[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH09103071A - Time-division parallel operation type step-up chopper circuit - Google Patents

Time-division parallel operation type step-up chopper circuit

Info

Publication number
JPH09103071A
JPH09103071A JP28648195A JP28648195A JPH09103071A JP H09103071 A JPH09103071 A JP H09103071A JP 28648195 A JP28648195 A JP 28648195A JP 28648195 A JP28648195 A JP 28648195A JP H09103071 A JPH09103071 A JP H09103071A
Authority
JP
Japan
Prior art keywords
switching element
output
electrolytic capacitor
time
chopper circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28648195A
Other languages
Japanese (ja)
Inventor
Sunao Sasaki
直 佐々木
Kenji Hattori
健治 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP28648195A priority Critical patent/JPH09103071A/en
Publication of JPH09103071A publication Critical patent/JPH09103071A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Voltage And Current In General (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PROBLEM TO BE SOLVED: To pull up output power to double without increasing the peak current of a switching element, and to reduce a ripple current by conducting flip-flop operation by the signal output of Q and the signal output of Q' and preventing overlapping on a time series. SOLUTION: The block of two pairs of choke coils 3, 4, switching elements 5, 6 and rectifier diodes 7, 8 is connected to one input electrolytic capacitor 1, and the output side is used as one output electrolytic capacitor 9. Parts having the two signal outputs of Q and Q' as flip-flop outputs in a step-up control circuit 2 are connected to the switching elements 6, 6 respectively, and recycling, in which the switching element 6 on the Q' side is turned off when the switching element 5 on the Q side is turned on and the switching element 5 on the Q side is turned off when the switching 6 on the Q' side is tuned on, is continued. Accordingly, output power is pulled up to double, and a ripple current can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、昇圧チョッパー回
路を並列運転するときに、スイッチ素子のON時に流れ
る電流を時系列上で分割することで、単独運転において
出力を拡大する時にスイッチング素子に流れるピーク電
流の最大値を抑制することにより、熱損失を抑制し、か
つ入力電解コンデンサおよび出力電解コンデンサのリプ
ル電流の増加を抑制して、全体として小形高出力化を図
る昇圧チョッパー回路の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention divides a current flowing when a switch element is ON in time series when operating a step-up chopper circuit in parallel, so that the current flows to a switching element when the output is expanded in an isolated operation. The improvement of the boost chopper circuit that suppresses the heat loss by suppressing the maximum value of the peak current, and also suppresses the increase of the ripple current of the input electrolytic capacitor and the output electrolytic capacitor to achieve a small size and high output as a whole. Is.

【0002】[0002]

【従来の技術】必要とする直流電圧をそれより低い直流
電圧から昇圧するため、昇圧チョッパー回路を単独運転
で使用している。図2は従来の昇圧チョッパー回路の一
例を示し、この回路の原理は、スイッチング素子14の
ON時間にチョークコイル12に磁気エネルギーを蓄積
し、次のOFF時間にこのエネルギーを放出して低めの
入力電圧から必要な出力電圧を取り出すことを利用した
ものであるが、同一の入力電圧から出力電圧を一定とし
て、取り出せる出力電圧を2倍にしたいときは、入出力
の電解コンデンサ1および9、チョークコイル12、ス
イッチング素子14、整流ダイオード13が2倍必要な
ため、電源の容積が大きくなってしまう欠点がある。図
において11は昇圧制御回路である。
2. Description of the Related Art In order to boost a required DC voltage from a DC voltage lower than that, a boost chopper circuit is used in an independent operation. FIG. 2 shows an example of a conventional step-up chopper circuit. The principle of this circuit is that magnetic energy is accumulated in the choke coil 12 during the ON time of the switching element 14 and this energy is released during the next OFF time to lower the input. The output voltage required is taken out from the voltage, but when the output voltage is fixed from the same input voltage and the output voltage that can be taken out is doubled, the input and output electrolytic capacitors 1 and 9 and the choke coil are used. 12, the switching element 14, and the rectifying diode 13 are required twice, so that the volume of the power source becomes large. In the figure, reference numeral 11 is a boost control circuit.

【0003】したがって、より小さい容積において、高
い出力電力を得るためには、入出力電解コンデンサのリ
プル電流を抑制し、スイッチング素子に流れるピーク電
流を抑制して放熱フィンの大きさをも抑制する必要があ
る。
Therefore, in order to obtain a high output power in a smaller volume, it is necessary to suppress the ripple current of the input / output electrolytic capacitor, suppress the peak current flowing in the switching element, and suppress the size of the heat radiation fin. There is.

【0004】[0004]

【発明が解決しようとする課題】昇圧チョッパ回路の単
独運転において、入出力電解コンデンサのリプル電流
は、スイッチング素子のON時に流れるピーク電流に比
例し、かつON時間とOFF時間の比率に影響を受け
る。したがって、同一回路で出力を拡大すると、電解コ
ンデンサのリプル電流が増加して、寿命を短くする恐れ
があるため、静電容量や電圧を大きくしてリプル電流耐
量を大きくする必要がある。
In the single operation of the boost chopper circuit, the ripple current of the input / output electrolytic capacitor is proportional to the peak current flowing when the switching element is ON, and is influenced by the ratio of ON time and OFF time. . Therefore, if the output is expanded in the same circuit, the ripple current of the electrolytic capacitor may increase and the life may be shortened. Therefore, it is necessary to increase the capacitance and voltage to increase the ripple current withstand capability.

【0005】また、昇圧チョッパー回路の単独運転にお
いて、スイッチング素子のON時に流れるピーク電流は
入力電流に比例して流れており、出力電力を2倍にする
と、入力電流が2倍になったとすればピーク電流もまた
2倍に増えるため、スイッチンク素子の電力損失はI2
Rで4倍に増加する。したがって、出力電力を2倍にし
て、損失を増やさないためには素子の並列数を4倍にす
る必要がある。
Further, in the isolated operation of the step-up chopper circuit, the peak current flowing when the switching element is ON flows in proportion to the input current, and if the output power is doubled, the input current is doubled. Since the peak current also doubles, the power loss of the switching element is I 2
It increases four times with R. Therefore, it is necessary to double the output power and quadruple the number of elements in parallel in order not to increase the loss.

【0006】[0006]

【課題を解決するための手段】1つの入力電解コンデン
サに2組のチョークコイル、スイッチング素子、整流ダ
イオードのブロックを接続し、出力側は1つの出力電解
コンデンサとする。つぎに、昇圧制御回路にフリップフ
ロップ出力となるQとQ′の二信号出力をもつものをス
イッチング素子にそれぞれ接続して、Q側のスイッチン
グ素子がONしているときに、Q′側のスイッチング素
子をOFFさせ、つぎにQ′側のスイッチング素子がO
Nしているときに、Q側のスイッチング素子をOFFさ
せるサイクルを続けることにより、スイッチング素子の
ピーク電流を増やすことなく出力電力を2倍に引き上げ
ることができ、入力電解コンデンサからの放電時間比率
が長くなるため、リプル電流を小さくすることができ
る。
Two sets of choke coils, switching elements, and rectifying diode blocks are connected to one input electrolytic capacitor, and one output electrolytic capacitor is provided on the output side. Next, a step-up control circuit having two signal outputs Q and Q ', which are flip-flop outputs, is connected to the switching elements respectively, and when the switching element on the Q side is ON, switching on the Q'side is performed. Turn off the element, then switch the switching element on the Q'side to O
The output power can be doubled without increasing the peak current of the switching element by continuing the cycle of turning off the switching element on the Q side during N, and the discharge time ratio from the input electrolytic capacitor can be increased. Since it becomes longer, the ripple current can be reduced.

【0007】[0007]

【発明の実施の形態】2組のチョークコイル、スイッチ
ング素子、整流ダイオード、および昇圧制御回路にフリ
ップフロップ出力となる二信号出力をもつものを用い、
二信号出力を2組のスイッチング素子にそれぞれ接続し
て、一方のスイッチング素子がONしているときに、他
方のスイッチング素子をOFFさせ、つぎに他方のスイ
ッチング素子がONしているときに、一方のスイッチン
グ素子をOFFさせるサイクルを続けるように2組を並
列運転することにより、スイッチング素子のピーク電流
を増やすことなく出力電力を2倍に引き上げることがで
き、リプル電流を小さくすることができる。
BEST MODE FOR CARRYING OUT THE INVENTION Two sets of choke coils, a switching element, a rectifying diode, and a boost control circuit having two signal outputs which are flip-flop outputs are used.
Two signal outputs are respectively connected to two sets of switching elements, and when one switching element is ON, the other switching element is turned OFF, and when the other switching element is ON, one By operating the two sets in parallel so as to continue the cycle of turning off the switching element, the output power can be doubled without increasing the peak current of the switching element, and the ripple current can be reduced.

【0008】[0008]

【実施例】図1は本発明昇圧チョッパー回路の一実施例
を示す図であり、1は入力側に並列接続された入力電解
コンデンサ、2はQおよびQ′の二出力を有する昇圧制
御回路である。3はQ側チョークコイル、4はQ′側チ
ョークコイル、5はQ側スイッチング素子、6はQ′側
スイッチング素子、7はQ側整流ダイオード、8はQ′
側整流ダイオードであり、3と4、5と6、7と8は、
同等の電気定格および電気性能を持ったものを組み合わ
せて、ピーク電流値のバランスを取っている。
1 is a diagram showing an embodiment of a boost chopper circuit according to the present invention, in which 1 is an input electrolytic capacitor connected in parallel on the input side, and 2 is a boost control circuit having two outputs Q and Q '. is there. 3 is a Q side choke coil, 4 is a Q'side choke coil, 5 is a Q side switching element, 6 is a Q'side switching element, 7 is a Q side rectifying diode, and 8 is a Q '.
Side rectifying diodes, 3 and 4, 5 and 6, 7 and 8 are
The peak current values are balanced by combining those with the same electrical rating and electrical performance.

【0009】9は出力側に並列接続された出力電解コン
デンサ、10は出力電圧分圧抵抗器であり、ここで得ら
れた電圧を昇圧制御回路2にフィードバックして得られ
た入力電圧から必要とする出力電圧が得られるように抵
抗器10の値を設定する。
Reference numeral 9 is an output electrolytic capacitor connected in parallel on the output side, and 10 is an output voltage dividing resistor, which is required from the input voltage obtained by feeding back the voltage obtained here to the boost control circuit 2. The value of the resistor 10 is set so that the output voltage to be obtained is obtained.

【0010】Qの信号出力とQ′の信号出力はフリップ
フロップ動作を行ない、時系列上重なり合わないように
2組の昇圧チョッパー回路が並列運転される。
The signal output of Q and the signal output of Q'perform a flip-flop operation, and two sets of boost chopper circuits are operated in parallel so that they do not overlap in time series.

【0011】[0011]

【発明の効果】以上述べたように、本発明によれば、昇
圧チョッパー回路を並列運転するときに、スイッチ素子
のON時に流れる電流を時系列上で分割することで、ス
イッチング素子に流れるピーク電流の最大値を抑制し
て、熱損失を抑制し、かつ入力電解コンデンサおよび出
力電解コンデンサのリプル電流の増加を抑制して、全体
として小形高出力化を図ることができる。
As described above, according to the present invention, when the step-up chopper circuits are operated in parallel, the peak current flowing through the switching element is divided by dividing the current flowing when the switching element is ON in time series. Of the input electrolytic capacitor and the output electrolytic capacitor are prevented from increasing, and the overall size and size of the output can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明時分割並列運転式昇圧チョッパー回路の
一実施例を示す図。
FIG. 1 is a diagram showing an embodiment of a time-division parallel operation type boost chopper circuit of the present invention.

【図2】従来の昇圧チョッパー回路の一例を示す図。FIG. 2 is a diagram showing an example of a conventional boost chopper circuit.

【符号の説明】[Explanation of symbols]

1 入力電解コンデンサ 2 昇圧制御回路 3 Q側チョークコイル 4 Q′側チョークコイル 5 Q側スイッチング素子 6 Q′側スイッチング素子 7 Q側整流ダイオード 8 Q′側整流ダイオード 9 出力電解コンデンサ 10 出力電圧分圧抵抗器 1 Input Electrolytic Capacitor 2 Boost Control Circuit 3 Q-Side Choke Coil 4 Q'Side Choke Coil 5 Q-Side Switching Element 6 Q'Side Switching Element 7 Q-Side Rectifier Diode 8 Q'Side Rectifier Diode 9 Output Electrolytic Capacitor 10 Output Voltage Divider Resistor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 入力電解コンデンサと、QおよびQ′の
二出力を有する昇圧制御回路と、Q側チョークコイル
と、Q′側チョークコイルと、Q側スイッチング素子
と、Q′側スイッチング素子と、Q側整流ダイオード
と、Q′側整流ダイオードと、出力電解コンデンサと、
出力電圧分圧抵抗器とからなり、Qの信号出力とQ′の
信号出力はフリップフロップ動作を行ない、時系列上重
なり合わないことを特徴とする、時分割並列運転式昇圧
チョッパー回路。
1. An input electrolytic capacitor, a boost control circuit having two outputs Q and Q ', a Q side choke coil, a Q'side choke coil, a Q side switching element, and a Q'side switching element. Q side rectifying diode, Q'side rectifying diode, output electrolytic capacitor,
A time-division parallel operation type step-up chopper circuit comprising an output voltage dividing resistor, wherein the Q signal output and the Q'signal output perform a flip-flop operation and do not overlap in time series.
JP28648195A 1995-10-06 1995-10-06 Time-division parallel operation type step-up chopper circuit Pending JPH09103071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28648195A JPH09103071A (en) 1995-10-06 1995-10-06 Time-division parallel operation type step-up chopper circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28648195A JPH09103071A (en) 1995-10-06 1995-10-06 Time-division parallel operation type step-up chopper circuit

Publications (1)

Publication Number Publication Date
JPH09103071A true JPH09103071A (en) 1997-04-15

Family

ID=17704960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28648195A Pending JPH09103071A (en) 1995-10-06 1995-10-06 Time-division parallel operation type step-up chopper circuit

Country Status (1)

Country Link
JP (1) JPH09103071A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100560338B1 (en) * 2004-07-09 2006-03-14 한국전기연구원 Boosting circuit
JP2007228781A (en) * 2006-02-20 2007-09-06 Katsunori Taniguchi Soft-switching high boosting converter
JPWO2007069371A1 (en) * 2005-12-12 2009-05-21 三菱電機株式会社 Light emitting diode lighting device and vehicular lamp lighting device using this device
KR100916902B1 (en) * 2007-11-12 2009-09-09 주식회사 효성 Booster converter for a type of no transformation
JP2011233255A (en) * 2010-04-23 2011-11-17 On Semiconductor Trading Ltd Control circuit for light-emitting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100560338B1 (en) * 2004-07-09 2006-03-14 한국전기연구원 Boosting circuit
JPWO2007069371A1 (en) * 2005-12-12 2009-05-21 三菱電機株式会社 Light emitting diode lighting device and vehicular lamp lighting device using this device
JP4675971B2 (en) * 2005-12-12 2011-04-27 三菱電機株式会社 Light emitting diode lighting device for vehicle lamp
JP2007228781A (en) * 2006-02-20 2007-09-06 Katsunori Taniguchi Soft-switching high boosting converter
KR100916902B1 (en) * 2007-11-12 2009-09-09 주식회사 효성 Booster converter for a type of no transformation
JP2011233255A (en) * 2010-04-23 2011-11-17 On Semiconductor Trading Ltd Control circuit for light-emitting device

Similar Documents

Publication Publication Date Title
US8441812B2 (en) Series resonant converter having a circuit configuration that prevents leading current
US5856916A (en) Assembly set including a static converter with controlled switch and control circuit
CA1298614C (en) Power supply
US5796598A (en) Voltage-converting circuit for the power supply of an electrical consumer of high output, particularly a bobbin winding machine
KR0175659B1 (en) Dc-dc converter and a computer using the converter
US5886882A (en) Push-pull DC-DC converter with transformer having multiple primary and secondary windings with diodes connected between them with MOSFET switching
US5303140A (en) Power source circuit
US7136294B2 (en) Soft switched zero voltage transition full bridge converter
JPH10327577A (en) Dc/dc switching converter circuit
GB2304474A (en) Electric converter
JPH05130775A (en) Resonance type forward converter
US5172308A (en) DC-DC converter with transformer having a single secondary winding
JPH07123717A (en) Switching power unit
JPH09103071A (en) Time-division parallel operation type step-up chopper circuit
JPH07154967A (en) Dc-dc converter and computer using it
JPH1198836A (en) Circuit for zero voltage-zero current switching for full-bridge dc-dc converter which can reduce ripple in output current
US3496444A (en) Voltage converter circuits
KR101656021B1 (en) Series resonant converter
JPH08168240A (en) Dc-dc converter
JP2636330B2 (en) Snubber circuit
Kumar et al. A forward converter with load side demagnetization scheme
Salazar et al. A high-frequency forward DC/DC converter topology with transformer flux balancing capability
Leu A novel forward configuration for off-line applications: two-switch built-in input filter forward converter (2SBIFFC)
JPS5925580A (en) Switching regulator
JP3292411B2 (en) Switching power supply with improved power factor