JPH0898406A - Power factor control system for receiving power - Google Patents
Power factor control system for receiving powerInfo
- Publication number
- JPH0898406A JPH0898406A JP6223846A JP22384694A JPH0898406A JP H0898406 A JPH0898406 A JP H0898406A JP 6223846 A JP6223846 A JP 6223846A JP 22384694 A JP22384694 A JP 22384694A JP H0898406 A JPH0898406 A JP H0898406A
- Authority
- JP
- Japan
- Prior art keywords
- power
- sub
- power factor
- capacitor
- transforming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/30—Reactive power compensation
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
- Control Of Electrical Variables (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、受電点での力率を規
定値内に制御することで、受電点の力率を改善し、電力
料金の低減などを図るようにした受電力率制御方式に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention controls the power factor at the power receiving point within a specified value to improve the power factor at the power receiving point and reduce power charges. It is related to the method.
【0002】[0002]
【従来の技術】従来の一般的な受電力率制御方式の一例
を図5に示した。この制御方式では、瞬時の無効電力
(Var)を検出し、この検出値が所定の規定値を超過
した場合には、一定周期毎に力率改善用のコンデンサを
投入または開放することで、受電力率を改善する方法が
知られている。図5の例では、瞬時無効電力が遅れ規定
値を越えた場合にはコンデンサC1、C2を投入し、ま
た同じく進み規定値を越えた場合にはコンデンサC2の
開放が行われる。なお、この場合において、力率は、例
えば電力会社の電気供給規定によれば、午前8時から午
後10時までの時間における平均力率が対象となり、ま
た瞬間力率が進み力率となる場合は瞬間力率は100%
とみなされる。2. Description of the Related Art An example of a conventional general power receiving rate control system is shown in FIG. In this control method, the instantaneous reactive power (Var) is detected, and when the detected value exceeds a predetermined specified value, the power factor improving capacitor is turned on or off at regular intervals to receive power. Methods are known to improve the power factor. In the example of FIG. 5, when the instantaneous reactive power exceeds the delay specified value, the capacitors C1 and C2 are turned on, and when the advance reactive power exceeds the specified value, the capacitor C2 is opened. In this case, the power factor is, for example, according to the electricity supply regulation of the electric power company, the average power factor during the time from 8:00 am to 10:00 pm, and the instantaneous power factor is the advanced power factor. Is an instantaneous power factor of 100%
Is regarded as
【0003】[0003]
【発明が解決しようとする課題】ところで、上記従来の
制御方式は、基本的には、瞬時無効電力の値が規定値を
越えた場合においてコンデンサの投入または開放によっ
て積算無効電力量を制御するようにしたものである。By the way, the above-mentioned conventional control method basically controls the integrated reactive power amount by turning on or off the capacitor when the value of the instantaneous reactive power exceeds the specified value. It is the one.
【0004】しかしながら、この従来の制御方式では、
力率改善用のコンデンサがサブ変電所側にだけ設置され
ている需要家側の電力系統の場合には、このようなコン
デンサを用いた単機能の自動力率改善装置をサブ変電所
毎に複数台設置するしか方法がなかった。そして、この
ように単機能の自動力率改善装置では、サブ変電所毎の
力率改善には寄与するものの、電力料金に影響する受変
電設備における受電点の力率改善には直接効果が出しに
くかった。However, in this conventional control method,
In the case of a power system on the customer side where capacitors for power factor improvement are installed only on the sub-substation side, multiple single-function automatic power factor correction devices using such capacitors are provided for each sub-substation. The only option was to set up a stand. In this way, although the single-function automatic power factor correction device contributes to the power factor improvement for each sub-substation, it has a direct effect on the power factor improvement at the power receiving point in the power receiving and transforming equipment that affects the electricity rate. It was difficult.
【0005】つまり、受変電設備に纏まった力率改善用
のコンデンサを設置した系統の場合には、上記従来の制
御方式によって受電力率を有効に制御できるものの、こ
のようなコンデンサが複数のサブ変電所に分散設置され
た系統の場合には受電力率の制御が非常に困難であると
いう課題があった。That is, in the case of a system in which a power factor improving capacitor integrated in a power receiving and transforming facility is installed, the power receiving ratio can be effectively controlled by the above conventional control method, but such a capacitor has a plurality of sub-units. In the case of a system that is distributed and installed in a substation, there is a problem that it is very difficult to control the power reception rate.
【0006】この発明は、上記の事情に鑑みてなされた
もので、サブ変電設備側だけに力率改善用のコンデンサ
が設置されている設備においても受変電設備における受
電点の力率制御を直接図ることができる受電力率制御方
式を提供することを目的とする。The present invention has been made in view of the above circumstances, and directly controls the power factor of the power receiving point in the power receiving and transforming facility even in the facility in which the power factor improving capacitor is installed only on the sub-transformer facility side. It is an object of the present invention to provide a power reception rate control method that can be achieved.
【0007】[0007]
【課題を解決するための手段】この発明は上記の目的を
達成するために、第1発明は受変電設備および前記受変
電設備に接続された複数のサブ変電設備とから構成さ
れ、前記サブ変電設備側だけに力率改善用のコンデンサ
が設置されている電力系統における受電力率制御方式に
おいて、前記受変電設備側には力率改善制御要否判定用
計測値を取り込む第1無効電力変換器を設け、前記サブ
変電設備側には制御サブ変電判定用計測値を取り込む第
2無効電力変換器を設け、第1および第2無効電力変換
器からの計測値を演算処理する演算処理部を設け、この
演算処理部で計測値を演算処理し、その処理の結果によ
って受電力率改善のための最適なコンデンサ組み合わせ
を決定してコンデンサ用開閉器の投入・開放を制御する
制御部を設けたことを特徴とするものである。In order to achieve the above object, the present invention comprises a power receiving and transforming facility and a plurality of sub transforming facilities connected to the power receiving and transforming facility. In a power receiving factor control method in a power system in which a power factor improving capacitor is installed only on the facility side, a first reactive power converter for fetching a measurement value for determining whether power factor improving control is required on the power receiving and transforming facility side And a second reactive power converter for fetching a measured value for control sub-transformation determination on the side of the sub-transformer, and an arithmetic processing unit for arithmetically processing the measured values from the first and second reactive power converters. A control unit that controls the opening and closing of the capacitor switch by calculating the measured value with this processing unit, determining the optimum capacitor combination for improving the power reception rate based on the result of the processing, It is an feature.
【0008】第2発明は、 前記各力率改善用のコンデ
ンサの開閉器の投入・開放が、遮断器、コンデンサ用開
閉器およびコンデンサの故障の有無を判別して行われる
ことを特徴とするものである。A second aspect of the present invention is characterized in that the opening and closing of the switch of the capacitor for improving each power factor is performed by determining whether or not there is a failure of the breaker, the switch for capacitor and the capacitor. Is.
【0009】[0009]
【作用】この発明によれば、上記のようにサブ変電設備
に設けられた力率改善用のコンデンサは、第1及び第2
無効電力変換器からの計測値を演算処理してからその処
理の結果に応じて投入・開放することによって受電力率
を制御するようにしたので、サブ変電設備側だけに力率
改善用のコンデンサが設置されている電力系統において
も受変電設備における受電点の力率制御を行うことがで
きる。According to the present invention, the power factor improving capacitors provided in the sub-transformation equipment as described above have the first and second capacitors.
Since the power reception rate is controlled by calculating the measured value from the reactive power converter and then opening and closing according to the result of the processing, the power factor improving capacitor can be controlled only on the sub-transformer side. Power factor control of the power receiving point in the power receiving and transforming facility can be performed even in the electric power system in which the is installed.
【0010】[0010]
【実施例】以下、この発明の実施例を図面に基づいて説
明する。この実施例は、需要家側の受変電設備が、特高
受変電設備および複数のサブ変電設備から構成される電
力系統において、特高受変電設備側に力率改善用のコン
デンサが設置されず、サブ変電設備側にだけ力率改善用
のコンデンサが設置されている電力系統において、受電
力率の改善をするようにした制御方式である。Embodiments of the present invention will be described below with reference to the drawings. In this example, in the power system in which the power receiving and transforming equipment on the customer side is composed of the extra-high voltage power receiving and transforming equipment and a plurality of sub-transforming equipment, no capacitor for power factor improvement is installed on the extra-high power receiving and transforming equipment side. In a power system in which a power-factor-improving capacitor is installed only on the sub-transformer side, this is a control method for improving the power-receiving ratio.
【0011】図1に、特高受変電設備SSと複数のサブ
変電設備SU1〜SUnの概要を示す。図1において、
A,B回線は同一に構成されていて、ESは接地開閉
器、TRFは切替開閉器、CBは遮断器、TFは変圧
器、SWは力率改善用コンデンサの開閉器、SCは力率
改善用コンデンサである。図1に示す特高受変電設備S
Sでは主変圧器2台で切換運転を行なっている。このた
め、変圧器TFの2次側では図示しないトータルCTに
より無効電力を計測する第1無効電力変換器11が設け
られている。また、図1のサブ変電設備SU1〜SUn
では、前記図5のような方式で、各サブ変電設備毎に第
2無効電力変換器12によって無効電力をそれぞれ計測
している。FIG. 1 shows an outline of the extra-high voltage substation equipment SS and a plurality of sub substation equipment SU1 to SUn. In FIG.
The A and B lines are configured the same, ES is a ground switch, TRF is a switching switch, CB is a circuit breaker, TF is a transformer, SW is a capacitor switch for power factor improvement, and SC is power factor improvement. For capacitors. Extra-high voltage substation equipment S shown in Fig. 1
In S, switching operation is performed with two main transformers. Therefore, on the secondary side of the transformer TF, the first reactive power converter 11 that measures the reactive power by the total CT (not shown) is provided. In addition, the sub-transformation equipment SU1 to SUn of FIG.
Then, in the method as shown in FIG. 5, the reactive power is measured by the second reactive power converter 12 for each sub-transformation facility.
【0012】上記のようにして計測された無効電力は演
算処理部13で演算処理され、その処理結果がコンデン
サ投入・開放を制御する制御部14に入力される。制御
部14では処理結果から受電点の力率改善のための最適
なコンデンサ組み合わせを決定してコンデンサ用開閉器
SWの投入・開放を制御する出力を送出する。なお、各
回線の遮断器、コンデンサ用開閉器およびコンデンサの
故障信号を監視していて、故障信号があったときにはコ
ンデンサ用開閉器の制御は行わないようにしている。The reactive power measured as described above is arithmetically processed by the arithmetic processing unit 13, and the processing result is input to the control unit 14 which controls the opening and closing of the capacitor. The control unit 14 determines an optimal capacitor combination for improving the power factor at the power receiving point from the processing result, and sends an output for controlling the opening / closing of the capacitor switch SW. It should be noted that the circuit breaker, the capacitor switch, and the capacitor failure signal of each line are monitored, and the capacitor switch is not controlled when there is a failure signal.
【0013】図2は、実施例の受電力率制御方式を適用
した装置の構成を示した。ここで、特高受変電設備およ
び各サブ変電設備には、機器の状態や故障あるいは計測
などのための信号を取り込んで、機器への入/切制御出
力を行うためのリモート入出力装置2がそれぞれ設置さ
れている。そして、これらのリモート入出力装置2はそ
れぞれ、各電力設備(特高受変電設備、サブ変電設備)
とこれらの制御に必要な信号、例えば機器状態信号、機
器故障信号、計測値信号、機器制御信号などの授受を行
う。そして、中央処理装置1は後述するように力率改善
のための自動制御処理を行い、リモート入出力装置2
は、中央処理装置1によって演算制御される。FIG. 2 shows the configuration of an apparatus to which the power receiving rate control system of the embodiment is applied. Here, a remote I / O device 2 for taking in a signal for the state of the equipment, a failure, a measurement, etc., and performing on / off control output to the equipment is provided in the extra-high voltage substation equipment and each sub-substation equipment. Each is installed. Each of these remote input / output devices 2 has its own power equipment (special high-voltage substation equipment, sub-substation equipment).
And signals necessary for controlling these, such as a device status signal, a device failure signal, a measurement value signal, and a device control signal, are exchanged. Then, the central processing unit 1 performs an automatic control process for improving the power factor as described later, and the remote input / output unit 2
Are controlled by the central processing unit 1.
【0014】上記の実施例の受電力率改善装置では、サ
ブ変電設備側に設置された複数の力率改善用のコンデン
サ(進相コンデンサ)の投入・開放によって無効電力を
許容範囲内に抑えて負荷の力率を改善している。ここ
で、例えば、電力会社との契約により、月間の平均力率
が85%を下回る場合には割増電力基本料金を支払う義
務があり、また逆に、平均力率が85%以上の場合には
基本料金が割引きされることから、このような受電力率
を改善することで、力率改善による電力節約の他、割引
によって電力料金の低減を更に図ることができる。In the power receiving rate improving device of the above embodiment, the reactive power is suppressed within the allowable range by turning on / off a plurality of power factor improving capacitors (phase advancing capacitors) installed on the sub-transformer side. The load power factor is improved. Here, for example, due to a contract with an electric power company, if the monthly average power factor is less than 85%, there is an obligation to pay the premium power basic charge, and conversely, if the average power factor is 85% or more, Since the basic charge is discounted, by improving the power reception rate as described above, it is possible to save power by improving the power factor and further reduce the power charge by discounting.
【0015】図3は本実施例の動作を説明するためのフ
ローチャートである。図3において、Var(1)は特
高変圧器の二次無効電力、SCは力率改善用のコンデン
サを意味する。また、図4は無効電力が進みリミットH
L、あるいは遅れリミットLLを越えた場合の実施例に
おける力率改善用のコンデンサの投入・開放(引き外
し)の一例を説明したものである。更に、表1に、制御
対象となるサブ変電設備における力率改善用のコンデン
サの設置の一例を示した。FIG. 3 is a flow chart for explaining the operation of this embodiment. In FIG. 3, Var (1) means the secondary reactive power of the extra high voltage transformer, and SC means the capacitor for power factor improvement. In addition, in Fig. 4, the reactive power advances and the limit H
This is an example of turning on / off (tripping) a capacitor for power factor improvement in the embodiment when L or the delay limit LL is exceeded. Further, Table 1 shows an example of installation of capacitors for power factor improvement in sub-transformation equipment to be controlled.
【0016】[0016]
【表1】 [Table 1]
【0017】ここで、第1〜第3変電所がサブ変電設備
であり、また事務所棟もサブ変電設備の1つとみなす。
また各サブ変電設備における無効電力(Var)値は、
コンデンサの投入・開放の判定のために上記のように中
央処理装置に入力される。Here, it is assumed that the first to third substations are sub-transformation facilities and the office building is also one of the sub-transformation facilities.
In addition, the reactive power (Var) value in each sub-transformer is
It is input to the central processing unit as described above to determine whether to open or close the capacitor.
【0018】次に、図3、4を参照しつつ、実施例の動
作を説明する。1分毎に、特高変圧器の二次無効電力を
読み込み(S1)、投入・開放条件の判定を含むSCの
制御の要否を判断する(S2)。そして、5分間条件が
継続した場合には(S3)、力率改善用のコンデンサの
開放制御(S11〜S14)、あるいは投入制御(S2
1〜S24)を行う。この制御周期は、コンデンサの放
電時間を考慮し、例えば5分とする。ここで、上記表1
において、主幹CBが切の状態のサブ変電設備、あるい
は故障した力率改善用のコンデンサは、上記の制御対象
から除く。また、サブ変電設備に複数の力率改善用のコ
ンデンサがある場合には、必要により、これら複数のコ
ンデンサを同時に制御する。Next, the operation of the embodiment will be described with reference to FIGS. Every 1 minute, the secondary reactive power of the extra-high voltage transformer is read (S1), and it is determined whether or not the control of the SC including the determination of the opening / closing condition is necessary (S2). When the condition continues for 5 minutes (S3), the opening control of the power factor improving capacitor (S11 to S14) or the closing control (S2).
1 to S24) are performed. This control cycle is, for example, 5 minutes in consideration of the discharge time of the capacitor. Here, Table 1 above
In (2), the sub-transformation equipment with the main CB turned off or the failed capacitor for power factor improvement is excluded from the above control targets. If the sub-transformer has a plurality of power factor improving capacitors, the plurality of capacitors are controlled simultaneously if necessary.
【0019】上記の力率改善用のコンデンサの投入制御
は、次のように行われる。まず、制御周期は5分とし、
この制御周期を中央処理装置のCPUのメモリ上に予め
設定しておく。また、この投入制御においては、進み側
におけるサブ変電設備における力率制御用のコンデンサ
は制御対象から外し、その制御は行わない。そして、最
大Varを発生するサブ変電設備を順次検出し(S1
1)、該当するサブ変電設備における最適SC制御の組
合せを決定し(S12)、投入の不可を判別した後(S
13)、該当するSCを投入する(S14)。The above-mentioned control of closing the power factor improving capacitor is performed as follows. First, the control cycle is 5 minutes,
This control cycle is preset in the memory of the CPU of the central processing unit. Further, in this closing control, the capacitor for power factor control in the sub-transformer on the leading side is removed from the control target and is not controlled. Then, the sub-transformation equipment that generates the maximum Var is sequentially detected (S1
1) After determining the optimum SC control combination in the corresponding sub-transformation equipment (S12) and determining that it is impossible to input (S12).
13) The corresponding SC is input (S14).
【0020】ここで、上記の処理S11〜S14は、具
体的には、下式の結果が最小となるサブ変電設備の力率
改善用のコンデンサ(SC)を投入することで行われ
る。またこの場合、処理S13において、既に投入済み
のコンデンサは投入の対象から外される。なお、下式に
おいて、投入可能最適SC容量は、該当サブ変電設備の
組み合わせから適宜選定する。Here, the above-mentioned steps S11 to S14 are specifically carried out by inserting a power factor improving capacitor (SC) of the sub-transformation equipment which minimizes the result of the following equation. Further, in this case, in step S13, the capacitors that have already been turned on are excluded from being turned on. In the formula below, the optimum SC capacity that can be input is appropriately selected from the combination of the relevant sub-transformation facilities.
【0021】|−(投入可能最適SC容量)+該当サブ
変電設備の無効電力値(+)| 一方、上記力率改善用のコンデンサの開放制御は、次の
ように行われる。まず、制御周期は30分とし、この制
御周期を中央処理装置のCPUのメモリ上に予め設定し
ておく。また、この開放制御においては、遅れ側におけ
るサブ変電設備における力率制御用のコンデンサは制御
対象から外し、その制御は行わない。そして、最小Va
rを発生するサブ変電設備を順次検出し(S21)、該
当するサブ変電設備における最適SC制御の組合せを決
定し(S22)、開放の不可を判別した後(S23)、
該当するSCを開放する(S24)。│- (optimum inputtable SC capacity) + reactive power value (+) │ of the corresponding sub-transformer On the other hand, the opening control of the power factor improving capacitor is performed as follows. First, the control cycle is 30 minutes, and this control cycle is set in advance in the memory of the CPU of the central processing unit. Further, in this opening control, the capacitor for power factor control in the sub-transformer on the delay side is excluded from the control target, and the control is not performed. And the minimum Va
After sequentially detecting sub-transformation facilities that generate r (S21), determining the optimum SC control combination in the corresponding sub-transformation facility (S22), and determining whether or not opening is possible (S23),
The corresponding SC is released (S24).
【0022】ここで、上記の処理S21〜S24は、具
体的には、下式の結果が最小となるサブ変電設備の力率
改善用のコンデンサ(SC)を投入することで行われ
る。またこの場合、処理S23において、既に開放済み
のコンデンサは遮断の対象から外される。Here, the above-mentioned steps S21 to S24 are specifically carried out by inserting a power factor improving capacitor (SC) of the sub-transformation equipment which minimizes the result of the following equation. Further, in this case, in step S23, the capacitor that has already been opened is excluded from the target of interruption.
【0023】|(投入可能最適SC容量)+該当サブ変
電設備の無効電力値(−)| ここで、上記の制御処理において、進み側の設定値(q
1)や遅れ側の設定値(q2)等の設定は、中央処理装
置に備えられたCRT画面上において、キーボード入力
等により行われる。またこの場合、設定値q1と設定値
q2との間の調整幅は、コンデンサ投入・開放時におけ
る無効電力の変動(ハッチング)を防止するために、例
えば、コンデンサ容量の1.5倍程度の幅にされる。ま
た設定値q2は、設定値q1の1/4〜1/5程度に設
定される。| (Optimum inputtable SC capacity) + reactive power value of the relevant sub-transformer (-) | Here, in the above control process, the set value (q
The setting of 1) or the set value (q2) on the delay side is performed by keyboard input or the like on the CRT screen provided in the central processing unit. Further, in this case, the adjustment width between the set value q1 and the set value q2 is, for example, about 1.5 times the capacitor capacity in order to prevent fluctuation (hatching) of the reactive power when the capacitor is turned on and off. To be The set value q2 is set to about 1/4 to 1/5 of the set value q1.
【0024】[0024]
【発明の効果】以上述べたように、この発明によれば、
受電設備側の無効電力の計測値と各サブ変電設備側の無
効電力の計測値を演算してコンデンサの投入・開放の制
御を判定して、サブ変電設備側に設けられた力率改善用
のコンデンサの投入・開放制御を行う構成としたので、
力率改善用のコンデンサがサブ変電設備側だけに設置さ
れた需要家側の電力系統においても、単機能の自動力率
改善装置を複数台設置する必要がない。そして、従来の
上記の単機能の自動力率改善装置ではサブ変電設備毎の
力率改善には寄与するものの、電力料金に影響する受電
点の直接的な力率改善は行えなかったが、この発明では
受変電設備における受電点の力率改善が直接できる結
果、電力料金の低減を効果的に行うことができる。As described above, according to the present invention,
The reactive power measurement value on the power receiving equipment side and the reactive power measurement value on each sub-transformation equipment side are calculated to determine the control of opening and closing of the capacitor, and the power factor improvement Since it is configured to control the opening and closing of the capacitor,
Even in the power system on the customer side where the power factor improving capacitors are installed only on the sub-transformer side, it is not necessary to install a plurality of single-function automatic power factor improving devices. And although the above-mentioned conventional single-function automatic power factor correction device contributes to the power factor improvement for each sub-transformer, it cannot directly improve the power factor of the power receiving point that affects the electricity rate. According to the invention, as a result of directly improving the power factor at the power receiving point in the power receiving and transforming facility, it is possible to effectively reduce the power charge.
【図1】この発明の実施例を受変電設備に適用した例を
示す構成図である。FIG. 1 is a configuration diagram showing an example in which an embodiment of the present invention is applied to a power receiving and transforming facility.
【図2】実施例の受電力率制御方式を適用した装置の構
成例の説明図である。FIG. 2 is an explanatory diagram of a configuration example of an apparatus to which the power receiving rate control method of the embodiment is applied.
【図3】実施例の動作を説明するフローチャートであ
る。FIG. 3 is a flowchart illustrating the operation of the embodiment.
【図4】実施例における無効電力の変動を示すグラフで
ある。FIG. 4 is a graph showing fluctuations in reactive power in an example.
【図5】従来の受電力率制御方式の説明図である。FIG. 5 is an explanatory diagram of a conventional power receiving rate control method.
1…中央処理装置 2…リモート入出力装置 11、12…第1及びだい2無効電力変換器 13…演算処理部 14…制御部 DESCRIPTION OF SYMBOLS 1 ... Central processing unit 2 ... Remote input / output device 11, 12 ... 1st and 2nd reactive power converter 13 ... Arithmetic processing part 14 ... Control part
Claims (2)
された複数のサブ変電設備とから構成され、前記サブ変
電設備側だけに力率改善用のコンデンサが設置されてい
る電力系統における受電力率制御方式において、 前記受変電設備側には力率改善制御要否判定用計測値を
取り込む第1無効電力変換器を設け、前記サブ変電設備
側には制御サブ変電判定用計測値を取り込む第2無効電
力変換器を設け、第1および第2無効電力変換器からの
計測値を演算処理する演算処理部を設け、この演算処理
部で計測値を演算処理し、その処理の結果によって受電
力率改善のための最適なコンデンサ組み合わせを決定し
てコンデンサ用開閉器の投入・開放を制御する制御部を
設けたことを特徴とする受電力率制御方式。1. Power reception in an electric power system, which comprises a power receiving and transforming facility and a plurality of sub transforming facilities connected to the power receiving and transforming facility, and in which a power factor improving capacitor is installed only on the sub transforming facility side. In the rate control method, a first reactive power converter is provided on the side of the power receiving and transforming equipment for taking a measurement value for determining whether power factor improvement control is necessary, and a measurement value for controlling sub transformation is provided on the side of the sub transformation equipment. 2 Reactive power converters are provided, and an arithmetic processing unit for arithmetically processing the measured values from the first and second reactive power converters is provided. The arithmetic processing unit arithmetically processes the measured values and receives the power depending on the result of the processing. A power receiving rate control method characterized by having a control unit that determines the optimum combination of capacitors for improving the rate and controls the opening and closing of the switch for capacitors.
の投入・開放が、遮断器、コンデンサ用開閉器およびコ
ンデンサの故障の有無を判別して行われることを特徴と
する請求項1記載の受電力率制御方式。2. The switching on / off of each power factor improving capacitor switch is performed by determining whether or not there is a failure in the circuit breaker, the capacitor switch, and the capacitor. Power reception rate control method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22384694A JP3322023B2 (en) | 1994-09-20 | 1994-09-20 | Power receiving rate control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22384694A JP3322023B2 (en) | 1994-09-20 | 1994-09-20 | Power receiving rate control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0898406A true JPH0898406A (en) | 1996-04-12 |
JP3322023B2 JP3322023B2 (en) | 2002-09-09 |
Family
ID=16804643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22384694A Expired - Fee Related JP3322023B2 (en) | 1994-09-20 | 1994-09-20 | Power receiving rate control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3322023B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100446378C (en) * | 2006-04-30 | 2008-12-24 | 南宁微控技术有限公司 | Dynamic capacity compensation controller and its switching mode |
-
1994
- 1994-09-20 JP JP22384694A patent/JP3322023B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100446378C (en) * | 2006-04-30 | 2008-12-24 | 南宁微控技术有限公司 | Dynamic capacity compensation controller and its switching mode |
Also Published As
Publication number | Publication date |
---|---|
JP3322023B2 (en) | 2002-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7582986B2 (en) | Compensated inverse-time undervoltage load shedding systems | |
US5646512A (en) | Multifunction adaptive controls for tapswitches and capacitors | |
RU2200364C2 (en) | Device for uniform distribution of electric load among phases in n-phase power distribution network | |
SE515107C2 (en) | Reactive power compensation method and apparatus | |
CN105633985B (en) | Three-phase load unbalance intelligent balance adjusting method | |
EP0633641B2 (en) | Reactive power compensating apparatus and regulating method for reducing switching losses in steady state operation | |
US5633539A (en) | Uninterruptible power supply input power walk-in | |
US8164314B2 (en) | Distributed capacitor bank controllers and methods thereof | |
Hosseini | The operation and model of UPQC in voltage sag mitigation using EMTP by direct method | |
JPH0898406A (en) | Power factor control system for receiving power | |
CA3070188C (en) | Over-voltage prevention apparatus and method of distribution line connected with distributed generator | |
Chen et al. | Dynamic demand minimization using a smart transformer | |
US11467197B2 (en) | Electric power system voltage monitoring and control with energy packets | |
KR101642755B1 (en) | Apparatus and method for intelligent power factor control, switchgear comprising the same | |
CN110266023B (en) | Parallel control method and system for multiple parallel type electric energy quality control devices | |
JPH1097331A (en) | Controller for received reactive power | |
GB2339928A (en) | Controlling VAR flow in electrical power systems | |
RU2790145C1 (en) | Method and device for adaptive automatic voltage regulation in an electrical network using capacitor devices | |
CN117595317A (en) | Single-phase control-based power grid unbalance management method and device | |
JPH0261049B2 (en) | ||
KR100578491B1 (en) | Automatic Power Factor Measuring and Control System of Switchgear and Controlgear | |
JPH0738979Y2 (en) | Power factor controller | |
JPH0581926B2 (en) | ||
JPH09224331A (en) | Power-receiving device | |
JPH04156228A (en) | System for controlling demand for electric power |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090628 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090628 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100628 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110628 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110628 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120628 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130628 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |