 0.005 to 0.50 wt.%, And zirconium (Zr): at least one selected from 0.005 to 0.50 wt.% It contains an element.
【0020】請求項4記載の発明の低歪み型浸炭焼入れ
歯車用鋼材は、請求項1記載の発明の歯車用鋼材に、更
に付加的に、下記化学成分組成からなる群: タングステン(W) :0.01〜0.70wt.%、および、 バナジウム(V) :0.01〜1.0 wt.% から選んだ少なくとも1つの元素、並びに、 下記化学成分組成からなる群: アルミニウム(Al):0.005 〜2.0 wt.%、 チタン(Ti) :0.005 〜1.0 wt.%、 ニオブ(Nb) :0.005 〜0.50wt.%、および、 ジルコニウム(Zr):0.005 〜0.50wt.% から選んだ少なくとも1つの元素を含有しているもので
ある。The steel material for a low distortion type carburized and quenched gear according to the fourth aspect of the present invention is a steel material for a gear according to the first aspect of the present invention, and further includes a group consisting of the following chemical components: tungsten (W): 0.01 to 0.70 wt.%, And vanadium (V): at least one element selected from 0.01 to 1.0 wt.%, And a group consisting of the following chemical components: aluminum (Al): 0.005 to 2.0 wt.%, Containing at least one element selected from titanium (Ti): 0.005 to 1.0 wt.%, Niobium (Nb): 0.005 to 0.50 wt.%, And zirconium (Zr): 0.005 to 0.50 wt.% It is.
【0021】請求項5記載の発明の低歪み型浸炭焼入れ
歯車用鋼材は、請求項1から4記載の発明の低歪み型浸
炭焼入れ歯車用鋼材のいずれか1つにおいて、前記理想
臨界直径 (DI ) が、30〜150 mmの範囲内にあることに
特徴を有するものである。According to a fifth aspect of the present invention, there is provided a steel material for a low distortion type carburized and quenched gear according to any one of the first to fourth aspects of the present invention, wherein the ideal critical diameter (D I ) is in the range of 30 to 150 mm.
【0022】[0022]
【発明の実施の形態】この発明によれば、Ac3変態温度
を高め、且つ焼入れ性を向上させる元素であるSi、Moお
よびV 、並びに、Ac3変態温度を高めるAl、TiおよびW
の含有量を増加させることによって、浸炭焼入れ処理に
より容易にフェライト・マルテンサイト二相組織とする
ことができ、フェライトがマルテンサイトの膨張歪みを
吸収することによって、焼入れ歪み量が大幅に減少し、
更に、焼入れ時の歯車の芯部(以下、「歯車芯部」とい
う。図4参照)の硬さも十分に確保できるので、従来鋼
と遜色のない疲労強度が得られる。According to the present invention, Si, Mo and V, which are elements for increasing the Ac 3 transformation temperature and improving the hardenability, and Al, Ti and W for increasing the Ac 3 transformation temperature.
By increasing the content of quenching, it is possible to easily form a ferrite-martensite two-phase structure by carburizing and quenching, and the ferrite absorbs the expansion strain of martensite, thereby significantly reducing the amount of quenching strain,
Furthermore, the hardness of the core of the gear during quenching (hereinafter referred to as "gear core"; see FIG. 4) can be sufficiently ensured, so that fatigue strength comparable to that of conventional steel can be obtained.
【0023】また、自動車の歯車においては、歯元疲労
強度の向上を目的として、ショットピーニング処理が施
されることが多いが、本発明鋼材によれば、表面の粒界
酸化層の形成が抑制され、且つ、焼入れ不良組織が発生
しないので、ショットピーニング処理を施した場合、表
面粗さが劣化することなく歯元疲労強度が増加する。更
に、Si、Mo、W 、V によって焼戻し軟化抵抗が増大して
面疲労強度が向上する。In addition, in the case of automobile gears, shot peening is often performed for the purpose of improving the root fatigue strength. However, according to the steel material of the present invention, the formation of a grain boundary oxide layer on the surface is suppressed. In addition, since no quenching defective structure is generated, when the shot peening treatment is performed, the tooth root fatigue strength increases without deteriorating the surface roughness. Further, the tempering softening resistance is increased by Si, Mo, W, and V, and the surface fatigue strength is improved.
【0024】このように、この発明においては、鋼材中
の各元素は種々の作用効果を発揮すし、鋼材に含有され
るべき化学成分元素は必須成分と選択成分からなる。そ
して、選択成分を2グループに分けた。選択成分として
のWおよびVの作用効果の内、焼入れ性向上において共
通するので第1のグループにし、また、Al、Ti、N
bおよびZrを結晶粒微細化による焼入れ歪み抑制にお
いて共通するので第2のグループにした。As described above, in the present invention, each element in the steel material exerts various functions and effects, and the chemical component elements to be contained in the steel material include essential components and selected components. Then, the selected components were divided into two groups. Among the functions and effects of W and V as selective components, they are common in improving hardenability, so they are classified into the first group.
Since b and Zr are common in suppressing quenching distortion by refining crystal grains, they are included in the second group.
【0025】次に、この発明の浸炭焼入れ歯車用鋼材の
化学成分組成を、上述した範囲内に限定した理由につい
て、以下に述べる。 (1) 炭素(C) 炭素は、浸炭焼入れによる歯車芯部の強度を保証する上
で必要な基本的元素であり、その作用を発揮させるため
には、0.10 wt.%以上含有していることが必要であり、
0.10 wt.%未満では、有効な浸炭硬化層深さを得るため
には長時間を要するので工業的には不可である。しかし
ながら、炭素含有量が0.35 wt.%を超えると靱性の劣化
および被削性の低下を招く。従って、炭素含有量を、0.
10〜0.35%の範囲内に限定すべきである。Next, the reason why the chemical composition of the steel material for carburized and quenched gears of the present invention is limited to the above range will be described. (1) Carbon (C) Carbon is a basic element necessary for ensuring the strength of the gear core by carburizing and quenching, and it must be contained at least 0.10 wt.% In order to exert its effect. Is required,
If the content is less than 0.10 wt.%, It takes a long time to obtain an effective carburized hardened layer depth, so that it is industrially impossible. However, when the carbon content exceeds 0.35 wt.%, Toughness is deteriorated and machinability is lowered. Therefore, the carbon content, 0.
It should be limited to the range of 10-0.35%.
【0026】(2) シリコン(Si) シリコンは、この発明において下記の通り重要な役目を
果たす元素である。即ち、シリコンは、表面層の粒界酸
化の防止に有効であり、フェライト形成元素であり、A
c3変態点を高めるのに有効であり、且つ、比較的安価な
元素である。更に、焼戻し軟化抵抗を増大させて、面疲
労強度を向上させる。しかしながら、シリコン含有量が
0.50 wt.%未満では、浸炭処理時に浸炭ガス中に不可避
的に存在する微量酸素と結合する表層のシリコン濃度が
低過ぎるために、上記微量酸素が鋼材の深部まで侵入し
て、粒界酸化層が著しく深くなる結果、疲労強度の低下
を招く。一方、シリコン含有量が2.5 wt. %を超えて過
剰になると、フェライト量が多くなり過ぎて、強度およ
び靱性が低下するのみならず、Si02系の非金属介在物が
増加する結果、逆に疲労強度の低下を招く。従って、シ
リコン含有量を、0.50〜2.5 wt.%の範囲内に限定すべ
きである。(2) Silicon (Si) Silicon is an element that plays an important role in the present invention as described below. That is, silicon is effective in preventing grain boundary oxidation of the surface layer, is a ferrite forming element,
c 3 It is effective for raising the transformation point and is a relatively inexpensive element. Further, the tempering softening resistance is increased to improve the surface fatigue strength. However, the silicon content
If the content is less than 0.50 wt.%, The concentration of silicon in the surface layer which is inevitably present in the carburizing gas during the carburizing process is too low. As a result, the fatigue strength is reduced. On the other hand, when the silicon content is excessively beyond 2.5 wt.%, Too much ferrite amount, not only the strength and toughness is decreased, Si0 2 system results nonmetallic inclusions increases, and conversely This leads to a decrease in fatigue strength. Therefore, the silicon content should be limited to the range of 0.50-2.5 wt.%.
【0027】(3) マンガン(Mn) マンガンは、焼入れ性を向上させ、そして歯車芯部の強
度を確保するのに有効な元素であり、その作用を発揮さ
せるためには、0.20 wt.%以上含有させることが必要で
ある。しかしながら、マンガンにはAc3変態点を大きく
低下させる作用があるので、その含有量が2.50 wt.%を
超えて多量になると、マルテンサイトおよびフェライト
の二相組織が得られなくなるだけでなく、硬度が高くな
り過ぎ、被削性の劣化を招く。従って、マンガン含有量
を、0.20〜2.50 wt.%の範囲内に限定すべきである。(3) Manganese (Mn) Manganese is an element effective for improving the hardenability and ensuring the strength of the gear core. In order to exert its effect, manganese is required to be 0.20 wt.% Or more. It is necessary to contain it. However, since manganese has an effect of greatly lowering the Ac 3 transformation point, if its content exceeds 2.50 wt.%, Not only does it become impossible to obtain a two-phase structure of martensite and ferrite, but also it becomes harder. Becomes too high, leading to deterioration of machinability. Therefore, the manganese content should be limited to the range of 0.20-2.50 wt.%.
【0028】(4) クロム(Cr) クロムは、マンガンと同様に焼入れ性を向上させるのに
有効な元素であり、その作用を発揮させるためには0.01
wt.%以上含有させることが必要である。しかしなが
ら、クロムにはマンガンと同様にAc3変態点を低下させ
る作用があるので、その含有量が2.50 wt.%を超えて多
量になると、マルテンサイトおよびフェライトの二相組
織が得られなくなるだけでなく、硬度が高くなり過ぎ、
被削性の劣化を招く。従って、クロム含有量を、0.01〜
2.50 wt.%の範囲内に限定すべきである。(4) Chromium (Cr) Chromium, like manganese, is an element effective in improving the hardenability, and 0.01% is necessary to exert its action.
It is necessary to contain at least wt.%. However, chromium has the effect of lowering the Ac 3 transformation point like manganese. Therefore, if its content exceeds 2.50 wt.%, The two-phase structure of martensite and ferrite cannot be obtained any more. No, the hardness is too high,
This leads to deterioration of machinability. Therefore, the chromium content, 0.01 ~
It should be limited to the range of 2.50 wt.%.
【0029】(5) モリブデン(Mo) モリブデンはAc3変態点を高めてフェライト生成に有効
であり、更に、焼入れ性、焼戻し軟化抵抗性、靱性およ
び疲労強度を向上させるのに有効な元素であり、その作
用を発揮させるためには0.01 wt.%以上含有させること
が必要である。しかしながら、モリブデンは極めて高価
な元素であり、その含有量が0.70 wt.%を超えて添加し
ても上記効果は飽和して経済的な不利を招く。従って、
モリブデン含有量を、0.01〜0.70 wt.%の範囲内に限定
すべきである。(5) Molybdenum (Mo) Molybdenum (Mo) is an element effective for increasing the Ac 3 transformation point and effective for ferrite formation, and for improving hardenability, temper softening resistance, toughness and fatigue strength. In order to exert its effect, it is necessary to contain 0.01 wt.% Or more. However, molybdenum is an extremely expensive element, and even if its content exceeds 0.70 wt.%, The above effect is saturated and causes economic disadvantage. Therefore,
Molybdenum content should be limited to the range of 0.01-0.70 wt.%.
【0030】(6) タングステン(W) タングステンは、モリブデンと同様にAc3変態点を高め
てフェライト生成に有効であり、また、焼戻し軟化抵抗
を増大させて、面疲労強度を向上させ、更に、靱性およ
び歯元疲労強度を向上させるのに有効な元素であり、そ
の作用を発揮させるためには、0.01 wt.%以上含有させ
ることが必要である。しかしながら、タングステンも高
価な元素であり、その含有量が0.70 wt.%を超えて添加
しても、効果の割りには経済的な不利を招く。従って、
タングステン含有量を、0.01〜0.70 wt.%の範囲内に限
定すべきである。なおタングステンとモリブデンを併用
して添加する場合にはその総量は0.70 wt.%以下とする
のが望ましい。0.70 wt.%を超える場合には浸炭焼入れ
歪みが大きくなって好ましくない。(6) Tungsten (W) Tungsten, like molybdenum, raises the Ac 3 transformation point and is effective for ferrite formation. Further, it increases temper softening resistance and improves surface fatigue strength. It is an element effective in improving toughness and root fatigue strength, and in order to exert its action, it is necessary to contain 0.01 wt.% Or more. However, tungsten is also an expensive element, and even if its content exceeds 0.70 wt.%, There is an economic disadvantage for its effect. Therefore,
Tungsten content should be limited to the range of 0.01 to 0.70 wt.%. When tungsten and molybdenum are added in combination, the total amount is desirably 0.70 wt.% Or less. If it exceeds 0.70 wt.%, The carburizing and quenching strain becomes large, which is not preferable.
【0031】(7) バナジウム(V) バナジウムは、Ac3変態点を高める作用が大きく、また
焼入れ性を高め歯元疲労強度を向上させ、焼戻し軟化抵
抗を増大させて、面疲労強度を向上させるのに有効な元
素であり、且つ、炭窒化物を生成し結晶粒を微細化さ
せ、焼入れ歪みを小さく抑える作用を有しており、その
作用を発揮させるためには0.01 wt.%以上含有させるこ
とが必要である。しかしながら、バナジウム含有量が1.
0 wt.%を超えると、その効果が飽和し経済的な不利を
招くばかりか、炭窒化物の量が多くなって靱性の低下を
招く。従って、バナジウム含有量を、0.01〜1.0 wt.%
の範囲内に限定すべきである。(7) Vanadium (V) Vanadium has a large effect of increasing the transformation point of Ac 3 , and also enhances hardenability, improves root fatigue strength, increases temper softening resistance, and improves surface fatigue strength. In addition, it has the effect of forming carbonitrides, making crystal grains finer, and suppressing quenching distortion. To exert the effect, the content is 0.01 wt.% Or more. It is necessary. However, vanadium content is 1.
When the content exceeds 0 wt.%, The effect is saturated and not only economical disadvantages are caused, but also the amount of carbonitrides is increased and the toughness is reduced. Therefore, the vanadium content is reduced to 0.01 to 1.0 wt.
Should be limited within the range.
【0032】(8) アルミニウム(Al) アルミニウムは窒素と結合してAlN を生成し、結晶粒を
微細化させることにより、焼入れ時の歪みを小さくする
上、靱性および疲労強度を向上させるのに有効な元素で
ある。このためには0.005wt.%以上含有していることが
必要である。またアルミニウムはシリコンと同様にフェ
ライト形成元素であり、経済的にAc3変態点を大きく高
めることができる。しかしながら、アルミニウム含有量
が2.0 wt.%を超えて多量になるとアルミナ系介在物が
増加して、靱性および疲労強度の低下を招く。従って、
アルミニウム含有量を、0.005 〜2.0wt.%の範囲内に限
定すべきである。また、シリコンとアルミニウムを併用
する場合には、鋼の清浄性、靱性を確保するため、その
総量は2.6wt.%以下に規制することが望ましい。(8) Aluminum (Al) Aluminum combines with nitrogen to form AlN, and by making crystal grains finer, reduces distortion during quenching and is effective in improving toughness and fatigue strength. Element. For this purpose, it must be contained at 0.005 wt.% Or more. Aluminum, like silicon, is a ferrite-forming element and can significantly increase the Ac 3 transformation point economically. However, when the aluminum content exceeds 2.0 wt.% And becomes large, the amount of alumina-based inclusions increases, and the toughness and fatigue strength decrease. Therefore,
The aluminum content should be limited to the range of 0.005 to 2.0 wt.%. When silicon and aluminum are used together, the total amount is desirably regulated to 2.6 wt.% Or less in order to ensure the cleanliness and toughness of the steel.
【0033】(9) チタン(Ti) チタンもフェライト形成元素であり、Ac3変態点を高め
る作用が大きく、またオーステナイト結晶粒を微細化す
るのに有効な元素であり、且つ、浸炭部および歯内部の
降伏強度を高めて、疲労強度の向上に寄与する作用を有
しており、その効果を発揮させるためには、0.005wt.%
以上含有させることが必要である。しかしながら、チタ
ン含有量が1.0wt.%を超えると、その効果が飽和し経済
的な不利を招くばかりか、炭窒化物の量が多くなり過ぎ
て靱性の低下を招く。従って、チタン含有量を、0.005
〜1.0wt.%の範囲内に限定すべきである。(9) Titanium (Ti) Titanium is also a ferrite-forming element, has a large effect of increasing the transformation point of Ac 3 , is an element effective in refining austenite crystal grains, and has a carburized part and a tooth. It has the effect of increasing the internal yield strength and contributing to the improvement of fatigue strength. To achieve this effect, 0.005 wt.%
It is necessary to contain the above. However, when the titanium content exceeds 1.0 wt.%, The effect is saturated and not only economical disadvantages are caused, but also the amount of carbonitride becomes excessively large, and the toughness is reduced. Therefore, the titanium content, 0.005
It should be limited to the range of ~ 1.0 wt.%.
【0034】(10)ニオブ(Nb) ニオブもオーステナイト結晶粒を微細化するのに有効な
元素であり、その作用を発揮させるためには0.005wt.%
以上含有させることが必要である。しかしながら、ニオ
ブ含有量が 0.50wt. %を超えると、その効果が飽和し
経済的な不利を招くばかりか、炭窒化物の量が多くなっ
て靱性の低下を招く。従って、ニオブ含有量を、0.005
〜0.50wt. %の範囲内に限定すべきである。(10) Niobium (Nb) Niobium is also an effective element for refining austenite crystal grains, and in order to exhibit its effect, 0.005 wt.
It is necessary to contain the above. However, when the niobium content exceeds 0.50 wt.%, The effect is saturated and not only economical disadvantages are caused, but also the amount of carbonitrides is increased and the toughness is reduced. Therefore, the niobium content is 0.005
It should be limited to the range of ~ 0.50 wt.%.
【0035】(11)ジルコニウム(Zr) ジルコニウムもチタン、ニオブと同様にオーステナイト
結晶粒を微細化するのに有効な元素であり、その作用を
発揮させるためには0.005wt.%以上含有させることが必
要である。しかしながら、ジルコニウム含有量が0.50w
t. %を超えると、その効果が飽和し経済的な不利を招
くばかりか、炭窒化物の量が多くなって靱性の低下を招
く。従ってジルコニウム含有量を、0.005 〜0.50 wt.%
の範囲内に限定すべきである。(11) Zirconium (Zr) Zirconium, like titanium and niobium, is also an effective element for refining austenite crystal grains. In order to exhibit its effect, it is necessary to contain at least 0.005 wt.%. is necessary. However, the zirconium content is 0.50w
If the content exceeds t.%, the effect is saturated and economic disadvantages are caused. In addition, the amount of carbonitride is increased and the toughness is reduced. Therefore, the zirconium content is reduced from 0.005 to 0.50 wt.%
Should be limited within the range.
【0036】なお、本発明鋼中には、不可避不純物とし
てのP、CuおよびO含有量は、できるだけ低い方が望
ましい。また、Nは結晶粒を微細化させる目的で、必要
に応じて、0.20wt. %までは添加が許される。また被削
性を向上させるために、必要に応じて、S、Pb、Ca
およびSe等の快削元素を含有させてもよい。The contents of P, Cu and O as unavoidable impurities in the steel of the present invention are desirably as low as possible. N is added for the purpose of refining crystal grains, if necessary, up to 0.20 wt.%. In order to improve machinability, S, Pb, Ca
And a free-cutting element such as Se.
【0037】(12)Ac3点パラメーター: 従来の常法によ
る浸炭処理における熱処理パターン例を、図5に示す。
歯車用鋼材を920℃で浸炭し、炭素を鋼の内部に拡散
させた後、歪みを低減するため浸炭温度より低温の85
0℃に保持し、次いで、オイル等で急冷して焼入れをす
る。従って、歯車用鋼材の下記(1) 式によって算出され
るAc3点パラメーターが850 ℃未満では、浸炭後に85
0℃に保持しても、オーステナイト中にフェライトを確
保することができない。一方、上記Ac3点パラメーター
が960 ℃を超えると、オ−ステナイト中のフェライト量
が過剰になり、歯車芯部の強度が不足する。従って、本
発明鋼の下記(1) 式: Ac3 =920-203 √C+44.7Si+31.5Mo-30Mn-11Cr+40Al+13.1W+104V+40Ti ------------ (1) によって算出されるAc3点パラメーターを、850 〜960
℃の範囲内に限定すべきである。(12) Ac 3- point parameter: FIG. 5 shows an example of a heat treatment pattern in a conventional carburizing process by a conventional method.
After carburizing the gear steel at 920 ° C. and diffusing the carbon into the steel, 85% lower than the carburizing temperature to reduce distortion.
It is kept at 0 ° C. and then quenched by quenching with oil or the like. Therefore, if the Ac 3 point parameter calculated by the following equation (1) for steel for gears is less than 850 ℃, 85 after carburization
Even at 0 ° C., ferrite cannot be secured in austenite. On the other hand, when the above Ac 3 point parameter exceeds 960 ° C, the amount of ferrite in austenite becomes excessive and the strength of the gear core becomes insufficient. Accordingly, the following formula (1) of the steel of the present invention: Ac 3 = 920-203 √C + 44.7Si + 31.5Mo-30Mn-11Cr + 40Al + 13.1W + 104V + 40Ti ----------- -The Ac three- point parameter calculated by (1) is
It should be limited to within the range of ° C.
【0038】(13)理想臨界直径 (DI ):理想臨界直径
(DI ) は鋼の焼入れ性を表わす値である。一般的に、
鋼材が鋼材製品として使用されるときに要求される鋼材
製品のオーステナイト粒度番号は、8番であり、浸炭焼
入れ歯車においても同じである。所望の疲労強度を確保
するためには、オーステナイト粒度番号が8番のときの
鋼材の理想臨界直径 (DI) の算出式である下記(2)
式: DI =7.95√C(1+0.70Si)(1+3.3Mn)(1+2.16Cr)(1+3.0Mo)(1+5.0V) ------------(2) により算出される理想臨界直径 (DI ) 値が30mm以上で
あることを必要とする。一方、上記理想臨界直径
(DI ) 値が250mm を超えると、オーステナイト組織中
に混在しているフェライトによるマルテンサイトの変態
歪みの吸収効果が無くなり、焼入れ歪みが大きくなる。
従って、オーステナイト粒度番号を8番として、上記
(2) 式により算出される理想臨界直径 (DI ) 値が、30
〜250 mmの範囲内になるように歯車の化学成分組成を限
定すべきである。そして、焼入れ歪みを更に小さくする
ためには、その値を30〜150mm の範囲内に限定すること
が望ましい。なお、オーステナイト粒度番号が8番以外
のときには、その粒度番号に応じて上記(2)式の右辺
の係数が定まるので、オーステナイト粒度番号に応じた
DIの算出式を用いた算定値が、上述した範囲内になる
ように歯車の化学成分組成を限定すべきである。(13) Ideal Critical Diameter (D I ): Ideal Critical Diameter
(D I ) is a value representing the hardenability of steel. Typically,
The austenitic grain size number of the steel product required when the steel product is used as the steel product is No. 8, which is the same for carburized and quenched gears. In order to secure the desired fatigue strength, the following formula (2) is used to calculate the ideal critical diameter (D I ) of the steel when the austenite grain size number is 8.
Formula: D I = 7.95√C (1 + 0.70Si) (1 + 3.3Mn) (1 + 2.16Cr) (1 + 3.0Mo) (1 + 5.0V) ------------ The ideal critical diameter (D I ) value calculated by (2) needs to be 30 mm or more. On the other hand, the above ideal critical diameter
If the (D I ) value exceeds 250 mm, the effect of absorbing the transformation strain of martensite due to the ferrite mixed in the austenite structure is lost, and the quenching strain increases.
Therefore, the austenite particle size number was set to 8
The ideal critical diameter (D I ) value calculated by the equation (2) is 30
The chemical composition of the gear should be limited to within the range of ~ 250 mm. In order to further reduce the quenching distortion, it is desirable to limit the value to a range of 30 to 150 mm. Note that when the austenite grain size number is other than No. 8, since the coefficient of the right side of equation (2) is determined in accordance with the grain size number, calculated value using the calculation formula for D I corresponding to the austenite grain size number is, above The chemical composition of the gear should be limited so as to fall within the above range.
【0039】浸炭焼入れ温度について 次に、鋼材に対する浸炭温度は、容易に、且つ、効率的
に浸炭処理を行なうことができる温度にすべきである。
浸炭温度が850℃未満では、Cの拡散速度が遅く、所
望の浸炭深さを得るのに長時間を要する。一方、浸炭温
度が1000℃を超えると、結晶粒が粗大化し易く、且
つ、鋼材表面の酸化が著しくなる結果、面疲労特性が低
下する。従って、浸炭温度を、850〜1000℃の範
囲内に限定すべきである。Regarding Carburizing and Quenching Temperature Next, the carburizing temperature for the steel material should be a temperature at which the carburizing treatment can be performed easily and efficiently.
When the carburizing temperature is lower than 850 ° C., the diffusion rate of C is low, and it takes a long time to obtain a desired carburizing depth. On the other hand, if the carburizing temperature exceeds 1000 ° C., the crystal grains are likely to become coarse and the oxidation of the surface of the steel material becomes remarkable, so that the surface fatigue characteristics are reduced. Therefore, the carburizing temperature should be limited to the range of 850-1000 ° C.
【0040】浸炭処理後に行なう焼入れ温度が、800
℃未満では、上記浸炭炉の炉温をその温度まで低下させ
るのに長時間を要する。一方、焼入れ温度が950℃を
超えると、焼入れ後に得られるマルテンサイト組織中の
フェライト面積%を所望の値に確保することが困難とな
り、また、焼入れ歪み量も大きくなる。従って、焼入れ
温度は、800〜950℃の範囲内に限定すべきであ
る。The quenching temperature after carburizing is 800
If the temperature is lower than 0 ° C, it takes a long time to lower the furnace temperature of the carburizing furnace to that temperature. On the other hand, when the quenching temperature exceeds 950 ° C., it becomes difficult to secure the ferrite area% in the martensite structure obtained after quenching to a desired value, and the amount of quenching distortion increases. Therefore, the quenching temperature should be limited to the range of 800 to 950C.
【0041】歯内部の組織 (非浸炭部の組織) のフェラ
イト量について 浸炭焼入れ・焼戻し後の非浸炭部である歯内部の組織の
フェライト量が、10%未満ではマルテンサイトの変態歪
みを十分に吸収することができず、焼入れ歪み量を小さ
く抑制することができない。一方、上記フェライト量が
70%を超えると、歯内部において所望の強度および靱性
を確保することが困難になる。従って、歯内部の組織の
フェライト量を、10〜70%の範囲内に限定すべきであ
る。なお、この時、マルテンサイトには残留オーステナ
イトおよび/またはベイナイトを一部含んでいてもよ
い。About the amount of ferrite in the structure inside the tooth (structure in the non-carburized portion) When the amount of ferrite in the structure inside the tooth, which is the non-carburized portion after carburizing and tempering, is less than 10%, the transformation strain of martensite is sufficiently reduced. It cannot be absorbed and the amount of quenching distortion cannot be suppressed to a small value. On the other hand,
If it exceeds 70%, it becomes difficult to secure desired strength and toughness inside the tooth. Therefore, the amount of ferrite in the tissue inside the tooth should be limited to the range of 10-70%. At this time, martensite may partially contain retained austenite and / or bainite.
【0042】[0042]
【実施例】次に、この発明を、実施例により比較例と対
比し、更に詳細に説明する。表1および2に示す本発明
の条件(化学成分組成、Ac3点パラメーター、理想臨界
直径(DI )、浸炭温度、焼入れ温度、および、浸炭焼
入れ・焼戻し後の非浸炭部のフェライト面積%)の範囲
内である本発明鋼No.1〜18、並びに、表3に示す本
発明の範囲外の条件である比較鋼のNo.1〜5、およ
び、従来鋼No.1〜4の供試鋼用インゴットを調製し
た。Next, the present invention will be described in more detail with reference to examples and comparative examples. Conditions of the present invention shown in Tables 1 and 2 (chemical composition, Ac three- point parameter, ideal critical diameter (D I ), carburizing temperature, quenching temperature, and ferrite area% of non-carburized portion after carburizing, quenching and tempering) Of the steel Nos. 1 to 18 of the present invention within the range of the present invention, and Nos. 1 to 5 of the comparative steels and the conventional steel Nos. An ingot for steel was prepared.
【0043】[0043]
【表1】 [Table 1]
【0044】[0044]
【表2】 [Table 2]
【0045】[0045]
【表3】 [Table 3]
【0046】[0046]
【表4】 [Table 4]
【0047】比較鋼No. 1はMo含有量が本発明の範囲
を超えて多い鋼、比較鋼No. 2はSi含有量が本発明の
範囲を超えて多く、Ac3点パラメーターが965 ℃と高い
鋼、比較鋼No. 3はWおよびZr含有量が本発明の範囲
を超えて多く、理想臨界直径(DI )も本発明の囲を超
えて高い鋼、比較鋼No. 4はMn含有量が本発明の範囲
を超えて多く、Ac3点パラメーターが840 ℃と低い鋼で
ある。比較鋼No. 5はV含有量が本発明の範囲を超えて
多い鋼である。Comparative steel No. 1 has a high Mo content exceeding the range of the present invention, and comparative steel No. 2 has a high Si content exceeding the range of the present invention, and has an Ac three- point parameter of 965 ° C. The high steel, comparative steel No. 3 has a high W and Zr content beyond the scope of the present invention, and the ideal critical diameter (D I ) is high beyond the scope of the present invention, and the comparative steel No. 4 has a high Mn content. This is a steel whose amount is large beyond the scope of the present invention and whose Ac three- point parameter is as low as 840 ° C. Comparative steel No. 5 is a steel having a high V content beyond the scope of the present invention.
【0048】従来鋼No. 1〜4は従来のJIS鋼種であ
って、従来鋼No. 1はJIS SMnC420であり、従来鋼No.
2はJIS SCM420であり、従来鋼No. 3はJIS SNCM420 で
あり、従来鋼No. 4はJIS SCM435であって、いずれもS
i含有量およびAc3点パラメーターが本発明の範囲を外
れて少ない鋼である。Conventional steel Nos. 1 to 4 are conventional JIS steel types, conventional steel No. 1 is JIS SMnC420, and conventional steel No.
No. 2 is JIS SCM420, conventional steel No. 3 is JIS SNCM420, conventional steel No. 4 is JIS SCM435, and both are S
It is a steel in which the i content and the Ac 3 point parameter are out of the scope of the present invention.
【0049】上記本発明鋼、比較鋼および従来鋼のイン
ゴットを熱間圧延して、直径20〜90mmの丸棒鋼を調製
し、得られた丸棒鋼に対し焼準処理を施した。焼準処理
後の丸棒鋼から、焼入れ歪み試験片および疲労試験片を
採取した。各試験片に対し浸炭焼入れ・焼戻し処理を施
した後、浸炭焼入れ歪み量、回転曲げ疲労特性および歯
車疲労特性を試験した。更に、焼準後の20mmの丸棒鋼に
ついて、浸炭焼入れ・焼戻しを行なった後、引張試験片
および衝撃試験片を採取し、強度および靱性を試験し
た。各試験方法は下記の通りである。なお、焼入れ温度
での保持時間はすべて0.5Hrで油焼入れをし、ま
た、焼戻しはすべて160℃×2Hrで行なった。The ingots of the steel of the present invention, the comparative steel and the conventional steel were hot-rolled to prepare round steel bars having a diameter of 20 to 90 mm, and the obtained round steel bars were subjected to normalizing treatment. From the round bar after the normalizing treatment, a quenched strain test piece and a fatigue test piece were collected. After subjecting each specimen to carburizing and quenching / tempering, the amount of carburizing and quenching, the rotational bending fatigue property, and the gear fatigue property were tested. Furthermore, after the normalizing round bar steel of 20 mm was subjected to carburizing and quenching and tempering, a tensile test piece and an impact test piece were sampled and tested for strength and toughness. Each test method is as follows. The holding time at the quenching temperature was 0.5 hr for oil quenching, and the tempering was 160 ° C. × 2 hr.
【0050】(1) 浸炭焼入れ歪み量:直径65mmの丸棒鋼
から、ネイビーC試験片を調製した。図1に、ネイビー
C試験片の正面図を、図2に、その側面図を示す。ネイ
ビーC試験片1は、両図に示したように、円盤状体に開
口部2および円形状空間3を有し、試験片各部の寸法
は、次のとおりである。 試験片直径(a):60mm、厚さ(b):12mm、円形状空間の直径
(c):34.8mm、開口部間隔(d):6 mm、試験片中心と開口部
円中心との距離(p):10.2mm。(1) Carburizing and quenching strain: A navy C test piece was prepared from a round steel bar having a diameter of 65 mm. FIG. 1 shows a front view of a navy C test piece, and FIG. 2 shows a side view thereof. As shown in both figures, the navy C test piece 1 has an opening 2 and a circular space 3 in a disk-shaped body, and the dimensions of each part of the test piece are as follows. Specimen diameter (a): 60mm, thickness (b): 12mm, diameter of circular space
(c): 34.8 mm, opening distance (d): 6 mm, distance (p) between the center of the test piece and the center of the opening circle: 10.2 mm.
【0051】浸炭焼入れ・焼戻し後の歪み量の測定は、
ネイビーC試験片の開口部間隔の、浸炭焼入れ前後の変
化率を測定して行なった。ネイビーC試験片による浸炭
焼入れ・焼戻し後の歪み量が、1.0 %を超えるような大
きな歪みを示す歯車用鋼材を用いて、歯車に加工し、こ
れを浸炭焼入れ・焼戻しをした場合には、大きな変形が
生じて、機械研削により歯形修正処理をしなければなら
ず、機械研削を省略することができない。歯形修正研削
を行なわず、浸炭焼入れ・焼戻しのまま歯車として使用
を可能とするためには、ネイビーC試験片における浸炭
焼入れ・焼戻し後の歪み量が、1.0 %以下であることが
必要であり、更に、歯車の形状・寸法等にかかわらず歯
形修正研削を行なわずに使用することができるために
は、0.5 %以下であることが一層望ましい。The amount of strain after carburizing and quenching is measured by
The change rate of the opening interval of the navy C test piece before and after carburizing and quenching was measured. When a gear steel is used to form a gear using a steel material having a large distortion such that the amount of strain after carburizing and quenching / tempering with a navy C test piece exceeds 1.0%, and this is carburized and quenched / tempered, Deformation occurs, and the tooth profile must be corrected by mechanical grinding, and mechanical grinding cannot be omitted. In order to be able to use as a gear with carburized quenching and tempering without performing tooth profile correction grinding, the distortion amount after carburizing quenching and tempering in the Navy C test piece must be 1.0% or less, Further, in order to be able to use the gear without performing the tooth profile correction grinding irrespective of the shape and size of the gear, the content is more preferably 0.5% or less.
【0052】上記形状のネイビーC試験片1を各供試鋼
当たり10個作製し、この試験片1に対し、浸炭・焼入れ
し、次いで、焼戻した後に、この試験片の開口部間隔
(d)の、浸炭焼入れ・焼戻し前後の変化率を測定し、
この値を浸炭焼入れ歪み量と定義した。表5〜8に、浸
炭焼入れ歪み量の試験結果、即ち、n=10の平均値お
よびバラツキを示す。Ten navy C test pieces 1 of the above-described shape were prepared for each test steel, and the test pieces 1 were carburized and quenched, and then tempered. The rate of change before and after carburizing and tempering,
This value was defined as the strain amount of carburizing and quenching. Tables 5 to 8 show test results of carburizing and quenching strain amounts, that is, average values and variations of n = 10.
【0053】[0053]
【表5】 [Table 5]
【0054】[0054]
【表6】 [Table 6]
【0055】[0055]
【表7】 [Table 7]
【0056】[0056]
【表8】 [Table 8]
【0057】(2) 非浸炭部のフェライト面積%:次に、
浸炭焼入れ歪み量測定済みの試験片を用いて、各供試鋼
の浸炭焼入れ・焼戻し後における非浸炭部のフェライト
−マルテンサイト二相組織のフェライト面積%を検鏡試
験で測定し、歯内部のフェライト面積%と定義し、この
フェライト面積%を表1〜4に示した。(2) Ferrite area% of non-carburized part:
Using the test pieces whose carburizing and quenching strains have been measured, the ferrite area% of the ferrite-martensite two-phase structure of the non-carburizing part of each sample steel after carburizing and quenching and tempering is measured by a microscopic test, and The ferrite area% was defined, and this ferrite area% is shown in Tables 1-4.
【0058】(3) 回転曲げ疲労特性:直径20mmの丸棒鋼
から、平行部直径10mmの試験片を採取し、平行部にこ
れと直角方向の深さ1mmの切り欠き( 応力集中係数α=
1.8)を全円周にわたってつけた、回転曲げ疲労試験片を
調製し、この試験片に対し、ネイビーC試験片に対して
施したと同じ条件で、浸炭焼入れ・焼戻し処理を施した
後、ショットピーニング処理 (アークハイト:0.6mmA 、
カバレージ:300%) をし、このような処理の施された試
験片に対し、小野式回転曲げ疲労試験機を使用して107
回の回転曲げ疲労試験を行い、その回転曲げ疲労強度を
測定した。表5〜8に、回転曲げ疲労強度の測定結果を
併記した。(3) Rotating bending fatigue characteristics: A test piece having a diameter of 10 mm in a parallel part was sampled from a round bar steel having a diameter of 20 mm, and a notch having a depth of 1 mm perpendicular to the parallel part (stress concentration coefficient α =
1.8) was applied over the entire circumference to prepare a rotating bending fatigue test piece, and the test piece was carburized and quenched and tempered under the same conditions as those applied to the navy C test piece, and then shot. Peening treatment (Arc height: 0.6mmA,
(Coverage: 300%), and the test piece subjected to such treatment was subjected to 10 7 using an Ono-type rotary bending fatigue tester.
The rotating bending fatigue test was performed twice, and the rotating bending fatigue strength was measured. Tables 5 to 8 also show the measurement results of the rotating bending fatigue strength.
【0059】(4) 歯車疲労特性、並びに、粒界酸化層深
さ、焼入れ不良層深さおよび有効硬化層深さ:直径90mm
の丸棒鋼から、切削加工によって外径75mm、歯幅10mm、
モジュール2.5 、歯数28枚の試験用歯車を調製し、上記
回転曲げ疲労特性と同じ条件で、浸炭焼入れ・焼戻しお
よびショットピーニング処理を施した後、得られた試験
片に対し、動力循環式歯車疲労試験機を使用し、回転
数:3000rpm で歯車疲労試験を行い、繰り返し数107 回
で破損しなかったトルク値を歯車の歯元強度として求め
た。表5〜8に、歯車疲労耐久トルクの試験結果、およ
び、チッピングの有無を併記した。更に、歯車疲労試験
に供した歯車から歯部を切り出して所定の試験片を調製
し、浸炭焼入れにともなう粒界酸化層深さ、焼入れ不良
層深さ、および、有効硬化層深さを測定し、これらを表
5〜8に併記した。(4) Gear fatigue characteristics, grain boundary oxide layer depth, quenched defective layer depth and effective hardened layer depth: diameter 90 mm
The outer diameter of 75mm, tooth width 10mm,
A test gear with module 2.5 and 28 teeth was prepared and subjected to carburizing and quenching / tempering and shot peening treatment under the same conditions as the above-mentioned rotational bending fatigue characteristics. Using a fatigue tester, a gear fatigue test was performed at a rotation speed of 3000 rpm, and the torque value that did not break at the number of repetitions of 10 7 was determined as the tooth root strength of the gear. Tables 5 to 8 also show the test results of the gear fatigue endurance torque and the presence or absence of chipping. Further, a tooth portion was cut out from the gear subjected to the gear fatigue test to prepare a predetermined test piece, and the depth of a grain boundary oxide layer, a hardened poor layer, and an effective hardened layer depth due to carburizing and quenching were measured. These are also shown in Tables 5 to 8.
【0060】(5) 強度および衝撃値:浸炭焼入れ・焼戻
し後の25mmφ丸棒からJIS4号引張試験片(平行部
径:14mmφ)、および、JIS3号シャルピー試験片
を調製し、引張試験および衝撃試験を行ない、それぞれ
により歯車芯部の強度、および、歯車芯部の靱性を評価
した。表5〜8に、強度および靱性の試験結果を併記し
た。(5) Strength and impact value: A JIS No. 4 tensile test piece (parallel diameter: 14 mm φ) and a JIS No. 3 Charpy test piece were prepared from a 25 mm φ round bar after carburizing and tempering, and a tensile test and an impact test were performed. The strength of the gear core and the toughness of the gear core were evaluated in each case. Tables 5 to 8 also show the strength and toughness test results.
【0061】表1〜4および表5〜8から下記事項が明
らかである。比較鋼No. 1は、Mo含有量が本発明の範
囲を超えて多く、このため焼入れ歪みが1%を超えて大
きくなってしまった。比較鋼No. 2は、Si含有量が本
発明の範囲を超えて多く、このため十分な強度を確保す
ることができず、回転曲げ疲労強度および歯車疲労耐久
トルクが低いものである。比較鋼No. 3は、W含有量が
本発明の範囲を超えて多く、また理想臨界直径(DI )
も本発明の範囲を外れて大きく、このため焼入れ歪みが
1%を超えて大きくなってしまった。またZr含有量も
本発明の範囲を外れて高く、このため衝撃値も低い。比
較鋼No. 4は、Mn含有量が本発明の範囲を超えて多
く、Ac3点パラメーターが本発明の範囲を外れて低く、
このためフェライト面積率も10%未満で、焼入れ歪み
が大きくなってしまった。比較鋼No. 5は、V含有量が
本発明の範囲を超えて多く、このため靱性、疲労強度が
低い。The following items are apparent from Tables 1 to 4 and Tables 5 to 8. In Comparative Steel No. 1, the Mo content was more than the range of the present invention, and the quenching strain was larger than 1%. Comparative steel No. 2 has a large Si content beyond the range of the present invention, and therefore cannot secure sufficient strength, and has low rotational bending fatigue strength and gear fatigue durability torque. Comparative steel No. 3 has a high W content beyond the scope of the present invention and an ideal critical diameter (D I ).
Is out of the range of the present invention, so that the quenching distortion is larger than 1%. Also, the Zr content is high outside the range of the present invention, and thus the impact value is low. Comparative steel No. 4 had a high Mn content exceeding the range of the present invention, and a low Ac three- point parameter outside the range of the present invention.
For this reason, the ferrite area ratio was less than 10%, and the quenching distortion was increased. Comparative steel No. 5 has a large V content exceeding the range of the present invention, and therefore has low toughness and fatigue strength.
【0062】また、従来鋼No.1〜4は、フェライト面
積率が 4〜7 %であって本発明の範囲を外れて少なく、
粒界酸化層深さおよび焼入れ不良層深さが大で且つ焼入
れ歪み量が大きかった。Further, in the conventional steel Nos. 1 to 4, the ferrite area ratio is 4 to 7%, which is outside the range of the present invention and is small.
The grain boundary oxide layer depth and the quenching failure layer depth were large, and the quenching strain was large.
【0063】これに対して、本発明鋼No.1〜18は、
従来鋼に比べ粒界酸化層が大幅に低減し、焼入れ不良層
が全く認められず、且つ、浸炭焼入れ特性である、浸炭
の有効硬化層深さ並びに歯車芯部の強度および歯車芯部
の衝撃値は、従来鋼と同等ないし同等以上であり、更
に、フェライトの面積率が本発明の範囲内の11〜69
%のフェライト・マルテンサイト二相組織となっている
ので、焼入れ歪み量は0〜1%の範囲内と小さく、ロッ
ト内のバラツキも少なかった。図3に、本発明鋼および
従来鋼の理想臨界直径(DI )と浸炭焼入れ歪み量との
関係を示す。同図より明らかなように、本発明により歯
車の熱処理歪みは著しく低減され、歪みは0から従来鋼
の40%程度にまで小さくなっているのが判る。On the other hand, the steels Nos. 1 to 18 of the present invention are:
Compared with conventional steel, the grain boundary oxide layer is significantly reduced, no hardened layer is observed at all, and the effective hardened carburized layer depth, the strength of the gear core and the impact of the gear core are carburizing and quenching characteristics. The value is equal to or higher than that of the conventional steel, and the area ratio of ferrite is 11 to 69 within the range of the present invention.
% Of ferrite-martensite two-phase structure, the quenching strain amount was as small as in the range of 0 to 1%, and there was little variation among lots. FIG. 3 shows the relationship between the ideal critical diameter (D I ) of the steel of the present invention and the conventional steel and the strain of carburizing and quenching. As is apparent from the figure, the heat treatment distortion of the gear is significantly reduced by the present invention, and the distortion is reduced from 0 to about 40% of the conventional steel.
【0064】更に、明らかなように、比較鋼No.2、3
および5、並びに、従来鋼No.1〜4は、低トルク領域
で歯面にチッピングが発生した。これに対して本発明鋼
No.1〜18は、従来鋼よりも優れた疲労強度および歯
元強度を有しており、且つ、焼入れ不良層がなく、Si
含有量の増加によって、焼戻し軟化抵抗が高くなり、チ
ッピングが発生せず、面圧強度も強化された。Further, as is apparent, the comparative steel Nos.
And 5, and the conventional steel Nos. 1 to 4, chipping occurred on the tooth surface in the low torque region. On the other hand, the steels Nos. 1 to 18 of the present invention have better fatigue strength and tooth root strength than conventional steels, have no hardened poor layer, and
Due to the increased content, the tempering softening resistance was increased, no chipping occurred, and the surface pressure strength was enhanced.
【0065】[0065]
【発明の効果】この発明は、以上のように構成したの
で、浸炭焼入れ処理による歪み量を、従来鋼の2.4 〜3.
5 %程度に比べて、0〜1.0という小さい値に抑制す
ることが可能であり、且つ、歯元強度に優れた歯車用鋼
材を、通常の浸炭焼入れ処理によって得ることができ、
歯形修正を施さない自動車用歯車として好適である上、
浸炭焼入れ後に歯形修正を必要とする建設機械、産業機
械等の歯車においても、浸炭焼入れ歪み量を減少し得る
ので、歯形修正を施す必要がなく、従って、加工コスト
の低減および生産性の向上を図ることができる低歪み型
浸炭焼入れ歯車用鋼材を提供することができ、工業上多
くの優れた効果がもたらされる。As described above, the present invention is constructed as described above, so that the amount of strain caused by carburizing and quenching can be reduced to 2.4 to 3.
Compared to about 5%, it is possible to suppress the value to a small value of 0 to 1.0, and it is possible to obtain a gear steel material having excellent root strength by ordinary carburizing and quenching treatment,
In addition to being suitable as an automotive gear without tooth profile correction,
Even in gears of construction machines, industrial machines, and the like that require tooth shape correction after carburizing and quenching, since the amount of carburizing and quenching distortion can be reduced, it is not necessary to perform tooth shape correction, thus reducing machining costs and improving productivity. It is possible to provide a low distortion type steel material for a carburized and quenched gear that can be achieved, and many industrially excellent effects are brought about.
【図1】浸炭焼入れ歪み量を測定するための試験片の一
例(ネイビーC試験片)を示す正面図である。FIG. 1 is a front view showing an example of a test piece (a navy C test piece) for measuring the amount of strain of carburizing and quenching.
【図2】図2の側面図である。FIG. 2 is a side view of FIG. 2;
【図3】本発明鋼および従来鋼の理想臨界直径(DI )
と浸炭焼入れ歪み量との関係を示すグラフである。FIG. 3 is an ideal critical diameter (D I ) of the steel of the present invention and the conventional steel.
4 is a graph showing a relationship between the amount of carburizing and quenching distortion.
【図4】歯車の歯内部およびは表面部を説明する概略斜
視図である。FIG. 4 is a schematic perspective view illustrating the inside and the surface of the gear teeth.
【図5】従来の常法による浸炭処理および焼入れの熱処
理パターンの例を示すグラフである。FIG. 5 is a graph showing an example of a heat treatment pattern of carburizing and quenching by a conventional method.
1 ネイビーC試験片 2 開口部 3 円形状空間 4 歯内部(非浸炭部) 5 歯表面部(浸炭部) 6 歯車芯部 1 Navy C test piece 2 Opening 3 Circular space 4 Tooth inside (non-carburized part) 5 Tooth surface part (carburized part) 6 Gear core
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/28 C22C 38/28 38/38 38/38 C23C 8/22 C23C 8/22 F16H 55/06 F16H 55/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location C22C 38/28 C22C 38/28 38/38 38/38 C23C 8/22 C23C 8/22 F16H 55 / 06 F16H 55/06
Claims (5)
℃の範囲内にあり、下記(2) 式: DI =7.95√C(1+0.70Si)(1+3.3Mn)(1+2.16Cr)(1+3.0Mo)(1+5.0V) ------------ (2) によって算出される理想臨界直径 (DI ) が30〜250mm
の範囲内にある化学成分組成を有する鋼材であって、 前記鋼材に対して、温度850〜1000℃の範囲内で
浸炭処理を施し、次いで、温度800〜950℃の範囲
内で焼入れ処理を施し、そして、次いで、焼戻し処理を
施し、このようにして得られた前記鋼材の非浸炭部の組
織が、フェライトを10〜70面積%含むマルテンサイ
トよりなる二相組織であることを特徴とする、低歪み型
浸炭焼入れ歯車用鋼材。1. Carbon (C): 0.10 to 0.35 wt.%, Silicon (Si): 0.50 to 2.5 wt.%, Manganese (Mn): 0.20 to 2.50 wt.%, Chromium (Cr): 0.01 to 2.50 wt. %, Molybdenum (Mo): 0.01 to 0.70 wt.%, And the balance: has a chemical composition of iron and unavoidable impurities, and has the following formula (1): Ac 3 = 920-203 AcC + 44.7Si + 31.5Mo-30Mn-11Cr + 40Al + 13.1W + 104V + 40Ti ------------ Ac three- point parameter calculated by (1) is 850 to 960
(2) Equation: D I = 7.95√C (1 + 0.70Si) (1 + 3.3Mn) (1 + 2.16Cr) (1 + 3.0Mo) (1 + 5.0V)- ----------- The ideal critical diameter (D I ) calculated by (2) is 30-250mm
A steel material having a chemical composition within the range of, wherein the steel material is subjected to a carburizing treatment within a temperature range of 850 to 1000 ° C., and then subjected to a quenching treatment within a temperature range of 800 to 950 ° C. Then, a tempering treatment is performed, and the structure of the non-carburized portion of the steel material thus obtained is a two-phase structure composed of martensite containing 10 to 70 area% of ferrite. Steel material for low distortion type carburized and quenched gears.
している、請求項1記載の低歪み型浸炭焼入れ歯車用鋼
材。2. At least one element selected from the group consisting of the following chemical components: tungsten (W): 0.01 to 0.70 wt.%, And vanadium (V): 0.01 to 1.0 wt.%. The low distortion type carburized and quenched gear steel material according to claim 1, wherein
している、請求項1記載の低歪み型浸炭焼入れ歯車用鋼
材。3. A group consisting of the following chemical components: aluminum (Al): 0.005 to 2.0 wt.%, Titanium (Ti): 0.005 to 1.0 wt.%, Niobium (Nb): 0.005 to 0.50 wt.%, And The low distortion type carburized and hardened gear steel material according to claim 1, further comprising at least one element selected from the group consisting of: zirconium (Zr): 0.005 to 0.50 wt.%.
している、請求項1記載の低歪み型浸炭焼入れ歯車用鋼
材。4. A group consisting of the following chemical components: at least one element selected from the group consisting of tungsten (W): 0.01 to 0.70 wt.% And vanadium (V): 0.01 to 1.0 wt.%; Group consisting of component composition: aluminum (Al): 0.005 to 2.0 wt.%, Titanium (Ti): 0.005 to 1.0 wt.%, Niobium (Nb): 0.005 to 0.50 wt.%, And zirconium (Zr): 0.005 2. The steel material for a low-strain carburized and quenched gear according to claim 1, further comprising at least one element selected from .about.0.50 wt.%.
の範囲内にある、請求項1〜請求項4の内のいずれか1
つに記載の低歪み型浸炭焼入れ歯車用鋼材。5. The ideal critical diameter (D I ) is 30 to 150 mm.
Any one of claims 1 to 4 within the range of
4. A low distortion type steel material for a carburized and quenched gear as described in (1).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7289382A JP2769136B2 (en) | 1995-10-11 | 1995-10-11 | Low distortion type steel material for carburized hardened gears |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7289382A JP2769136B2 (en) | 1995-10-11 | 1995-10-11 | Low distortion type steel material for carburized hardened gears |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09111404A true JPH09111404A (en) | 1997-04-28 |
JP2769136B2 JP2769136B2 (en) | 1998-06-25 |
Family
ID=17742502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7289382A Expired - Fee Related JP2769136B2 (en) | 1995-10-11 | 1995-10-11 | Low distortion type steel material for carburized hardened gears |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2769136B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005325398A (en) * | 2004-05-13 | 2005-11-24 | Jfe Bars & Shapes Corp | High-strength gear and manufacturing method therefor |
CN104018086A (en) * | 2014-06-21 | 2014-09-03 | 辽宁工程技术大学 | Alloy material for gears |
CN104073726A (en) * | 2014-06-21 | 2014-10-01 | 辽宁工程技术大学 | Preparation method of alloy material for gear |
WO2015017119A1 (en) * | 2013-07-30 | 2015-02-05 | Caterpillar Inc. | Wear resistant high toughness steel |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS556456A (en) * | 1978-06-29 | 1980-01-17 | Daido Steel Co Ltd | Blank for surface hardened material having less heat treatment strain |
JPH073391A (en) * | 1993-06-17 | 1995-01-06 | Kobe Steel Ltd | Surface hardened high strength parts small in heat treating strain |
-
1995
- 1995-10-11 JP JP7289382A patent/JP2769136B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS556456A (en) * | 1978-06-29 | 1980-01-17 | Daido Steel Co Ltd | Blank for surface hardened material having less heat treatment strain |
JPH073391A (en) * | 1993-06-17 | 1995-01-06 | Kobe Steel Ltd | Surface hardened high strength parts small in heat treating strain |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005325398A (en) * | 2004-05-13 | 2005-11-24 | Jfe Bars & Shapes Corp | High-strength gear and manufacturing method therefor |
WO2015017119A1 (en) * | 2013-07-30 | 2015-02-05 | Caterpillar Inc. | Wear resistant high toughness steel |
CN104018086A (en) * | 2014-06-21 | 2014-09-03 | 辽宁工程技术大学 | Alloy material for gears |
CN104073726A (en) * | 2014-06-21 | 2014-10-01 | 辽宁工程技术大学 | Preparation method of alloy material for gear |
Also Published As
Publication number | Publication date |
---|---|
JP2769136B2 (en) | 1998-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3517515B2 (en) | High-strength, low heat-treated deformed gear and manufacturing method thereof | |
JP3524229B2 (en) | High toughness case hardened steel machine parts and their manufacturing method | |
WO2006118243A1 (en) | Carburized induction-hardened component | |
EP0769566A1 (en) | Case hardening steel for gears | |
JP4047499B2 (en) | Carbonitriding parts with excellent pitting resistance | |
WO2014017074A1 (en) | Nitrocarburizable steel, nitrocarburized part, and methods for producing said nitrocarburizable steel and said nitrocarburized part | |
JP3184411B2 (en) | Low distortion type carburized steel for gears | |
JP3381738B2 (en) | Manufacturing method of mechanical structural parts with excellent mechanical strength | |
JP3405468B2 (en) | Manufacturing method of mechanical structural parts | |
JP2790788B2 (en) | Low distortion type steel material for carburized hardened gears | |
JP2769135B2 (en) | Low distortion type steel material for carburized hardened gears | |
JPH08120438A (en) | Production of parts for machine structure | |
JP2769136B2 (en) | Low distortion type steel material for carburized hardened gears | |
JP2549039B2 (en) | Carbonitriding heat treatment method for high strength gears with small strain | |
JP4504550B2 (en) | Steel for gears and gears with excellent root bending fatigue and surface fatigue properties | |
JPH09111408A (en) | Low strain type carburized and quenched steel stock for gear | |
JP3989138B2 (en) | Steel material for low distortion type carburized and hardened gears excellent in machinability and gear manufacturing method using the steel materials | |
JP2005325398A (en) | High-strength gear and manufacturing method therefor | |
JPH0488148A (en) | High strength gear steel capable of rapid carburization and high strength gear | |
JPH07188895A (en) | Manufacture of parts for machine structure use | |
JPH0617225A (en) | Carburized bearing parts excellent in rolling fatigue property | |
US20060137766A1 (en) | Case-hardening steel superior in tooth surface fatigue strength, gear using the same, and method of production of the same | |
JP3534506B2 (en) | Low distortion type steel material for carburized hardened gears | |
JPH0643604B2 (en) | Manufacturing method for machine structural parts | |
JP3534505B2 (en) | Low distortion type steel material for carburized hardened gears |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |