JPH0896995A - Integrated particle beam type accelerator - Google Patents
Integrated particle beam type acceleratorInfo
- Publication number
- JPH0896995A JPH0896995A JP25460894A JP25460894A JPH0896995A JP H0896995 A JPH0896995 A JP H0896995A JP 25460894 A JP25460894 A JP 25460894A JP 25460894 A JP25460894 A JP 25460894A JP H0896995 A JPH0896995 A JP H0896995A
- Authority
- JP
- Japan
- Prior art keywords
- dtl
- rfq
- high frequency
- end plate
- linear accelerator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Particle Accelerators (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は,粒子線形加速器,例
えば,小型で可般性のある多目的陽子線形加速器や,が
ん治療用装置の入射用加速器などに広く用いることがで
きる。INDUSTRIAL APPLICABILITY The present invention can be widely used for a particle linear accelerator, for example, a compact and versatile multipurpose proton linear accelerator, an entrance accelerator for a cancer treatment apparatus, and the like.
【0002】[0002]
【従来の技術】高周波四重極型粒子線形加速器(以下,
RFQという)とアルバレ型粒子線形加速器(以下,D
TLという)より構成される粒子線形加速器は,従来,
それぞれが別々のタンクに収納されており,別々の高周
波電源から高周波電力が供給されている。また,RFQ
とDTLの間には,通常,ビーム輸送系が設置され,R
FQを出たビームは,この系のマッチング要素によっ
て,横方向および縦方向に整形された後,DTLに入射
される。2. Description of the Related Art A high frequency quadrupole particle linear accelerator (hereinafter,
RFQ) and Alvaret-type particle linear accelerator (hereinafter D)
The particle linear accelerator composed of
Each is stored in a separate tank, and high frequency power is supplied from different high frequency power supplies. Also, RFQ
A beam transport system is usually installed between the
The beam exiting the FQ is shaped in the horizontal and vertical directions by the matching element of this system, and then is incident on the DTL.
【0003】[0003]
【発明が解決しようとする課題】しかしながら,前述し
た従来の粒子線形加速器においては,ビーム輸送系のマ
ッチング要素が複雑であると共に装置全体が長大化する
問題があった。However, in the above-mentioned conventional particle linear accelerator, there is a problem that the matching element of the beam transport system is complicated and the entire apparatus becomes large.
【0004】したがって,この発明はこのような従来技
術の問題点に鑑みてなされたもので,前述した問題点の
解消された一体型粒子線形加速器を提供することを目的
としている。Therefore, the present invention has been made in view of the above problems of the prior art, and an object thereof is to provide an integrated particle linear accelerator in which the above problems are solved.
【0005】[0005]
【課題を解決するための手段】この目的を達成するた
め,この発明の一体型粒子線形加速器は,高周波四重極
型粒子線形加速器とアルバレ型粒子線形加速器の各空洞
を共通の端板を介して接続すると共に,前記端板の中心
孔の周囲にアルバレ型粒子線形加速器側で発生した磁束
を高周波四重極型粒子線形加速器側に漏れさせるための
スロットを設けたことを特徴としている。In order to achieve this object, an integrated particle linear accelerator according to the present invention has a cavity in which a high frequency quadrupole particle linear accelerator and an Alvarre particle linear accelerator are connected via a common end plate. And a slot is provided around the center hole of the end plate to allow the magnetic flux generated on the side of the Alvaré particle linac to leak to the side of the high frequency quadrupole particle linac.
【0006】[0006]
【作用】RFQとDTLの各空洞を共通の端板を介して
接続した一体化構造を採用しているので,両者間の距離
が著しく短縮され,必要なマッチング要素の簡単化と装
置全体のコンパクト化が可能となる。また,前記端板の
中心孔の周囲にスロットを設けているので,DTLの磁
束をRFQに漏れさせ,DTLに供給した高周波電力に
よってRFQも駆動できる。The integrated structure in which the RFQ and DTL cavities are connected to each other through a common end plate significantly reduces the distance between them, simplifies the necessary matching elements, and makes the entire apparatus compact. Can be realized. Further, since the slot is provided around the center hole of the end plate, the magnetic flux of the DTL can be leaked to the RFQ, and the RFQ can also be driven by the high frequency power supplied to the DTL.
【0007】[0007]
【実施例】次に,本発明の好適な実施例を示す図面に従
って説明する。図1に,本発明の実施例(但し,1Me
Vの陽子に対する一定速度コールドモデル)に係る一体
型粒子線形加速器の軸方向断面図を,図2に図1におけ
るA−A部断面図を示す。RFQでは,4つのヴェイン
3と空洞壁2により構成される空洞がTE210(四重
極)モードに共振し,ヴェイン間に発生する電場によ
り,粒子は中心軸4に沿って加速される。一方,DTL
では,ドリフトチューブ6がステム7により空洞壁1か
ら支持され,TM010モードの共振でギヤップ9に発
生する電場により粒子が加速される。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an embodiment of the present invention (however, 1 Me
An axial sectional view of an integrated particle linear accelerator according to a constant velocity cold model for V protons) is shown in FIG. 2, and a sectional view taken along the line AA in FIG. In RFQ, the cavity formed by the four vanes 3 and the cavity wall 2 resonates in the TE210 (quadrupole) mode, and the electric field generated between the vanes accelerates the particles along the central axis 4. On the other hand, DTL
Then, the drift tube 6 is supported from the cavity wall 1 by the stem 7, and the particles are accelerated by the electric field generated in the gap 9 by the resonance of the TM010 mode.
【0008】本発明では,図1に示す通り,アルバレ型
粒子線形加速器(DTL)の空洞壁1と高周波四重極型
粒子線形加速器(RFQ)の空洞壁2とを共通の端板8
を介して接合しており,端板8には,図3に示す通り,
中心孔5の周囲に上下一対のスロット10が設けられて
おり,DTLの磁束をRFQに漏れさせる。In the present invention, as shown in FIG. 1, the cavity wall 1 of the Alvaré particle linac (DTL) and the cavity wall 2 of the high frequency quadrupole particle linac (RFQ) share the common end plate 8.
And is joined to the end plate 8 as shown in FIG.
A pair of upper and lower slots 10 are provided around the center hole 5 to allow the magnetic flux of DTL to leak to RFQ.
【0009】このように,両空洞を共通の端板8を介し
て接合し,この端板8に設けたスロット10によって,
RFQのTE210モードの磁束とDTLのTM010
モードの磁束を結合させ,DTLに供給した高周波電力
によってRFQも駆動できるようにしている。更に,本
発明では,一体化構造を採用することによって,RFQ
のヴェイン出口からDTLのドリフトチューブ入口まで
の距離を著しく短縮している。In this way, the two cavities are joined together through the common end plate 8 and the slot 10 provided in the end plate 8
Magnetic flux of TE210 mode of RFQ and TM010 of DTL
The mode magnetic flux is coupled so that the RFQ can also be driven by the high frequency power supplied to the DTL. Further, in the present invention, by adopting the integrated structure, the RFQ
The distance from the Vane outlet to the DTL drift tube inlet is significantly shortened.
【0010】この実施例(コールドモデル)について,
更に詳しく説明すると,RFQ空洞壁2の内径および長
さは154.5および1220.0mm,チューニング
前の共振周波数は403MHzである。一方,DTLは
内径460.0mm,セル長さ68.5mmの6個のセ
ルから構成され,加速モードは4πモードである。ま
た,図示していないが共振周波数調整用のサイドチュー
ナーを設けている。Regarding this embodiment (cold model),
More specifically, the inner diameter and the length of the RFQ cavity wall 2 are 154.5 and 1220.0 mm, and the resonance frequency before tuning is 403 MHz. On the other hand, the DTL is composed of 6 cells having an inner diameter of 460.0 mm and a cell length of 68.5 mm, and the acceleration mode is the 4π mode. Further, although not shown, a side tuner for adjusting the resonance frequency is provided.
【0011】図3は,端板8とスロット10の関係を示
すもので,前述したように,中心孔5の周囲に曲がった
長円形のスロット10をRFQヴェインの位置に合わせ
て2ケを中心対称に設けている。但し,スロットの配置
関係は上下方向に限定される訳ではない。FIG. 3 shows the relationship between the end plate 8 and the slot 10. As described above, the elliptical slot 10 bent around the center hole 5 is centered on two points in accordance with the position of the RFQ vane. They are provided symmetrically. However, the layout of the slots is not limited to the vertical direction.
【0012】図4にエンドチューナーギヤップの調整に
よって得られたRFQの磁場分布の代表的な測定結果を
示す。4つの象限における磁場は±2.3%以内でバラ
ンスしており,軸方向における分布も±2.3%以内で
一様であり,良好な電磁場の分布が得られている。ま
た,DTLセルの中心軸上の平均電場(電場の積分値を
セル長さで割ったもの)の代表的な測定結果を図5に示
すが,実用上十分な平坦度が得られている。FIG. 4 shows a typical measurement result of the magnetic field distribution of RFQ obtained by adjusting the end tuner gap. The magnetic fields in the four quadrants are well balanced within ± 2.3%, and the axial distribution is uniform within ± 2.3%, and a good electromagnetic field distribution is obtained. Further, FIG. 5 shows a typical measurement result of the average electric field (integrated value of the electric field divided by the cell length) on the central axis of the DTL cell, and the flatness sufficient for practical use is obtained.
【0013】[0013]
【発明の効果】以上の説明から明らかなように,一体型
粒子線形加速器によれば,DTLに供給した高周波電力
によりRFQも駆動できるため,高周波電力供給系およ
び制御を簡略化できる。更に,RFQとDTL間のビー
ム輸送系の簡単化と装置全体のコンパクト化が達成で
き,例えば,10MeV程度の多目的陽子線形加速器を
可搬型にすることも可能となる。As is clear from the above description, according to the integrated particle linear accelerator, the RFQ can be driven by the high frequency power supplied to the DTL, so that the high frequency power supply system and control can be simplified. Furthermore, simplification of the beam transport system between RFQ and DTL and downsizing of the entire apparatus can be achieved, and for example, a multi-purpose proton linear accelerator of about 10 MeV can be made portable.
【図1】本発明の実施例に係る一体型粒子線形加速器の
軸方向断面図である。FIG. 1 is an axial sectional view of an integrated particle linear accelerator according to an embodiment of the present invention.
【図2】図1におけるA−A部断面図である。FIG. 2 is a sectional view taken along line AA in FIG.
【図3】端板およびスロットの説明図である。FIG. 3 is an explanatory diagram of end plates and slots.
【図4】RFQにおける磁場分布の代表的な測定結果を
示す図である。FIG. 4 is a diagram showing a typical measurement result of a magnetic field distribution in RFQ.
【図5】DTLにおける平均電場分布の代表的な測定結
果を示す図である。FIG. 5 is a diagram showing a representative measurement result of an average electric field distribution in DTL.
1 DTL空洞壁 2 RFQ空洞壁 3 RFQヴェイン 4 中心軸 5 中心孔 6 DTLドリフトチューブ 7 DTLステム 8 端板 9 DTLギヤップ 10 スロット 1 DTL Cavity Wall 2 RFQ Cavity Wall 3 RFQ Vane 4 Center Axis 5 Center Hole 6 DTL Drift Tube 7 DTL Stem 8 End Plate 9 DTL Gearup 10 Slot
───────────────────────────────────────────────────── フロントページの続き (72)発明者 弘田 実彌 神奈川県横浜市西区みなとみらい三丁目3 番1号 三菱原子力工業株式会社内 (72)発明者 池田 一三 神奈川県横浜市西区みなとみらい三丁目3 番1号 三菱原子力工業株式会社内 (72)発明者 菅 太郎 神奈川県横浜市西区みなとみらい三丁目3 番1号 三菱原子力工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Minoya Hirota, 3-3-1 Minato Mirai, Nishi-ku, Yokohama-shi, Kanagawa Mitsubishi Nuclear Industry Co., Ltd. No. 1 in Mitsubishi Nuclear Industry Co., Ltd. (72) Inventor Taro Suga 3-3-1 Minatomirai, Nishi-ku, Yokohama-shi, Kanagawa Inside Mitsubishi Nuclear Industry Co., Ltd.
Claims (1)
レ型粒子線形加速器の各空洞を共通の端板を介して接続
すると共に,前記端板の中心孔の周囲にアルバレ型粒子
線形加速器側で発生した磁束を高周波四重極型粒子線形
加速器側に漏れさせるためのスロットを設けたことを特
徴とする一体型粒子線形加速器。1. The cavities of the high-frequency quadrupole particle linear accelerator and the Alvare particle linear accelerator are connected through a common end plate, and the Alvare particle linear accelerator side is provided around the center hole of the end plate. An integrated particle linear accelerator characterized in that a slot is provided to allow the generated magnetic flux to leak to the high frequency quadrupole particle linear accelerator side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25460894A JPH0896995A (en) | 1994-09-22 | 1994-09-22 | Integrated particle beam type accelerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25460894A JPH0896995A (en) | 1994-09-22 | 1994-09-22 | Integrated particle beam type accelerator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0896995A true JPH0896995A (en) | 1996-04-12 |
Family
ID=17267403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25460894A Pending JPH0896995A (en) | 1994-09-22 | 1994-09-22 | Integrated particle beam type accelerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0896995A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10098218B2 (en) | 2014-09-03 | 2018-10-09 | Mitsubishi Electric Corporation | Transportable linear accelerator system and transportable neutron source equipped therewith |
CN109819579A (en) * | 2019-02-02 | 2019-05-28 | 中国科学院近代物理研究所 | A kind of mechanical structure and its assembly method of high-frequency electrical focused ion accelerator |
CN114867184A (en) * | 2022-06-15 | 2022-08-05 | 中国科学院近代物理研究所 | Compact multi-ion accelerator treatment device and application thereof |
-
1994
- 1994-09-22 JP JP25460894A patent/JPH0896995A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10098218B2 (en) | 2014-09-03 | 2018-10-09 | Mitsubishi Electric Corporation | Transportable linear accelerator system and transportable neutron source equipped therewith |
CN109819579A (en) * | 2019-02-02 | 2019-05-28 | 中国科学院近代物理研究所 | A kind of mechanical structure and its assembly method of high-frequency electrical focused ion accelerator |
CN114867184A (en) * | 2022-06-15 | 2022-08-05 | 中国科学院近代物理研究所 | Compact multi-ion accelerator treatment device and application thereof |
CN114867184B (en) * | 2022-06-15 | 2023-03-14 | 中国科学院近代物理研究所 | Compact multi-ion accelerator treatment device and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4943781A (en) | Cyclotron with yokeless superconducting magnet | |
US5117212A (en) | Electromagnet for charged-particle apparatus | |
Herminghaus et al. | The design of a cascaded 800 MeV normal conducting CW race track microtron | |
RU2316157C2 (en) | Linear accelerator for accelerating an ion beam | |
TW201216790A (en) | Drift tube linear accelerater | |
JP4276340B2 (en) | Cyclotron electromagnet design method and cyclotron system | |
EP0539566B1 (en) | System and method for increasing the efficiency of a cyclotron | |
Meyer | The ORNL ECR multicharged ion source | |
GB935355A (en) | High-gradient magnetic cusp geometry | |
EP0252475A2 (en) | Inductively-coupled radio frequency plasma mass spectrometer | |
JPH0896995A (en) | Integrated particle beam type accelerator | |
US11291105B2 (en) | Particle beam accelerator and particle therapy system | |
WO2020044604A1 (en) | Particle beam accelerator and particle beam therapy system | |
CN113382529A (en) | Superconducting ion annular synchrotron | |
JP2008166093A (en) | Linear ion accelerator, and ion acceleration system | |
Bechtold et al. | A coupled RFQ-drift tube combination for FRANZ | |
JP3956285B2 (en) | Wiggle ring | |
JP2813386B2 (en) | Electromagnet of charged particle device | |
JP7303138B2 (en) | Circular accelerator, particle beam therapy system, isotope production system, and radiopharmaceutical production system | |
Euteneuer et al. | Beam instabilities in race track microtrons | |
JP3010059B2 (en) | Ion source | |
JPH0757897A (en) | High frequency type charged particle accelerating device | |
JP2004241347A (en) | Circular accelerator | |
JP4017235B2 (en) | Free electron laser resonator | |
JP2001015299A (en) | Multiple passing type accelerator, accelerating cavity, and electron beam.x-ray irradiation treating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20030506 |