[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH09108689A - Method of controlling intermittent aeration type activated sludge process - Google Patents

Method of controlling intermittent aeration type activated sludge process

Info

Publication number
JPH09108689A
JPH09108689A JP8130450A JP13045096A JPH09108689A JP H09108689 A JPH09108689 A JP H09108689A JP 8130450 A JP8130450 A JP 8130450A JP 13045096 A JP13045096 A JP 13045096A JP H09108689 A JPH09108689 A JP H09108689A
Authority
JP
Japan
Prior art keywords
aeration
phosphorus
aeration tank
inflow
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8130450A
Other languages
Japanese (ja)
Other versions
JP3644757B2 (en
Inventor
Kazuyuki Tsumura
和志 津村
Koji Yamamoto
康次 山本
Yutaka Mori
豊 森
Yasunari Sasaki
康成 佐々木
Akiko Ogura
明子 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Unitika Ltd
Original Assignee
Fuji Electric Co Ltd
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Unitika Ltd filed Critical Fuji Electric Co Ltd
Priority to JP13045096A priority Critical patent/JP3644757B2/en
Publication of JPH09108689A publication Critical patent/JPH09108689A/en
Application granted granted Critical
Publication of JP3644757B2 publication Critical patent/JP3644757B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the lowering of a phosphorus removing rate in a device equipped with two aeration tanks by adjusting a set value of detected time of an inflection point of a time change curve of ORP in the first aeration tank and based on a difference between the present inflow quantity and the inflow quantity of an inflow quantity pattern at the same time, adding a flocculant to the second aeration tank. SOLUTION: First and second aeration tanks 2a, 2b into which sewage 1 flows and in which organic matter, nitrogen and phosphorus are removed by activated sludge, a final sedimentation basin 4, and a return sludge pump 5 for returning activated sludge to the first aeration tank 2a are provided. Based on outputs of ORP meters 6a, 6b for measuring oxidation-reduction potential in the aeration tanks 2a, 2b, first and second aeration blowers 7a, 7b and first and second agitation pumps 8a, 8b are controlled. An inflow quantity pattern of sewage per day is set in advance, and a difference between the measured value of the inflow quantity from a flow rate measuring device 10 and the inflow quantity of an inflow quantity pattern at the same time is calculated. When the difference exceeds the upper limit value, a flocculant is added to the second aeration tank 2b by an addition pump 1 to remove phosphorus.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、下水や生活排水を生物
学的に処理する方法で、特に排水中の窒素・リンを除去
するプロセスの制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for biologically treating sewage and domestic wastewater, and more particularly to a method for controlling a process for removing nitrogen and phosphorus in wastewater.

【0002】[0002]

【従来の技術】下水や生活排水の処理は有機物除去が主
体であり、活性汚泥法に代表される生物学的処理法が一
般に用いられてきた。しかし近年になって、湖沼等の閉
鎖性水域では富栄養化が大きな問題となっており、この
原因となる窒素、リンの除去が重要となってきた。その
ため、有機物に加えて窒素、リンを除去できる処理法が
活性汚泥法の改良法として開発されてきており、代表的
な方法としてA2 O法(嫌気−無酸素−好気法)、回分
式活性汚泥法、間欠曝気式活性汚泥法(以下、間欠曝気
法と略称する)等が挙げられる。これらの方法では、微
生物が好気条件、嫌気条件に交互におかれ有機物、窒
素、リンの除去がなされるのである。
2. Description of the Related Art The treatment of sewage and domestic wastewater mainly involves the removal of organic substances, and biological treatment represented by the activated sludge method has been generally used. However, in recent years, eutrophication has become a major problem in closed water bodies such as lakes and marshes, and it has become important to remove nitrogen and phosphorus which cause this problem. Therefore, a treatment method capable of removing nitrogen and phosphorus in addition to organic substances has been developed as an improved method of the activated sludge method, and typical methods include the A 2 O method (anaerobic-anoxic-aerobic method) and the batch method. Activated sludge method, intermittent aeration type activated sludge method (hereinafter, abbreviated as intermittent aeration method) and the like. In these methods, microorganisms are alternately subjected to aerobic and anaerobic conditions to remove organic matter, nitrogen and phosphorus.

【0003】ここで、窒素、リン除去を目的とした下水
処理について、その原理を簡単に述べておく。下水中の
有機物は活性汚泥を構成する微生物の食物となり分解除
去される。窒素は好気性の条件下で硝化菌の働きにより
NH4 −N(アンモニア性窒素)がNO3 −N(硝酸性
窒素)に酸化され、ついで嫌気性の条件下で脱窒菌の働
きによりNO3 −NがN2 (窒素ガス)に還元されて除
去される。硝化・脱窒の関係を整理すると次のようにな
る。 反応 窒素の形態変化 反応条件 微生物 硝化反応 アンモニア性窒素→硝酸性窒素 好気性(溶存酸素あり) 硝化菌 脱窒反応 硝酸性窒素 →窒素ガス 嫌気性(溶存酸素なし) 脱窒菌 リンは曝気槽の運転条件を好気性、嫌気性に交互に変え
ることにより、細胞内にリンを多量に蓄積する性質を持
つ活性汚泥をつくりだし、この活性汚泥を利用して除去
するのである。即ち、この活性汚泥は嫌気性条件でリン
を放出し、好気性条件でリンを吸収する性質があるた
め、好気性条件でリンの吸収を行い、リンを多量に吸収
した活性汚泥を余剰汚泥として処理系から除くことによ
り脱リンを行なう。この関係は下記のように整理するこ
とができる。 反応 槽内のリン濃度 反応条件 リン除去 リン放出 増加 嫌気性(溶存酸素なし) − リン吸収 減少 好気性(溶存酸素あり) 活性汚泥抜き出し このように窒素・リン除去においては好気性、嫌気性の
2条件が不可欠であるが、厳密には脱窒のための嫌気性
条件と脱リンのための嫌気性条件は異なっており、間欠
曝気法では脱窒が終了し槽内にNO3 −Nに起因する酸
素分子が無くなった後で活性汚泥からのリンの放出が起
こり、これが次の曝気工程におけるリンの吸収につなが
っている。
Here, the principle of sewage treatment for removing nitrogen and phosphorus will be briefly described. Organic matter in the sewage becomes food for microorganisms constituting the activated sludge and is decomposed and removed. Nitrogen is oxidized from NH 4 —N (ammonia nitrogen) to NO 3 —N (nitrate nitrogen) under the aerobic condition by the action of nitrifying bacteria, and then NO 3 by the action of the denitrifying bacteria under anaerobic conditions. -N is removed is reduced to N 2 (nitrogen gas). The relationship between nitrification and denitrification is summarized as follows. Reaction Nitrogen morphological change Reaction conditions Microbial nitrification reaction Ammonium nitrogen → Nitrate nitrogen Aerobic (with dissolved oxygen) Nitrifying bacteria Denitrification reaction Nitrate nitrogen → Nitrogen gas Anaerobic (without dissolved oxygen) Denitrifying bacteria Phosphorus aeration tank operation By altering the conditions alternately between aerobic and anaerobic, activated sludge having the property of accumulating a large amount of phosphorus in cells is produced, and the activated sludge is removed by using this activated sludge. That is, since this activated sludge has the property of releasing phosphorus under anaerobic conditions and absorbing phosphorus under aerobic conditions, it absorbs phosphorus under aerobic conditions, and the activated sludge that has absorbed a large amount of phosphorus is treated as excess sludge. Dephosphorization is performed by removing it from the processing system. This relationship can be organized as follows. Phosphorus concentration in the reaction tank Reaction condition Phosphorus removal Phosphorus release increase Anaerobic (no dissolved oxygen) -Phosphorus absorption decreased aerobic (dissolved oxygen) Activated sludge withdrawal In this way, nitrogen and phosphorus removal are aerobic and anaerobic. Although the conditions are essential, strictly speaking, the anaerobic conditions for denitrification and the anaerobic conditions for dephosphorization are different, and in the intermittent aeration method, denitrification is completed and NO 3 -N is caused in the tank. The release of phosphorus from the activated sludge occurs after the exhausted oxygen molecules are exhausted, which leads to the absorption of phosphorus in the subsequent aeration process.

【0004】間欠曝気法は好気条件、嫌気条件の比率を
時間的に設定でき、しかも既存の施設にも比較的容易に
適用できることから注目されている方法であり、本発明
者らは従来の間欠曝気法を大幅に改善する方法として、
排水が流入する第1曝気槽と、この第1曝気槽に直列に
連結した第2曝気槽の二つの曝気槽を用い、その後に最
終沈澱池を設けた装置と、その制御方法(以下、2槽式
間欠曝気法とする)を特開平6−55190号公報によ
り開示している。
The intermittent aeration method is a method that has attracted attention because the ratio of aerobic conditions and anaerobic conditions can be set in terms of time, and it can be applied to existing facilities relatively easily. As a method to greatly improve the intermittent aeration method,
An apparatus provided with a first aeration tank into which waste water flows and a second aeration tank connected in series to the first aeration tank, and a final settling tank after that, and a control method therefor (hereinafter referred to as "2"). Japanese Patent Application Laid-Open No. 6-55190 discloses a tank type intermittent aeration method.

【0005】以下にその概要を図3と図4(a)、
(b)を参照して説明する。図3は特開平6−5519
0号公報に記載の間欠曝気法及び制御システムを説明す
るための要部構成を示す模式図であり、図3では、水お
よび空気の経路を実線の矢印、制御信号系統を点線の矢
印で表してあり、この装置は主として、下水1が流入し
活性汚泥によって有機物、窒素、リンが除去される第1
曝気槽2aと第2曝気槽2b、重力沈降によって活性汚
泥が分離され処理水3が得られる最終沈澱池4、沈降し
た活性汚泥を第1曝気槽2aに返送する返送汚泥ポンプ
5から構成してある。第1曝気槽2aと第2曝気槽2b
の容積比はおよそ1:1であり、処理水の滞留時間の合
計は最終沈澱池4も含めて16〜32時間である。制御
系は第1曝気槽2a内の酸化還元電位を測定する第1O
RP計6a、第2曝気槽2b内の酸化還元電位を測定す
る第2ORP計6b、それらの値に基づいて第1曝気ブ
ロワ7a、第2曝気ブロワ7b、第1攪拌ポンプ8a、
第2攪拌ポンプ8bへの制御信号を出力する制御装置9
からなっている。
The outline is shown in FIGS. 3 and 4 (a) below.
This will be described with reference to FIG. FIG. 3 shows JP-A-6-5519.
FIG. 4 is a schematic diagram showing a main part configuration for explaining an intermittent aeration method and a control system described in Japanese Patent Publication No. 0, FIG. 3, wherein paths of water and air are indicated by solid arrows, and a control signal system is indicated by dotted arrows. This apparatus is mainly used for the first type in which sewage 1 flows in and organic matter, nitrogen and phosphorus are removed by activated sludge.
It is composed of an aeration tank 2a and a second aeration tank 2b, a final settling tank 4 in which activated sludge is separated by gravity sedimentation to obtain treated water 3, and a returning sludge pump 5 which returns the sedimented activated sludge to the first aeration tank 2a. is there. First aeration tank 2a and second aeration tank 2b
Is about 1: 1, and the total residence time of the treated water is 16 to 32 hours including the final settling tank 4. The control system is a first O that measures the redox potential in the first aeration tank 2a.
RP meter 6a, second ORP meter 6b for measuring redox potential in the second aeration tank 2b, first aeration blower 7a, second aeration blower 7b, first agitation pump 8a based on those values.
Control device 9 for outputting a control signal to the second stirring pump 8b
Consists of

【0006】このような装置系における運転制御の基本
的な考えかたは、排水が流入する第1曝気槽と、この第
1曝気槽に直列に連結した第2曝気槽の二つの曝気槽を
用い、第1曝気槽2aで硝化、脱窒を一定時間に制御す
ることにより、確実にリン放出時間を確保し、第2曝気
槽2bでは硝化、脱窒を行うとともに、リン放出を防止
しつつ制御の1周期を所定の時間に維持し、高い窒素、
リン除去率を得ることにある。具体的な方法を、制御に
伴うORPの変化とともに、図4(a)、(b)を併用
参照して説明する。図4(a)、(b)は、制御を実施
中に、任意のタイミングで曝気開始時間を零点として、
時間の経過に伴うORPの変化を示したものであり、図
4(a)は第1曝気槽のORP、(b)は第2曝気槽の
ORPのそれぞれ経過時間に対する関係線図である。
The basic idea of operation control in such a system is to use two aeration tanks, a first aeration tank into which waste water flows and a second aeration tank connected in series to the first aeration tank, By controlling nitrification and denitrification in the first aeration tank 2a for a certain period of time, the phosphorus release time is ensured, and in the second aeration tank 2b, nitrification and denitrification are performed, and the phosphorus release is controlled while being prevented. One cycle is maintained for a predetermined time, high nitrogen,
To obtain the phosphorus removal rate. A specific method will be described with reference to FIGS. 4A and 4B together with a change in ORP accompanying control. 4 (a) and 4 (b) show that the aeration start time is set to zero at an arbitrary timing during the control.
4 shows changes in ORP with the passage of time, and FIG. 4A is a relational diagram with respect to elapsed time of ORP of the first aeration tank and FIG. 4B is ORP of the second aeration tank.

【0007】始めに第1曝気槽2aの制御法を説明する
と、硝化とリン吸収を行う曝気時間をTe 、脱窒時間を
f とし、Te とTf の和である時間Tg があらかじめ
設定した時間Tgsと一致するように、曝気時間Te を調
節する。ここで第1ORP計6aのORPの変化を見る
と、脱窒終了後に屈曲点Aが出現しており、Aを検出す
ることによって時間Tg を測定し、TgsとTg の差に基
づいて曝気時間Te を調節するのである。その結果、後
述のように1周期はほぼTds時間に維持されているた
め、リン放出時間がTds−Tgsとして確保されることに
なる。
First, the control method of the first aeration tank 2a will be explained. The aeration time for nitrification and phosphorus absorption is T e , and the denitrification time is T f, and the time T g which is the sum of T e and T f is The aeration time T e is adjusted so as to match the preset time T gs . Turning now to changes in the ORP of the 1ORP meter 6a, bending point A after denitrification completion has appeared, by measuring the time T g by detecting A, based on the difference between the T gs and T g it is to adjust the aeration time T e. As a result, as described later, since one cycle is maintained at approximately T ds time, the phosphorus release time is secured as T ds −T gs .

【0008】第2曝気槽2bの制御方法を説明すると、
硝化とリン吸収のための曝気時間をTb 、脱窒が進行す
る攪拌時間をTc とし、Tb とTc の和である時間Td
があらかじめ設定した時間Tdsと一致するように、曝気
時間Tb を調節し、併せて時間Td 後1周期が終了した
として、第1曝気槽2a、第2曝気槽2b同時に曝気状
態に復帰させる。これは、第2ORP系6bのORPの
変化から屈曲点Bを検出して時間Td を測定し、Tds
d の差に基づいて曝気時間Tb を調節することにより
行う。この結果、脱窒が終了すると直ちに曝気状態とな
るため、第2曝気槽2bにおいてリンが放出されず、高
い窒素、リン除去率が得られる。
The control method of the second aeration tank 2b will be described.
Letting T b be the aeration time for nitrification and phosphorus absorption, and T c be the stirring time for denitrification to proceed, the time T d that is the sum of T b and T c
As but to match the preset time T ds, adjust the aeration period T b, together as one period after the time T d is finished, the first aeration tank 2a, return simultaneously aerated state second aeration tank 2b Let it. This is done by first 2ORP system detects inflection point B from the change in ORP and 6b measuring the time T d and adjusts the aeration period T b on the basis of the difference between the T ds and T d. As a result, since the aeration state is established immediately after the denitrification is completed, phosphorus is not released in the second aeration tank 2b, and a high nitrogen and phosphorus removal rate is obtained.

【0009】[0009]

【発明が解決しようとする課題】以上、本発明者らが特
開平6−55190号公報に記載の2槽式間欠曝気法に
ついて説明した。しかし、ある特定の条件下における生
物学的脱リン法については、なお解決しなければならな
い次のような問題がある。その一つは、流入排水中の有
機物濃度が低い場合、リン除去率が低下するのである。
これは、有機物濃度が低い場合、嫌気工程においてリン
放出量が低下し、その結果好気工程においてリン吸収が
不良となって起きる現象である。
As described above, the present inventors have described the two-tank intermittent aeration method described in Japanese Patent Application Laid-Open No. 6-55190. However, the biological dephosphorization method under certain specific conditions has the following problems that still have to be solved. One is that the phosphorus removal rate decreases when the organic matter concentration in the inflowing wastewater is low.
This is a phenomenon in which when the concentration of organic substances is low, the amount of released phosphorus decreases in the anaerobic process, resulting in poor phosphorus absorption in the aerobic process.

【0010】もう一つは、上記の場合とは逆に、流入排
水中の有機物濃度が極端に高い場合、嫌気工程において
リン放出量が増加し、その結果好気工程時間内において
リンが吸収しきれなくなりおこる現象である。本方式の
制御方法は、従来の技術において述べたように、1周期
の間に窒素、リン除去工程を配分する運転をおこなって
いるので、ある程度の有機物負荷変動に対しては対応が
可能で良好な処理水質が得られる。しかし、有機物負荷
変動が極端に大きい場合、リン除去率が悪化することが
ある。
On the other hand, contrary to the above case, when the organic matter concentration in the inflowing wastewater is extremely high, the amount of phosphorus released increases in the anaerobic process, and as a result, phosphorus is absorbed within the aerobic process time. This is a phenomenon that cannot be done. As described in the prior art, the control method of this method performs the operation of distributing the nitrogen and phosphorus removal steps during one cycle, so it is possible to cope with a certain amount of organic load fluctuation and is good. Excellent treated water quality can be obtained. However, when the fluctuation of the organic matter load is extremely large, the phosphorus removal rate may deteriorate.

【0011】本発明は上述の点に鑑みてなされたもので
あり、その目的はリンの除去率の低下を防止することが
できる2槽式間欠曝気法による下水処理プロセスの制御
方法を提供することにある。
The present invention has been made in view of the above points, and an object thereof is to provide a method for controlling a sewage treatment process by a two-tank intermittent aeration method capable of preventing a reduction in the phosphorus removal rate. It is in.

【0012】[0012]

【課題を解決するための手段】上記の課題を解決するた
めに、A法とB法の2つの方法を発明した。本発明の2
つの方法とも、それぞれ2槽式間欠曝気法の運転は次の
ように2つの手段を併用して行う。まず、A法では、 A)処理装置の排水の流入系に連続測定が可能な流量
計を設置しておき、その流入流量の測定値と、あらかじ
め定めた流入流量との差に基づき、次工程における第1
曝気槽のORP屈曲点の検出時間の設定値を変化させる
とともに、 A)あらかじめ排水の1日の流入量パターンを設定し
ておき、現在の流入量と同時刻の流入量パターンの流入
量との差を求め、その差があらかじめ定めた上限値以上
のとき第2曝気槽にリンと反応して難溶性の化合物をつ
くる凝集剤を添加する。
In order to solve the above problems, two methods, method A and method B, were invented. 2 of the present invention
In both methods, the operation of the two-tank intermittent aeration method is performed by using two means in combination as follows. First, in method A, A) a flow meter capable of continuous measurement is installed in the inflow system of the wastewater of the treatment device, and the next process is performed based on the difference between the measured inflow flow rate and a predetermined inflow flow rate. First in
While changing the set value of the detection time of the ORP inflection point of the aeration tank, A) The daily inflow pattern of drainage is set in advance, and the current inflow and the inflow of the inflow pattern at the same time are set. A difference is determined, and when the difference is equal to or more than a predetermined upper limit value, a coagulant that reacts with phosphorus to form a sparingly soluble compound is added to the second aeration tank.

【0013】Aでは、排水の流入系に設置した流量計
の前回までの処理工程における流量測定値に基づき、次
工程における第1曝気槽のORP計のORP屈曲点の検
出時間の設定値を調節する。すなわち、前回までの処理
工程における流入流量が、あらかじめ設定した流入流量
より大きい時、その差に応じて次工程での第1曝気槽の
ORP屈曲点の検出時間の設定値を大きくする。また設
定した流入流量より小さい場合は、ORP屈曲点の検出
時間の設定値を小さくする。
In A, the set value of the detection time of the ORP bending point of the ORP meter of the first aeration tank in the next step is adjusted based on the flow rate measurement value of the flow meter installed in the drainage inflow system up to the previous processing step. To do. That is, when the inflow flow rate in the previous process step is larger than the preset inflow flow rate, the set value of the detection time of the ORP inflection point of the first aeration tank in the next step is increased according to the difference. If it is smaller than the set inflow rate, the set value of the ORP inflection point detection time is decreased.

【0014】この意味を説明すると、リンの放出速度は
供給される有機物の量によって変動し、有機物の量が多
い場合は速くなり、少ない場合は遅くなる傾向があるこ
とが知られているので、有機物供給量が多すぎるとき
は、リンの放出量が過大となり、所定の曝気時間内でリ
ンを吸収できなくなり、リン除去率が低下し、逆に有機
物供給量が少ない場合には、リンの放出量が小さくな
り、その結果リンの吸収も弱くなってリン除去率が低下
する。すなわち、安定したリン除去を行うためには、第
1曝気槽におけるリン放出量は適当な量を確保する事が
重要である。
To explain this meaning, it is known that the release rate of phosphorus varies depending on the amount of organic matter supplied, and tends to increase when the amount of organic matter is large and slow when the amount of organic matter is small. When the amount of organic matter supplied is too large, the amount of phosphorus released becomes too large, and phosphorus cannot be absorbed within the specified aeration time, the phosphorus removal rate decreases, and conversely, when the amount of organic matter supplied is small, the amount of phosphorus released As a result, the amount of phosphorus becomes small, and as a result, the absorption of phosphorus becomes weak and the phosphorus removal rate decreases. That is, in order to perform stable phosphorus removal, it is important to secure an appropriate phosphorus release amount in the first aeration tank.

【0015】ここで排水の流入は、その流入量が多い時
には有機物濃度が高く、少ない時には低い事が知られて
いるので、上述したように、流入流量が大きい場合は、
ORP屈曲点の検出時間の設定値を大きくすることによ
り、リン放出時間を少なくしてリン放出量を抑える。ま
た、流入流量が小さい場合は、ORP屈曲点の検出時間
の設定値を小さくすることにより、リン放出時間を多く
してリン放出量を増加させる。このように、ORP屈曲
点の検出時間の設定値を変化させることによって、リン
放出時間を変化させ、適当なリン放出量を確保する。
It is known that the inflow of wastewater has a high organic matter concentration when the inflow amount is large and is low when the inflow amount is small. Therefore, as described above, when the inflow amount is large,
By increasing the set value of the detection time of the ORP bending point, the phosphorus release time is shortened and the phosphorus release amount is suppressed. Further, when the inflow flow rate is small, the set value of the detection time of the ORP inflection point is reduced to increase the phosphorus release time and increase the phosphorus release amount. In this way, the phosphorus release time is changed by changing the set value of the ORP inflection point detection time, and an appropriate phosphorus release amount is secured.

【0016】Aでは、雨天時等で排水中に多量の雨水
が混入している場合、流入量が大きいにもかかわらず、
有機物濃度の低い排水が流入する事がある。こうした場
合、上記のAの方法のような制御運転を行なっている
と、リン除去が悪化する可能性がある。そこで、本発明
では別途、1日の流入量パターンを設定しておき、現在
の流入量と同時刻の流入量パターンの流入量との差を求
め、その差があらかじめ定めた上限値以上のとき、上記
のような現象が起きていると判断して、第2曝気槽に、
リンと反応して難溶性の化合物をつくる凝集剤を添加
し、リンを除去する。
In A, when a large amount of rainwater is mixed in the drainage such as during rainy weather, the inflow is large, but
Wastewater with low organic matter concentration may flow in. In this case, if the control operation like the method A is performed, the phosphorus removal may be deteriorated. Therefore, in the present invention, a daily inflow pattern is separately set, a difference between the current inflow amount and the inflow amount of the inflow pattern at the same time is obtained, and when the difference is equal to or more than a predetermined upper limit value. It is judged that the above phenomenon is occurring, and the second aeration tank
A flocculant that reacts with phosphorus to form a sparingly soluble compound is added to remove phosphorus.

【0017】次に、B法では、 B)処理装置の排水の流入系に連続測定が可能な流量
計を設置しておき、その流入流量の測定値が、あらかじ
め定めた流入流量の下限値以下または上限値以上のと
き、次工程における第1曝気槽の曝気時間をそれぞれ特
別な値に設定するとともに、 B)あらかじめ排水の1日の流入量パターンを設定し
ておき、現在の流入量と同時刻の流入量パターンの流入
量との差を求め、その差があらかじめ定めた上限値以上
のとき第2曝気槽にリンと反応して難溶性の化合物をつ
くる凝集剤を添加する。
Next, in the B method, B) a flow meter capable of continuous measurement is installed in the inflow system of the wastewater of the treatment equipment, and the measured value of the inflow rate is equal to or lower than a predetermined lower limit value of the inflow rate. Or when it is above the upper limit value, the aeration time of the first aeration tank in the next process is set to a special value, respectively, and B) the daily inflow pattern of drainage is set in advance and the same as the current inflow A difference from the inflow amount of the time inflow pattern is obtained, and when the difference is equal to or more than a predetermined upper limit value, a coagulant that reacts with phosphorus to form a sparingly soluble compound is added to the second aeration tank.

【0018】Bでは、排水の流入系に設置した流量計
の前回までの処理工程における流量測定値があらかじめ
定めた流入流量の下限値以下または上限値以上のとき、
次工程における第1曝気槽の曝気時間の設定値をそれぞ
れ特別な値とする。例えば流入流量が100m3/日のと
きこれをあらかじめ定めた流入流量の下限値30m3
日、及び上限値80m3/日と比較し、上限値以上と判定
して、次の工程における第1曝気槽の曝気時間の設定値
をあらかじめ定めた長い値に設定する。また下限値以下
のときは、次の工程における第1曝気槽の曝気時間の設
定値をあらかじめ定めた短い値に設定する。
In B, when the flow rate measurement value of the flow meter installed in the drainage inflow system up to the previous process step is less than or equal to the predetermined lower limit value or more than the upper limit value of the inflow rate,
The set value of the aeration time of the first aeration tank in the next process is set to a special value. For example, when the inflow rate is 100 m 3 / day, the lower limit value of the inflow rate is 30 m 3 /
Day and the upper limit value of 80 m 3 / day, and when it is determined that the upper limit value is exceeded, the set value of the aeration time of the first aeration tank in the next process is set to a predetermined long value. When the value is less than or equal to the lower limit value, the set value of the aeration time of the first aeration tank in the next process is set to a predetermined short value.

【0019】この意味を説明すると、リンの放出速度は
供給される有機物の量によって変動し、有機物の量が多
い場合は速くなり、少ない場合は遅くなる傾向があるこ
とが知られているので、有機物供給量が多すぎるとき
は、リンの放出量が過大となり、所定の曝気時間内でリ
ンを吸収できなくなり、リン除去率が低下し、逆に有機
物供給量が少ない場合には、リンの放出量が小さくな
り、その結果リンの吸収も弱くなってリン除去率が低下
する。すなわち、安定したリン除去を行うためには、第
1曝気槽におけるリン放出量は適当な量を確保する事が
重要である。
To explain this meaning, it is known that the release rate of phosphorus varies depending on the amount of organic matter supplied, and tends to be faster when the amount of organic substance is large and slower when the amount is small. When the amount of organic matter supplied is too large, the amount of phosphorus released becomes too large, and phosphorus cannot be absorbed within the specified aeration time, the phosphorus removal rate decreases, and conversely, when the amount of organic matter supplied is small, the amount of phosphorus released As a result, the amount of phosphorus becomes small, and as a result, the absorption of phosphorus becomes weak and the phosphorus removal rate decreases. That is, in order to perform stable phosphorus removal, it is important to secure an appropriate phosphorus release amount in the first aeration tank.

【0020】ここで排水の流入は、その流入量が多い時
には有機物濃度が高く、少ない時には低い事が知られて
いるので、流入流量が上限値を越えた場合、上述のよう
なリン放出量が過大となる現象が起こると判断し、次工
程の第1曝気槽の曝気時間の設定値を大きなものとする
ことにより、硝化、脱窒に消費する時間を増加させ、結
果としてリン放出時間を少なくしてリン放出量を抑え
る。また、流入流量が下限値を下回った場合、リン吸収
が弱くなる現象が起こると判断し、次工程の第1曝気槽
の曝気時間の設定値を小さなものとすることにより、硝
化、脱窒に消費する時間を減少させ、リン放出時間を多
く確保しリン放出量を増加させる。このような処理を行
ない、流入量が極端な場合にリン放出時間を変化させ、
適当なリン放出量を確保する。
It is known that the inflow of wastewater has a high organic matter concentration when the inflow amount is large and is low when the inflow amount is small. Therefore, when the inflow amount exceeds the upper limit value, the phosphorus release amount as described above is generated. It was judged that an excessive phenomenon would occur, and by increasing the set value of the aeration time of the first aeration tank in the next process, the time consumed for nitrification and denitrification was increased, and as a result, the phosphorus release time was reduced. To reduce phosphorus release. Further, when the inflow rate is below the lower limit, it is determined that the phenomenon of weak phosphorus absorption will occur, and by reducing the set value of the aeration time of the first aeration tank in the next step, nitrification and denitrification will be achieved. The consumption time is reduced, the phosphorus release time is secured, and the phosphorus release amount is increased. By performing such processing, the phosphorus release time is changed when the inflow is extreme,
Ensure proper phosphorus release.

【0021】Bでは、雨天時等で排水中に多量の雨水
が混入している場合、流入量が大きいにもかかわらず、
有機物濃度の低い排水が流入する事がある。こうした場
合、上記のBの方法のような制御運転を行なっている
と、リン除去が悪化する可能性がある。そこで、本発明
では別途、1日の流入量パターンを設定しておき、現在
の流入量と同時刻の流入量パターンの流入量との差を求
め、その差があらかじめ定めた上限値以上のとき、上記
のような現象が起きていると判断して、第2曝気槽に、
リンと反応して難溶性の化合物をつくる凝集剤を添加
し、リンを除去する。
In B, when a large amount of rainwater is mixed in the drainage such as in the case of rain, the inflow is large, but
Wastewater with low organic matter concentration may flow in. In such a case, if the control operation like the method B is performed, phosphorus removal may be deteriorated. Therefore, in the present invention, a daily inflow pattern is separately set, a difference between the current inflow amount and the inflow amount of the inflow pattern at the same time is obtained, and when the difference is equal to or more than a predetermined upper limit value. It is judged that the above phenomenon is occurring, and the second aeration tank
A flocculant that reacts with phosphorus to form a sparingly soluble compound is added to remove phosphorus.

【0022】以上のA法またはB法による制御方法及び
凝集剤添加方法を適用することによって、排水の流入負
荷変動が激しい場合に起こるリン除去率の悪化、また雨
天時等のリン除去率の悪化を防止することができ、安定
したリン除去が可能となる。
By applying the control method and the coagulant addition method according to the above-mentioned method A or method B, the phosphorus removal rate deteriorates when the inflow load fluctuation of wastewater is severe, and the phosphorus removal rate deteriorates in rainy weather. Can be prevented, and stable phosphorus removal can be achieved.

【0023】[0023]

【発明の実施の形態】以下、本発明の実施例を図面を参
照して説明する。図1は本発明のAまたはBの方法が適
用される2槽式間欠曝気法の装置および制御システムの
要部構成を示す模式図であり、図1の図3と共通する部
分には同一符号を用いてあり、矢印線の扱いも図3と同
じである。図1において、この装置は図3に示した装置
と基本的に同じであるが、異なる点は自動的に連続測定
を行うことができる流量測定装置10と凝集剤添加ポン
プ11、凝集剤貯留槽12を備えていることにある。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing a main configuration of a device and a control system of a two-tank type intermittent aeration method to which the method A or B of the present invention is applied, and the same symbols as those in FIG. 3 of FIG. Is used, and the handling of arrow lines is the same as in FIG. In FIG. 1, this device is basically the same as the device shown in FIG. 3, except that the flow measuring device 10 and the coagulant addition pump 11 and the coagulant reservoir which can automatically perform continuous measurement are different. It is equipped with 12.

【0024】まず、この装置を用いた本発明のA法によ
る運転制御方法は、以下に述べる二つの手段を併用して
行う。A法の第1は、連続測定が可能な流量測定装置1
0から制御装置9に送られる流入流量の測定値Qに対し
て、あらかじめ設定した流入流量をQs 、前回の処理工
程における流入流量をQn-1 として、Qn-1 >Qs のと
きは、リン放出速度が増加すると判断して、次工程にお
ける第1のORP計6aによるORP屈曲点の検出時間
の設定値Tgsを大きくする。Qn-1 <Qs のときは、リ
ン放出速度が減少すると判断し、次工程における第1の
ORP計6aによるORP屈曲点の検出時間の設定値T
gsを小さくする。
First, the operation control method according to the method A of the present invention using this apparatus is performed by using the following two means in combination. The first of Method A is a flow rate measuring device 1 capable of continuous measurement.
The measurement value Q of inlet flow to be sent to the controller 9 from 0, the inflow rate previously set Q s, the flow rate in the previous processing step as Q n-1, when the Q n-1> Q s Determines that the phosphorus release rate increases, and increases the set value T gs of the detection time of the ORP bending point by the first ORP meter 6a in the next step. When Q n-1 <Q s , it is determined that the phosphorus release rate decreases, and the set value T of the detection time of the ORP bending point by the first ORP meter 6a in the next step is set.
Reduce gs .

【0025】具体的に第1のORP計6aのORP屈曲
点の検出時間の設定値Tgsを調節する方法は下記(1)
式による。 Tgs=Tgs0 +K1 (Qn-1 −Qs ) (1) 但し、 Tgs:次工程における第1のORP屈曲点の検
出時間の設定値 K1 :比例定数 Qn-1 :現工程における流入流量 Qs :流入流量の設定値 Tgs0 :流入流量Qs のときの第1のORP屈曲点の検
出時間の設定値 Tgsには上限および下限の設定時間を設けておき、その
範囲内で変化させる。この演算は制御装置9で行なうこ
とができる。
Specifically, the method of adjusting the set value T gs of the detection time of the ORP bending point of the first ORP meter 6a is as follows (1).
Depends on the formula. T gs = T gs0 + K 1 (Q n-1 −Q s ) (1) where T gs : set value of detection time of first ORP bending point in next process K 1 : proportional constant Q n-1 : current Inflow rate in process Q s : Set value of inflow rate T gs0 : Set value of detection time of first ORP bending point at inflow rate Q s T gs has upper and lower limit set times Change within the range. This calculation can be performed by the controller 9.

【0026】ここでORP屈曲点の検出時間の設定値を
変化させる意味を説明する。従来の技術において述べた
ように、2槽式間欠曝気法の第1曝気槽では好気工程に
リン吸収が、嫌気工程にORP屈曲点が出現した後、リ
ン放出が行われる。一般にリンの放出速度は有機物の供
給量に依存しており、また下水や生活排水では、流入流
量が多いときには有機物濃度が高く、少ないときには低
いことが知られているので、例えば、排水の流入流量が
多い場合には、リンの放出速度が増加して、第1曝気槽
2aでのリン放出量が大きいと判断できる。この放出量
が大きすぎると第1曝気槽および第2曝気槽の好気工程
の時間内ではリンを完全に吸収しきれなくなってしま
い、処理水中にリンが残存し、処理水質が悪化する。そ
こで、第1曝気槽のORP屈曲点の検出時間の設定値を
大きくすることにより、リンの放出時間を小さくし、放
出量を抑える。この時、窒素除去に配分される時間が多
くなるので、窒素除去に対しても効果的である。
The meaning of changing the set value of the ORP bending point detection time will be described. As described in the prior art, in the first aeration tank of the two-tank intermittent aeration method, phosphorus is absorbed in the aerobic process and phosphorus is released after the ORP inflection point appears in the anaerobic process. Generally, the release rate of phosphorus depends on the supply amount of organic matter, and it is known that the concentration of organic matter is high when the inflow rate is high and low when it is low. When there is a large amount, it can be determined that the phosphorus release rate increases and the phosphorus release amount in the first aeration tank 2a is large. If this release amount is too large, phosphorus cannot be completely absorbed within the aerobic process time of the first aeration tank and the second aeration tank, phosphorus remains in the treated water, and the treated water quality deteriorates. Therefore, by increasing the set value of the detection time of the ORP bending point of the first aeration tank, the release time of phosphorus is shortened and the release amount is suppressed. At this time, the time allotted to the nitrogen removal increases, which is also effective for the nitrogen removal.

【0027】逆に、排水の流入流量が少ない場合、第1
曝気槽でのリン放出量が少ないと判断できる。このよう
な場合、好気工程におけるリンの吸収が不良となり処理
水質が悪化する。そこで、第1曝気槽のORP屈曲点の
検出時間の設定値を小さくすることにより、リンの放出
時間を大きくし、リン放出量を増加させ、リン吸収が不
良となるのを防止するのである。この時、第1曝気槽の
ORP屈曲点の検出時間の設定値を小さくするので、窒
素除去に費やす時間が少なくなるが、一般にこのような
場合、窒素負荷も低いので、この操作により窒素除去が
悪化することはない。
On the contrary, when the inflow of drainage is small, the first
It can be judged that the amount of phosphorus released in the aeration tank is small. In such a case, the absorption of phosphorus in the aerobic process becomes poor and the quality of treated water deteriorates. Therefore, by reducing the set value of the detection time of the ORP inflection point of the first aeration tank, the release time of phosphorus is increased, the amount of phosphorus released is increased, and poor phosphorus absorption is prevented. At this time, since the set value of the detection time of the ORP inflection point of the first aeration tank is made small, the time spent for nitrogen removal is reduced, but in such a case, generally, the nitrogen load is also low, so this operation removes nitrogen. It doesn't get worse.

【0028】したがって、あらかじめ、平均的な流入流
量でORP屈曲点の検出時間の設定値を決めておけば、
測定した流入流量に対応した第1曝気槽のORP屈曲点
の検出時間の設定値を決定でき、結果的に安定した窒
素、リン除去が可能となるのである。なお、流量測定装
置10の測定周期は少なくとも1周期に1度必要であ
り、常時測定の場合は、その平均値を用いてもよい。
Therefore, if the set value of the detection time of the ORP inflection point is determined in advance by the average inflow rate,
The set value of the detection time of the ORP bending point of the first aeration tank corresponding to the measured inflow rate can be determined, and as a result, stable nitrogen and phosphorus removal can be achieved. The flow rate measuring device 10 needs to measure at least once per cycle, and in the case of constant measurement, the average value thereof may be used.

【0029】A法の第2は、雨天時等で排水中に多量の
雨水が混入している場合、流入量が大きいにもかかわら
ず、有機物濃度の低い排水が流入する事がある。このよ
うな排水が流入した場合、A法の第1の手段では安定し
たリン除去が達成できない可能性があるため、上述した
凝集剤添加ポンプ11、凝集剤貯留槽12を用いて、凝
集剤の添加を行い、リン除去の悪化を防止する。この凝
集剤の添加、不添加の判定を図2を用いて説明する。
The second method A is that when a large amount of rainwater is mixed in the drainage, such as during rainy weather, the drainage having a low organic matter concentration may flow in, although the inflow is large. When such waste water flows in, there is a possibility that stable phosphorus removal cannot be achieved by the first means of Method A. Therefore, using the coagulant addition pump 11 and the coagulant storage tank 12 described above, Addition is performed to prevent deterioration of phosphorus removal. The determination as to whether or not the coagulant is added will be described with reference to FIG.

【0030】図2は一日の流入流量変化の例を表わす線
図である。あらかじめ図2中の点線で示す1日の排水の
流入量パターンを設定し、流量測定装置10から制御装
置9に送られる流入流量の測定値Qについて、同時刻の
流入量パターンの流入量との差QX を計算し、このQX
に対してあらかじめ差の上限値QH を設定しておき、Q
X >QH のとき、雨天時等で排水中に多量の雨水が混入
していると判断し、リンと反応して難溶性の化合物をつ
くる凝集剤を、凝集剤添加ポンプ11を用いて、凝集剤
貯留槽12より第2曝気槽に添加し、リン除去を行う。
FIG. 2 is a diagram showing an example of daily inflow rate changes. The inflow pattern of the daily wastewater shown by the dotted line in FIG. 2 is set in advance, and the measured value Q of the inflow rate sent from the flow rate measuring device 10 to the control device 9 is compared with the inflow amount of the inflow amount pattern at the same time. The difference Q X is calculated and this Q X
The upper limit value Q H of the difference is set in advance for
When X> Q H, determines that a large amount of rainwater into the waste water in rainy weather or the like is mixed, a flocculating agent capable of reacting with phosphorus make compound slightly soluble, with flocculant pump 11, The coagulant storage tank 12 is added to the second aeration tank to remove phosphorus.

【0031】この演算は制御装置9で行われ、判定結果
に基づいて起動の信号が制御装置9から凝集剤添加ポン
プ11に自動的に送られる。なお、リン除去のために凝
集剤を曝気槽に添加する方法は、一般的に行われている
同時凝集法として知られているので、凝集剤の添加量、
種類等は同時凝集法の条件に従うのがよい。凝集剤添加
の停止は次のように行う。流入量パターンとの流入差が
数時間連続して上限値QH 以下となった時点で、凝集剤
の添加を停止する。
This calculation is performed by the control device 9, and a start signal is automatically sent from the control device 9 to the coagulant addition pump 11 based on the determination result. The method of adding a coagulant to the aeration tank for phosphorus removal is known as a commonly performed simultaneous coagulation method.
The type and the like should follow the conditions of the simultaneous agglutination method. The coagulant addition is stopped as follows. The addition of the coagulant is stopped when the difference between the inflow amount pattern and the inflow amount becomes the upper limit value Q H or less for several hours continuously.

【0032】次に、この装置を用いた本発明のB法によ
る運転制御方法は、A法に似ているが、以下に述べる二
つの手段を併用して行う。B法の第1は、連続測定が可
能な流量測定装置10から制御装置9に送られる流入流
量の測定値Qに対して、あらかじめ流入流量の下限値Q
L1および上限値Q H1を設定しておき、前回の処理工程に
おける流入流量をQn-1 として、Qn-1 ≦QL1となった
とき、有機物供給量が不足してリン放出量が少なくな
り、リン除去が悪化すると判断して、次工程における第
1曝気槽2aの曝気時間の設定値を従来の技術で説明し
たTe ではなく、あらかじめ設定したTL1とする。Q
n-1 ≧Q H1のときは有機物供給量が過剰で、第1曝気槽
2aでのリン放出が過大となり、リン除去が悪化すると
判断し、次工程における第1曝気槽2aの曝気時間の設
定値をあらかじめ設定したTH1とする。QL1<Qn-1
H1のときは次工程における第1曝気槽2aの曝気時間
の設定値は従来の技術で説明した通りTe とする。
Next, according to the method B of the present invention using this apparatus,
The operation control method is similar to method A, but
This is done by combining the two methods. The first of the B methods allows continuous measurement
Inflow flow from the effective flow rate measuring device 10 to the control device 9
The lower limit value Q of the inflow flow rate with respect to the measured value Q
L1And the upper limit Q H1Is set and the previous processing step is
The inflow rate atn-1As Qn-1≤QL1Became
At this time, the organic matter supply amount becomes insufficient and the phosphorus release amount decreases.
Therefore, it was judged that the phosphorus removal would deteriorate, and
1 Explain the set value of the aeration time of the aeration tank 2a by the conventional technique.
TeNot the preset TL1And Q
n-1≧ Q H1When the amount of organic matter is excessive, the first aeration tank
If the phosphorus release in 2a becomes excessive and the phosphorus removal deteriorates
Judge and set the aeration time of the first aeration tank 2a in the next process.
T with preset valueH1And QL1<Qn-1<
QH1When, the aeration time of the first aeration tank 2a in the next process
The setting value of T is T as described in the prior art.eAnd

【0033】このような下限値QL1とその流量以下でも
適当なリン放出量を確保できるだけのリン放出時間を与
える第1曝気槽2aの曝気時間の設定値TL1、及び上限
値Q H1とその流量以上でも過剰なリン放出とならないリ
ン放出時間を与える第1曝気槽2aの曝気時間の設定値
H1をあらかじめ実験的に決定しておけば、流入変動が
極端な場合においても、第1曝気槽2aで適当なリン放
出量が確保でき、安定したリン除去が可能となる。ま
た、TL1は通常より小さい値となり、窒素除去に費やす
時間が少なくなるが、一般にこのような場合、窒素負荷
も低いのでこの操作により窒素除去率が低下することは
ない。TH1は通常より大きな値となり、窒素の除去に配
分される時間が長くなるので、窒素除去に対しても効率
的である。
Such a lower limit value QL1And below that flow rate
Give enough phosphorus release time to secure an appropriate amount of phosphorus release.
Set value T of the aeration time of the first aeration tank 2aL1, And the upper limit
Value Q H1And an excess of phosphorus is not released even if the flow rate is higher than that.
The set value of the aeration time of the first aeration tank 2a that gives the gas release time
TH1If you decide in advance experimentally,
Even in extreme cases, the first aeration tank 2a can release appropriate phosphorus.
The output can be secured, and stable phosphorus removal can be achieved. Ma
TL1Is smaller than usual and spends nitrogen removal
It will take less time, but generally in such cases nitrogen loading
Since this is also low, this operation does not reduce the nitrogen removal rate.
Absent. TH1Is higher than usual and is used for nitrogen removal.
Efficient for nitrogen removal as it takes longer to divide
It is a target.

【0034】なお、流量測定装置10の測定周期は少な
くとも1周期に1度必要であり、常時測定の場合は、そ
の平均値を用いてもよい。B法の第2は、雨天時等で排
水中に多量の雨水が混入している場合、流入量が大きい
にもかかわらず、有機物濃度の低い排水が流入する事が
あり、このような排水が流入した場合、B法の第1の手
段では安定したリン除去が達成されない可能性があるた
め、上述した凝集剤添加ポンプ11、凝集剤貯留槽12
を用いて、凝集剤の添加を行い、リン除去の悪化を防止
する。この凝集剤の添加、不添加の判定を図2を用いて
説明する。
Note that the flow rate measuring device 10 needs to measure at least once per cycle, and in the case of constant measurement, the average value thereof may be used. The second of the B method is that when a large amount of rainwater is mixed in the drainage such as during rainy weather, the drainage with a low organic matter concentration may flow in, even if the inflow is large. When it flows in, stable phosphorus removal may not be achieved by the first means of Method B. Therefore, the coagulant addition pump 11 and the coagulant storage tank 12 described above are used.
Is used to add a coagulant to prevent deterioration of phosphorus removal. The determination as to whether or not the coagulant is added will be described with reference to FIG.

【0035】図2は一日の流入流量変化の例を表わす線
図である。あらかじめ図2中の点線で示す一日の排水の
流入量パターンを設定し、流量測定装置10から制御装
置9に送られる流入流量の測定値Qについて、同時刻の
流入量パターンの流入量との差QX を計算し、このQX
に対してあらかじめ差の上限値QH2を設定しておき、Q
X >QH2のとき、雨天時などに排水中に多量の雨水が混
入していると判断し、リンと反応して難溶性の化合物を
つくる凝集剤を、凝集剤添加ポンプ11を用いて凝集剤
貯留槽12から第2曝気槽2bに添加し、リンの除去を
行なう。
FIG. 2 is a diagram showing an example of daily change of inflow rate. The inflow pattern of the daily drainage shown by the dotted line in FIG. 2 is set in advance, and the measured value Q of the inflow rate sent from the flow rate measuring device 10 to the control device 9 is compared with the inflow amount of the inflow amount pattern at the same time. The difference Q X is calculated and this Q X
The upper limit value Q H2 of the difference is set in advance, and Q
When X > Q H2 , it is determined that a large amount of rainwater is mixed in the wastewater when it rains, and the flocculant that reacts with phosphorus to form a sparingly soluble compound is aggregated using the flocculant addition pump 11. Phosphorus is removed by adding it from the agent storage tank 12 to the second aeration tank 2b.

【0036】この演算は制御装置9で行われ、判定結果
に基づいて起動の信号が制御装置9から凝集剤添加ポン
プ11に自動的に送られる。なお、リン除去のために凝
集剤を曝気槽に添加する方法は、一般的に行われている
同時凝集法として知られているので、凝集剤の添加量、
種類等は同時凝集法の条件に従うのがよい。凝集剤添加
の停止は次のように行う。流入量パターンとの流入差が
数時間連続して上限値QH2以下となった時点で、凝集剤
の添加を停止する。
This calculation is performed by the controller 9, and a start signal is automatically sent from the controller 9 to the coagulant addition pump 11 based on the determination result. The method of adding a coagulant to the aeration tank for phosphorus removal is known as a commonly performed simultaneous coagulation method.
The type and the like should follow the conditions of the simultaneous agglutination method. The coagulant addition is stopped as follows. The addition of the coagulant is stopped when the difference between the inflow pattern and the inflow pattern becomes the upper limit value Q H2 or less for several hours continuously.

【0037】[0037]

【発明の効果】生物学的脱リン法では、流入原水中の有
機物濃度が低い場合、または流入排水中の有機物濃度が
極端に高い場合、リン除去率が低下する問題があるが、
2槽式間欠曝気法の制御方法は、1周期の間に窒素、リ
ン除去工程を配分するような運転を行なっているので、
ある程度の有機物負荷変動に対しては、対応が可能で良
好な処理水質が得られる。しかし、有機物負荷変動が極
端に大きい場合、リン除去が悪化することがあった。
In the biological dephosphorization method, there is a problem that the phosphorus removal rate decreases when the organic matter concentration in the inflowing raw water is low or when the organic matter concentration in the inflowing wastewater is extremely high.
Since the control method of the two-tank intermittent aeration method is such that the nitrogen and phosphorus removal steps are distributed during one cycle,
It is possible to deal with fluctuations in organic matter load to some extent, and good treated water quality can be obtained. However, when the organic load fluctuation is extremely large, the phosphorus removal may be deteriorated.

【0038】本発明のAまたはBの2つの方法は、それ
ぞれ2つの手段を併用して、この問題に対処するために
なされたものであり、以下の利点を有する。まず、第1
の手段では、2槽式間欠曝気法が行われる装置の排水の
流入系に、流入流量の連続測定が可能な計器を設置して
おき、A法では、その計器の流量測定値に基づいて、第
1曝気槽のORP屈曲点の検出時間の設定値を変化さ
せ、リン放出時間を調節することにより、またB法で
は、その計器の流量測定値が、あらかじめ定めた下限値
以下または上限値以上のとき第1曝気槽の曝気時間の設
定値にそれぞれ特別な値を与えることにより、制御を行
う。
The two methods A or B of the present invention are made to deal with this problem by using the two means in combination, and have the following advantages. First, the first
In the method, a meter capable of continuously measuring the inflow flow rate is installed in the inflow system of the wastewater of the device in which the two-tank intermittent aeration method is performed, and in the A method, based on the flow rate measurement value of the meter, By changing the set value of the detection time of the ORP inflection point of the first aeration tank and adjusting the phosphorus release time, and in the B method, the measured flow rate of the instrument is below the predetermined lower limit value or above the upper limit value. At this time, control is performed by giving special values to the set values of the aeration time of the first aeration tank.

【0039】また、第2の手段では、A、Bの制御方法
とも、設定した流入量パターンとの流量差があらかじめ
定めた値を越えたとき、第2曝気槽にリンと反応して難
溶性の化合物をつくる凝集剤を添加する。この結果、通
常の場合は第1の手段で、第1曝気槽でのリン放出量は
適当量が確保され、リンの吸収及び放出が良好な状態で
進行し、また排水に雨水等が多く混入する特別な場合で
も、第2の手段で、凝集剤によってリンが除去されるた
め、高いリン除去を維持することができる。
In the second means, in both the control methods A and B, when the flow rate difference from the set inflow rate pattern exceeds a predetermined value, it reacts with phosphorus in the second aeration tank and is hardly soluble. Add a flocculant to form the compound of. As a result, in the normal case, with the first means, the appropriate amount of phosphorus release in the first aeration tank is secured, the absorption and release of phosphorus proceed in a good state, and a large amount of rainwater is mixed in the drainage. Even in the special case in which the phosphorus is removed by the coagulant by the second means, a high phosphorus removal can be maintained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の制御および凝集剤添加方法が適用され
る下水処理装置の要部構成を示す模式図
FIG. 1 is a schematic diagram showing a main configuration of a sewage treatment apparatus to which a control and coagulant addition method of the present invention is applied.

【図2】本発明の制御方法における一日の流入量の変化
を示し、流入量パターンと測定流量を表わす線図
FIG. 2 is a diagram showing a change in daily inflow in the control method of the present invention, showing an inflow pattern and a measured flow rate.

【図3】本発明者らが出願中の間欠曝気法の制御方法が
適用される下水処理装置の要部構成を示す模式図
FIG. 3 is a schematic diagram showing a main configuration of a sewage treatment apparatus to which a control method of an intermittent aeration method applied by the present inventors is applied.

【図4】本発明者らが出願中の間欠曝気法の制御方法に
おける第1曝気槽、第2曝気槽のORPの変化を示し、
(a)は第1曝気槽のORP、(b)は第2曝気槽のO
RPのそれぞれ時間経過に対する関係線図
FIG. 4 shows changes in ORP of a first aeration tank and a second aeration tank in a control method of an intermittent aeration method which the present inventors filed,
(A) ORP of the first aeration tank, (b) O of the second aeration tank
Relationship diagram for each lapse of time of RP

【符号の説明】[Explanation of symbols]

1 下水 2a 第1曝気槽 2b 第2曝気槽 3 処理水 4 最終沈殿池 5 返送汚泥ポンプ 6a 第1ORP計 6b 第2ORP計 7a 第1曝気ブロワ 7b 第2曝気ブロワ 8a 第1攪拌ポンプ 8b 第2攪拌ポンプ 9 制御装置 10 流量測定装置 11 凝集剤添加ポンプ 12 凝集剤貯留槽 1 Sewage 2a First aeration tank 2b Second aeration tank 3 Treated water 4 Final sedimentation tank 5 Return sludge pump 6a 1st ORP meter 6b 2nd ORP meter 7a 1st aeration blower 7b 2nd aeration blower 8a 1st stirring pump 8b 2nd agitation Pump 9 Control device 10 Flow rate measuring device 11 Flocculant addition pump 12 Flocculant storage tank

フロントページの続き (72)発明者 森 豊 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 佐々木 康成 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 小倉 明子 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内(72) Inventor Yutaka Mori 1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd. (72) Inventor Yasunari Sasaki 1-1, Tanabe-shinden, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji (72) Inventor Akiko Ogura 1-1, Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】第1のORP計を設置した第1曝気槽と、
この第1曝気槽に直列に連結し第2のORP計を設置し
た第2曝気槽を備え、排水を第1曝気槽へ流入させて、
前記二つの曝気槽において曝気を行う好気状態と、曝気
を停止して攪拌を行う嫌気状態を交互に繰り返して処理
を行った後、この処理水を最終沈殿池から放流させ、沈
澱汚泥は曝気槽へ返送するとともに余剰汚泥として抜き
出し、排水中の窒素、リンを除去する間欠曝気式活性汚
泥法の制御方法において、 第1曝気槽へ流入する排水の流量を測定し、この流量測
定値とあらかじめ定めた流入流量との差に基づき、第一
曝気槽におけるORPの時間変化曲線の屈曲点の検出時
間の設定値を調節するとともに、あらかじめ排水の1日
の流入量パターンを設定しておき、現在の流入量と同時
刻の流入量パターンの流入量との差を求め、その差があ
らかじめ定めた上限値以上のとき第2曝気槽にリンと反
応して難溶性の化合物をつくる凝集剤を添加することを
特徴とする間欠曝気式活性汚泥法の制御方法。
A first aeration tank provided with a first ORP meter;
A second aeration tank provided with a second ORP meter connected in series to the first aeration tank and draining water into the first aeration tank;
After performing treatment by alternately repeating the aerobic state in which aeration is performed in the two aeration tanks and the anaerobic state in which aeration is stopped and stirring is performed, the treated water is discharged from the final settling tank, and the settled sludge is aerated. In the control method of the intermittent aeration type activated sludge method that removes nitrogen and phosphorus in the wastewater while returning it to the tank and extracting it as excess sludge, measure the flow rate of the wastewater flowing into the first aeration tank, Based on the difference with the determined inflow rate, the set value of the detection time of the inflection point of the ORP time change curve in the first aeration tank is adjusted, and the daily inflow pattern of drainage is set in advance. The difference between the inflow rate and the inflow rate of the inflow pattern at the same time is calculated, and when the difference is equal to or greater than the predetermined upper limit value, a flocculant that reacts with phosphorus to form a sparingly soluble compound is added to the second aeration tank. You A method for controlling an intermittent aeration type activated sludge method, which is characterized by the following.
【請求項2】第1のORP計を設置した第1曝気槽と、
この第1曝気槽に直列に連結し第2のORP計を設置し
た第2曝気槽を備え、排水を第1曝気槽へ流入させて、
前記二つの曝気槽において曝気を行う好気状態と、曝気
を停止して攪拌を行う嫌気状態を交互に繰り返して処理
を行った後、この処理水を最終沈殿池から放流させ、沈
澱汚泥は曝気槽へ返送するとともに余剰汚泥として抜き
出し、排水中の窒素、リンを除去する間欠曝気式活性汚
泥法の制御方法において、 第1曝気槽へ流入する排水の流量を測定し、この流量測
定値があらかじめ定めた下限値以下または上限値以上の
とき第1曝気槽の曝気時間の設定値をそれぞれ特別な値
とするとともに、あらかじめ排水の1日の流入量パター
ンを設定しておき、現在の流入量と同時刻の流入量パタ
ーンの流入量との差を求め、その差があらかじめ定めた
上限値以上のとき第2曝気槽にリンと反応して難溶性の
化合物をつくる凝集剤を添加することを特徴とする間欠
曝気式活性汚泥法の制御方法。
2. A first aeration tank provided with a first ORP meter,
A second aeration tank provided with a second ORP meter connected in series to the first aeration tank and draining water into the first aeration tank;
After performing treatment by alternately repeating the aerobic state in which aeration is performed in the two aeration tanks and the anaerobic state in which aeration is stopped and stirring is performed, the treated water is discharged from the final settling tank, and the settled sludge is aerated. In the control method of the intermittent aeration type activated sludge method that removes nitrogen and phosphorus in the wastewater while returning it to the tank and extracting it as excess sludge, the flow rate of the wastewater flowing into the first aeration tank is measured, and this flow rate measurement value is calculated in advance. When the value is less than the lower limit value or more than the upper limit value, the set value of the aeration time of the first aeration tank is set to a special value, and the daily inflow pattern of drainage is set in advance, and The difference between the inflow rate and the inflow rate at the same time is calculated, and when the difference is equal to or more than a predetermined upper limit, a coagulant that reacts with phosphorus to form a sparingly soluble compound is added to the second aeration tank. When Control method for intermittent aeration type activated sludge process.
JP13045096A 1995-08-10 1996-05-27 Control method of intermittent aeration activated sludge process Expired - Fee Related JP3644757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13045096A JP3644757B2 (en) 1995-08-10 1996-05-27 Control method of intermittent aeration activated sludge process

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP20410695 1995-08-10
JP7-204106 1995-08-10
JP13045096A JP3644757B2 (en) 1995-08-10 1996-05-27 Control method of intermittent aeration activated sludge process

Publications (2)

Publication Number Publication Date
JPH09108689A true JPH09108689A (en) 1997-04-28
JP3644757B2 JP3644757B2 (en) 2005-05-11

Family

ID=26465581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13045096A Expired - Fee Related JP3644757B2 (en) 1995-08-10 1996-05-27 Control method of intermittent aeration activated sludge process

Country Status (1)

Country Link
JP (1) JP3644757B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100302895B1 (en) * 1999-07-02 2001-09-22 임정규 Advanced wastewater treatment system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100302895B1 (en) * 1999-07-02 2001-09-22 임정규 Advanced wastewater treatment system

Also Published As

Publication number Publication date
JP3644757B2 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
JP2803941B2 (en) Control method of intermittent aeration type activated sludge method
JP4229999B2 (en) Biological nitrogen removal equipment
JP4008694B2 (en) Sewage treatment plant water quality controller
JPH07299495A (en) Nitrification accelerating method for activated sludge circulation modulating method and method for predicting nitrification rate
Kayser et al. Controlling a combined lagoon/reed bed system using the oxidation-reduction potential (ORP)
JPH0724492A (en) Method for controlling operation of activated sludge circulation change method
JP3388963B2 (en) Control method of intermittent aeration type activated sludge method
JP3707526B2 (en) Waste water nitrification method and apparatus
JP3644757B2 (en) Control method of intermittent aeration activated sludge process
JP3260574B2 (en) Control method of intermittent aeration type activated sludge method
JP3260575B2 (en) Control method of intermittent aeration type activated sludge method
JPH0938683A (en) Biological water treating device
JP3260558B2 (en) Control method of intermittent aeration type activated sludge method
JPH05220495A (en) Controlling method for sewage disposal process
JP3293218B2 (en) Biological nitrification denitrification treatment method
JP3651201B2 (en) Control method of intermittent aeration activated sludge process
JP3279008B2 (en) Control method of intermittent aeration type activated sludge method
JP3303475B2 (en) Operation control method of activated sludge circulation method
JP3260554B2 (en) How to control the sewage treatment process
JP2960272B2 (en) Addition method of organic matter and flocculant in intermittent aeration type activated sludge method.
JP3671554B2 (en) Control method of intermittent aeration activated sludge process
JP2000051892A (en) Method and apparatus for nitrating waste water and activity detector
JP2960273B2 (en) Operation control method of intermittent aeration type activated sludge method
JP3376905B2 (en) Intermittent aeration activated sludge treatment equipment
JP3250934B2 (en) How to control the sewage treatment process

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees