[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0894234A - Defrosting device for refrigerator - Google Patents

Defrosting device for refrigerator

Info

Publication number
JPH0894234A
JPH0894234A JP23092394A JP23092394A JPH0894234A JP H0894234 A JPH0894234 A JP H0894234A JP 23092394 A JP23092394 A JP 23092394A JP 23092394 A JP23092394 A JP 23092394A JP H0894234 A JPH0894234 A JP H0894234A
Authority
JP
Japan
Prior art keywords
temperature
defrosting
amount
outside air
air temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23092394A
Other languages
Japanese (ja)
Other versions
JP3103275B2 (en
Inventor
Kosaku Adachi
幸作 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP06230923A priority Critical patent/JP3103275B2/en
Publication of JPH0894234A publication Critical patent/JPH0894234A/en
Application granted granted Critical
Publication of JP3103275B2 publication Critical patent/JP3103275B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/02Sensors detecting door opening

Landscapes

  • Defrosting Systems (AREA)

Abstract

PURPOSE: To always achieve defrosting operation in response to the actual amount of frosting by estimating the amount of frosting based upon a temperature change rate by temperature change rate-operating means and fresh air temperature by fresh air temperature-detecting means, and determining defrosting completion decision temperature based upon the estimated amount of frosting. CONSTITUTION: A change rate of detected temperature by a defrosting temperature sensor 14 is calculated with temperature change rate-operating means of a control circuit 15 after power supply to a defrosting heater 13 is started. The amount of frosting is estimated with frosting amount estimation means of the control circuit 15 based upon the calculated temperature change rate and fresh air temperature by a fresh air temperature sensor 16 being fresh air temperature detecting means. Defrosting completion decision temperature is determined with defrosting completion decision temperature determination means of the control circuit 15 based upon the estimated amount of frosting by the frosting amount estimating means. Hereby, defrosting operation is always achieved in response to the actual amount of frosting, and temperature rise in a refrigerator can be reduced to eliminate wasteful consumed power.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、除霜の制御に改良を加
えた冷蔵庫の除霜装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator defrosting device having an improved defrosting control.

【0002】[0002]

【従来の技術】従来より、例えばファンクールタイプの
冷蔵庫においては、冷却器により冷やされた空気(冷
気)をファンにより庫内に循環させ、庫内を冷却するも
のである。この場合、冷却器部分を流れる冷気はその水
分の一部が霜となって冷却器に付着する。そこで、周知
のように、冷却器を予め定められた除霜タイミングで除
霜運転を行なうようになっている。この除霜運転は、除
霜ヒータに通電し、冷却器が所定の除霜終了判定温度に
達したときに上記除霜ヒータを断電するといった運転内
容である。
2. Description of the Related Art Conventionally, in a fan-cool type refrigerator, for example, air cooled by a cooler (cool air) is circulated in a refrigerator by a fan to cool the inside. In this case, some of the water content of the cool air flowing through the cooler portion becomes frost and adheres to the cooler. Therefore, as is well known, the defrosting operation is performed on the cooler at a predetermined defrosting timing. This defrosting operation is such that the defrosting heater is energized and the defrosting heater is turned off when the cooler reaches a predetermined defrosting end determination temperature.

【0003】上記除霜終了判定温度は、着霜量が多くな
る過酷な条件、例えば高温多湿で冷蔵庫扉の開閉回数が
多いといった条件を想定して設定され、もって、着霜量
が多い場合でも確実に除霜がなされるようにしている。
従来は、ある程度の余裕をもって例えば13℃の温度に
一義的に設定されていた。
The above defrosting end judgment temperature is set under the harsh condition that the amount of frost is large, for example, the condition that the refrigerator door is opened and closed many times due to high temperature and humidity, and thus even when the amount of frost is large. I am sure that defrost is done.
Conventionally, the temperature has been uniquely set to, for example, 13 ° C. with some margin.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来のものでは、例えば低室温で冷蔵庫扉の開閉回数が少
ないような場合では、実際の着霜量がすくなく、必要以
上に除霜時間が長くなり、消費電力の無駄が多くなる。
さらにこの場合には、除霜ヒータの余分な通電により、
庫内の温度も上昇してしまう不具合があり、そしてこの
場合、除霜復帰後のコンプレッサの運転時間も長くな
り、これによっても消費電力の無駄が多くなる不具合が
発生する。
However, in the above-mentioned conventional one, for example, when the refrigerator door is opened and closed at a low room temperature and the number of times of opening and closing is small, the actual amount of frost is small and the defrosting time becomes longer than necessary. , Waste of power consumption increases.
Furthermore, in this case, the extra power supply to the defrost heater
There is a problem that the temperature inside the refrigerator also rises, and in this case, the operating time of the compressor after the defrosting recovery also becomes long, and this also causes a problem that power consumption is wasted.

【0005】本発明は上記事情に鑑みてなされたもので
あり、その目的は、除霜を確実に行ない得ることはもと
より、常に実際の着霜量に応じた除霜運転を行なうこと
が可能で、庫内の温度上昇も少なくでき、消費電力の無
駄もなくすことができる冷蔵庫の除霜装置を提供するに
ある。
The present invention has been made in view of the above circumstances, and an object thereof is not only to ensure defrosting, but also to always perform defrosting operation according to an actual amount of frost formation. An object of the present invention is to provide a defrosting device for a refrigerator that can reduce the temperature rise in the refrigerator and reduce power consumption.

【0006】[0006]

【課題を解決するための手段】第1の手段は、冷却器の
除霜を行なう除霜ヒータと、冷却器除霜状態検出用の除
霜温度検出手段と、前記除霜ヒータに通電し前記除霜温
度検出手段に基づいて除霜終了判定温度が検出されたと
きに該除霜ヒータを断電する除霜運転手段と、冷蔵庫周
囲の温度を検出する外気温度検出手段と、前記除霜ヒー
タに対する通電開始以後に前記除霜温度検出手段の検出
温度の変化率を演算する温度変化率演算手段と、この温
度変化率演算手段による温度変化率と前記外気温度検出
手段により着霜量を推定する着霜量推定手段と、この着
霜量推定手段による推定着霜量に基づいて前記除霜終了
判定温度を決定する除霜終了判定温度決定手段とを含ん
で構成される(請求項1の発明)。
A first means is a defrosting heater for defrosting a cooler, a defrosting temperature detecting means for detecting a defrosting state of a cooler, and an electric current is supplied to the defrosting heater. Defrosting operation means for turning off the defrosting heater when the defrosting end determination temperature is detected based on the defrosting temperature detecting means, outside air temperature detecting means for detecting the temperature around the refrigerator, and the defrosting heater Temperature change rate calculating means for calculating the change rate of the detected temperature of the defrosting temperature detecting means after the start of energization for the, and the temperature change rate by the temperature change rate calculating means and the frost formation amount by the outside air temperature detecting means. The frost formation amount estimation unit and the defrosting end determination temperature determining unit that determines the defrosting end determination temperature based on the estimated frost formation amount by the frosting amount estimation unit are configured (the invention of claim 1 ).

【0007】第2の手段は、冷却器の除霜を行なう除霜
ヒータと、冷却器除霜状態検出用の除霜温度検出手段
と、前記除霜ヒータに通電し前記除霜温度検出手段に基
づいて除霜終了判定温度が検出されたときに該除霜ヒー
タを断電する除霜運転手段と、冷蔵庫周囲の温度を検出
する外気温度検出手段と、前記除霜ヒータに対する通電
開始以後に前記冷却器が融解温度状態にあることを検出
し、この融解温度状態の継続時間を計測する計測手段
と、この計測手段による融解温度継続時間と前記外気温
度検出手段による外気温度とにより着霜量を推定する着
霜量推定手段と、この着霜量推定手段による推定着霜量
に基づいて前記除霜終了判定温度を決定する除霜終了判
定温度決定手段とを含んで構成される(請求項2の発
明)。
The second means is a defrost heater for defrosting the cooler, a defrost temperature detecting means for detecting the defrosting state of the cooler, and the defrost heater is energized so that the defrost temperature detecting means operates. Based on the defrosting end determination temperature is detected based on the defrosting operation means for de-energizing the defrosting heater, the outside air temperature detecting means for detecting the temperature around the refrigerator, the defrosting heater after the start of energization Detecting that the cooler is in the melting temperature state, measuring means for measuring the duration of this melting temperature state, the melting temperature duration by this measuring means and the outside air temperature by the outside air temperature detecting means to determine the amount of frost. The frost formation amount estimating means for estimating and the defrosting end determination temperature determining means for determining the defrosting end determination temperature based on the estimated frost formation amount by the frosting amount estimation means are configured (claim 2 Invention).

【0008】第3の手段は、冷却器の除霜を行なう除霜
ヒータと、冷却器除霜状態検出用の除霜温度検出手段
と、前記除霜ヒータに通電し前記除霜温度検出手段に基
づいて除霜終了判定温度が検出されたときに該除霜ヒー
タを断電する除霜運転手段と、冷蔵庫周囲の温度を検出
する外気温度検出手段と、前記除霜ヒータに対する通電
開始以後に前記除霜温度検出手段の検出温度の変化率を
演算する温度変化率演算手段と、前記除霜ヒータに対す
る通電開始以後に前記冷却器が融解温度状態にあること
を検出し、この融解温度状態の継続時間を計測する計測
手段と、前記温度変化率演算手段による温度変化率と前
記外気温度検出手段による外気温度と前記計測手段によ
る融解温度継続時間とにより着霜量を推定する着霜量推
定手段と、この着霜量推定手段による推定着霜量に基づ
いて前記除霜終了判定温度を決定する除霜終了判定温度
決定手段とを含んで構成される(請求項3の発明)。
A third means is a defrost heater for defrosting the cooler, a defrost temperature detecting means for detecting the defrosting state of the cooler, and the defrost heater is energized to cause the defrost temperature detecting means to operate. Based on the defrosting end determination temperature is detected based on the defrosting operation means for de-energizing the defrosting heater, the outside air temperature detecting means for detecting the temperature around the refrigerator, the defrosting heater after the start of energization Temperature change rate calculating means for calculating the change rate of the detected temperature of the defrosting temperature detecting means, and detecting that the cooler is in a melting temperature state after the start of energization to the defrosting heater, and the melting temperature state is continued. Measurement means for measuring time, frost formation amount estimation means for estimating the frost formation amount by the temperature change rate by the temperature change rate calculation means, the outside air temperature by the outside air temperature detection means, and the melting temperature duration by the measurement means , This frost Configured to include a defrosting end determination temperature determination means for determining the defrosting end determination temperature based on the estimated frost amount by estimating means (the invention of claim 3).

【0009】第4の手段は、第1ないし第3の手段のい
ずれかにおいて、前回の除霜運転から今回の除霜運転ま
での間における冷蔵庫扉の開閉回数をカウントする扉開
閉カウント手段と、前回の除霜運転から今回の除霜運転
までの間における平均外気温度を算出する平均外気温度
算出手段とを備え、着霜量推定手段が、この扉開閉カウ
ント手段による扉開閉回数と平均外気温度算出手段によ
る平均外気温度とを加味して着霜量を推定するようにな
っているところに特徴を有する(請求項4の発明)。
A fourth means is any one of the first to third means, and door opening / closing counting means for counting the number of times the refrigerator door is opened / closed between the previous defrosting operation and the current defrosting operation, An average outside air temperature calculating means for calculating the average outside air temperature from the last defrosting operation to the current defrosting operation is provided, and the frost formation amount estimating means is the number of times of opening and closing the door by this door opening and closing counting means and the average outside air temperature. The present invention is characterized in that the amount of frost formation is estimated in consideration of the average outside air temperature calculated by the calculating means (the invention of claim 4).

【0010】[0010]

【作用】除霜運転の開始されると、冷却器の温度は例え
ば−30℃程度から上昇していく。そして、霜が融解し
始めると、ほぼ全部の霜が融解するまでは、融解温度
(通常0℃)の状態が持続し、その後、冷却温度は再び
上昇する。この場合、冷却器の着霜量は、外気温度に基
づいてある程度判定することが可能である。また、着霜
量の多少は、除霜運転開始当初の冷却器の温度上昇の度
合いによっても判定することが可能である。すなわち、
着霜量が少ない場合には、上記冷却器の温度上昇の度合
いつまり変化率が大きく、逆に着霜量が多い場合には、
上記冷却器の温度上昇の度合いつまり変化率も小さくな
る。さらにまた、冷却器の着霜量は、上記融解温度状態
の継続時間の長短によっても判定することも可能であ
る。
When the defrosting operation is started, the temperature of the cooler rises from, for example, about -30 ° C. When the frost starts to melt, the melting temperature (usually 0 ° C.) is maintained until almost all the frost melts, and then the cooling temperature rises again. In this case, the amount of frost on the cooler can be determined to some extent based on the outside air temperature. Further, the amount of frost formation can be determined by the degree of temperature rise of the cooler at the beginning of the defrosting operation. That is,
When the amount of frost is small, the degree of change in the temperature of the cooler, that is, the rate of change is large. Conversely, when the amount of frost is large,
The degree of increase in the temperature of the cooler, that is, the rate of change also decreases. Furthermore, the amount of frost formed on the cooler can also be determined by the length of the duration of the melting temperature state.

【0011】しかして、第1の手段においては、温度変
化率演算手段による温度変化率と外気温度検出手段によ
る外気温度とにより着霜量を推定するから、実際に除霜
すべき霜の量を良好に推定することができ、そして、推
定着霜量に基づいて除霜終了判定温度を決定するから、
着霜量に適した除霜終了判定温度に基づいて除霜ヒータ
が断電つまり除霜運転が終了されるようになり、着霜量
に応じた最適の除霜運転が行なわれるようになる。
In the first means, however, the frost formation amount is estimated by the temperature change rate by the temperature change rate calculation means and the outside air temperature by the outside air temperature detection means. It can be estimated well, and the defrosting end determination temperature is determined based on the estimated frost formation amount.
The defrosting heater is turned off, that is, the defrosting operation is terminated based on the defrosting end determination temperature suitable for the frosting amount, and the optimal defrosting operation according to the frosting amount is performed.

【0012】また、第2の手段においては、計測手段に
よる融解温度継続時間と外気温度検出手段による外気温
度とにより着霜量を推定するから、実際に除霜すべき霜
の量を良好に推定することができ、そして、推定着霜量
に基づいて除霜終了判定温度を決定するから、着霜量に
適した除霜終了判定温度に基づいて除霜ヒータが断電つ
まり除霜運転が終了されるようになり、着霜量に応じた
最適の除霜運転が行なわれるようになる。
Further, in the second means, the amount of frost to be actually defrosted is satisfactorily estimated because the frosting amount is estimated by the melting temperature duration by the measuring means and the outside air temperature by the outside air temperature detecting means. Since the defrosting end determination temperature is determined based on the estimated frosting amount, the defrosting heater is turned off, that is, the defrosting operation ends based on the defrosting ending determination temperature suitable for the frosting amount. The optimum defrosting operation according to the amount of frost formation is performed.

【0013】第3の手段においては、温度変化率演算手
段による温度変化率と外気温度検出手段による外気温度
と計測手段による融解温度継続時間とにより着霜量を推
定するから、実際に除霜すべき霜の量をより一層正確に
推定することができ、そして、この正確な推定着霜量に
基づいて除霜終了判定温度を決定するから、着霜量に適
した除霜終了判定温度に基づいて除霜ヒータが断電つま
り除霜運転が終了されるようになり、着霜量に応じた最
適の除霜運転がさらに良好に行なわれるようになる。
In the third means, the frosting amount is estimated by the temperature change rate by the temperature change rate calculating means, the outside air temperature by the outside air temperature detecting means, and the melting temperature duration time by the measuring means, so that defrosting is actually performed. It is possible to more accurately estimate the amount of frost to be used, and the defrost end determination temperature is determined based on this accurate estimated frost formation amount. As a result, the defrosting heater is cut off, that is, the defrosting operation is terminated, and the optimum defrosting operation according to the amount of frost formation can be performed even better.

【0014】第4の手段においては、前回の除霜運転か
ら今回の除霜運転までの間における冷蔵庫扉の開閉回数
をカウントし、前回の除霜運転から今回の除霜運転まで
の間における平均外気温度を算出し、この扉開閉回数と
平均外気温度とを加味して着霜量を推定するようになっ
ているから、着霜量の推定結果が一層正確になり、除霜
運転がさらに良好に行なわれるようになる。
In the fourth means, the number of times the refrigerator door is opened and closed from the previous defrosting operation to the current defrosting operation is counted, and the average from the previous defrosting operation to the current defrosting operation is counted. Since the outside air temperature is calculated and the frosting amount is estimated by adding the number of times of opening and closing of the door and the average outside air temperature, the estimation result of the frosting amount becomes more accurate, and the defrosting operation is further improved. Will be carried out.

【0015】[0015]

【実施例】以下、本発明の第1の実施例につき図1ない
し図5を参照しながら説明する。まず図2において、冷
蔵庫本体1は、冷凍室2、冷蔵室3及び野菜室4を上下
に備えた構成となっており、各室の前面に冷蔵庫扉たる
扉2a〜4aが設けられている。冷凍室2の奥部には冷
却器室5が設けられており、この冷却器室5内に冷却器
6及び冷気循環用のファン装置7が配置されている。冷
蔵室3の奥部には、冷却器室5に連通されたダクト8が
設けられており、このダクト8を通じて冷蔵室3及び野
菜室4に冷気が供給される構成となっている。この場
合、上記ダクト8は、冷蔵室3内の温度に応動するダン
パ装置9により開閉される構成となっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIGS. First, in FIG. 2, the refrigerator main body 1 has a configuration in which a freezer compartment 2, a refrigerator compartment 3 and a vegetable compartment 4 are vertically provided, and doors 2a to 4a, which are refrigerator doors, are provided on the front surface of each compartment. A cooler chamber 5 is provided inside the freezing chamber 2, and a cooler 6 and a fan device 7 for circulating cold air are arranged in the cooler chamber 5. A duct 8 communicating with the cooler chamber 5 is provided at the back of the refrigerating chamber 3, and cold air is supplied to the refrigerating chamber 3 and the vegetable chamber 4 through the duct 8. In this case, the duct 8 is configured to be opened and closed by a damper device 9 that responds to the temperature inside the refrigerator compartment 3.

【0016】冷蔵庫本体1の外側下部には、機械室10
が形成されており、この機械室10内に前記冷却器6を
含んだ冷凍サイクル駆動用のコンプレッサ11が配置さ
れている。冷凍室2には、その内部温度を検知するため
の冷凍室用温度センサ12が配置されており、この温度
センサ12の検知出力によってコンプレッサ11の運転
制御を行なうようになっている。冷却器室5内には、冷
却器6の下方部に位置するようにして例えばガラス管ヒ
ータより成る除霜ヒータ13が設けられており、この除
霜ヒータ13への通電に応じて冷却器6の除霜動作を行
うようになっている。また、冷却器6の上部(除霜時に
霜が最後まで残りやすい部分)には、その温度を検出す
るための除霜温度検出手段たる除霜温度センサ14が設
けられている。
At the outside lower part of the refrigerator body 1, a machine room 10 is provided.
A compressor 11 for driving the refrigeration cycle including the cooler 6 is arranged in the machine room 10. A freezing compartment temperature sensor 12 for detecting the internal temperature of the freezing compartment 2 is arranged, and the operation output of the compressor 11 is controlled by the detection output of the temperature sensor 12. In the cooler chamber 5, a defrosting heater 13 made of, for example, a glass tube heater is provided so as to be positioned below the cooler 6, and the cooler 6 is supplied with electricity when the defrosting heater 13 is energized. The defrosting operation is performed. Further, a defrosting temperature sensor 14, which is a defrosting temperature detecting means for detecting the temperature, is provided at an upper portion of the cooler 6 (a portion where frost is likely to remain until the end during defrosting).

【0017】図3には、除霜制御に関連する電気的構成
の概略を示している。制御回路15は、マイクロコンピ
ュータ及び負荷駆動用のドライバ回路などを含んで構成
されており、これは、除霜運転手段、温度変化率演算手
段、着霜量推定手段及び除霜終了判定温度決定手段とし
て機能するものである。外気温度検出手段たる外気温度
センサ16は、前記冷蔵庫本体1に適宜箇所に設けられ
て、冷蔵庫周囲の温度を検出するようになっている。し
かして、除霜温度センサ14及び外気温度センサ16か
らの各温度信号はこの制御回路15に与えられるように
なっている。そして、制御回路15は、上記のような入
力信号並びに予め設定された制御プログラムに基づい
て、除霜ヒータ13などの負荷の制御を行うものであ
り、以下においては、その制御内容のうち本発明の要旨
に関係した部分について関連した作用と共に説明する。
FIG. 3 shows an outline of an electrical configuration related to defrost control. The control circuit 15 is configured to include a microcomputer and a driver circuit for driving a load, which includes a defrosting operation unit, a temperature change rate calculation unit, a frost formation amount estimation unit, and a defrosting end determination temperature determination unit. It functions as. The outside air temperature sensor 16, which is an outside air temperature detecting means, is provided at an appropriate location in the refrigerator body 1 to detect the temperature around the refrigerator. The temperature signals from the defrosting temperature sensor 14 and the outside air temperature sensor 16 are given to the control circuit 15. Then, the control circuit 15 controls the load of the defrost heater 13 and the like based on the input signal as described above and the preset control program. The part related to the gist of will be described together with the related operation.

【0018】図1には、除霜運転の制御のフローチャー
トを示している。この除霜運転制御は、コンプレッサ1
0の運転積算時間が所定時間に達したときに開始される
ようになっている。また、図4には、除霜温度センサ1
4の検出温度の変化を示している。まずステップS1で
は除霜ヒータ13に通電すると共に、除霜温度センサ1
4による検出除霜温度を入力する。これにて冷却器6の
温度が上昇して行く。ステップS2では除霜温度センサ
14による検出除霜温度が演算開始温度K1例えば−3
0℃に達したか否かを判断し、達すれば、ステップS3
に移行してマイクロコンピュータによるソフトタイマの
カウントをスタートさせる。
FIG. 1 shows a flow chart of the control of the defrosting operation. This defrosting operation control is performed by the compressor 1
The operation is started when the accumulated operation time of 0 reaches a predetermined time. Further, in FIG. 4, the defrosting temperature sensor 1
4 shows the change in the detected temperature of No. 4. First, in step S1, the defrost heater 13 is energized and the defrost temperature sensor 1
Input the defrosting temperature detected by 4. This causes the temperature of the cooler 6 to rise. In step S2, the defrosting temperature detected by the defrosting temperature sensor 14 is the calculation start temperature K1 such as −3.
It is determined whether or not the temperature has reached 0 ° C., and if the temperature has reached 0 ° C., step S3
Then, the count of the soft timer by the microcomputer is started.

【0019】次のステップS4では、外気温度センサ1
6の検出外気温度を入力する。そしてステップS5で
は、除霜温度センサ14の検出除霜温度が演算終了温度
K2例えば−2℃に達したか否かを判断する。達すれ
ば、ステップS6にて、前記ソフトタイマのカウントを
停止すると共に、このタイマのカウント値(図4に示す
前記温度K1からK2までの時間A)に基づいて、温度
変化率を演算する。すなわち、温度変化率=(K2−K
1)/Aとなる。そしてステップS7では、平均外気温
度を算出する。
In the next step S4, the outside air temperature sensor 1
Input the detected outside air temperature of 6. Then, in step S5, it is determined whether the defrosting temperature detected by the defrosting temperature sensor 14 has reached the calculation end temperature K2, for example, -2 ° C. When it reaches, in step S6, the count of the soft timer is stopped, and the temperature change rate is calculated based on the count value of the timer (time A from the temperature K1 to K2 shown in FIG. 4). That is, the temperature change rate = (K2-K
1) / A. Then, in step S7, the average outside air temperature is calculated.

【0020】ステップS8では、着霜量を推定すると共
に、除霜終了判定温度を決定する。すなわち、図5及び
表1に示すように、本発明者の実験によれば、ある一定
の外気温度条件下では、着霜量が多いほど冷却器6の除
霜温度の変化率(上昇率)が低いことが分かった。そし
て、外気温度が高いほど、着霜量が多くなることも分か
った。また、着霜量が多いほど除霜に要するエネルギー
も多く、除霜終了を判定する温度も高めとする必要があ
ることも分かった。しかして、検出除霜温度の変化率と
外気温度(本実施例では除霜開始初期の平均外気温度)
とにより着霜量を推定することができる。そして、この
推定着霜量に基づいて除霜終了判定温度Kα(図4参
照)を決定する。すなわち、着霜量が例えば最小値(例
えば0cc)のとき除霜終了判定温度を2℃とし、最大
値(例えば一般使用時では400cc)では13℃とす
ることが考えられる。従って、例えば着霜量が200c
cであるときには除霜終了判定温度を6℃とすると良
い。
In step S8, the amount of frost formation is estimated and the defrosting end determination temperature is determined. That is, as shown in FIG. 5 and Table 1, according to the experiment of the present inventor, under a certain constant outside air temperature condition, the larger the amount of frost is, the higher the rate of change (increase rate) of the defrosting temperature of the cooler 6 is. Was found to be low. It was also found that the higher the outside air temperature, the greater the amount of frost formation. It was also found that the larger the amount of frost formed, the more energy required for defrosting, and the higher the temperature for determining the end of defrosting. Therefore, the change rate of the detected defrosting temperature and the outside air temperature (in this embodiment, the average outside air temperature at the initial stage of defrosting)
The amount of frost can be estimated by and. Then, the defrosting end determination temperature Kα (see FIG. 4) is determined based on the estimated frost formation amount. That is, it is conceivable that the defrosting end determination temperature is set to 2 ° C. when the frost formation amount is, for example, the minimum value (for example, 0 cc), and 13 ° C. when the maximum value (for example, 400 cc in general use). Therefore, for example, the amount of frost is 200c
When the temperature is c, the defrosting end determination temperature may be 6 ° C.

【0021】[0021]

【表1】 [Table 1]

【0022】この後も、冷却器6に付着した霜は融解さ
れるが、霜がほぼ液化し終わるまで検出除霜温度はほぼ
融解温度(0℃)を維持することになる。なお、検出除
霜温度が融解温度継続開始温度Y1(K2と同じく−2
℃)から融解温度継続終了温度Y2例えば2℃までは霜
が融解状態にあるとみなしている。
Even after this, the frost attached to the cooler 6 is melted, but the detected defrosting temperature is maintained at the melting temperature (0 ° C.) until the frost is almost liquefied. It should be noted that the detected defrosting temperature is the melting temperature continuation start temperature Y1 (same as K2 is -2).
It is considered that the frost is in a melted state from the melting temperature continuation end temperature Y2 to, for example, 2 ° C.

【0023】前記ステップS8の後、ステップS9に移
行して、除霜温度センサ14による検出除霜温度が決定
された除霜終了判定温度Kαに達したか否かを判断す
る。達すれば、ステップS10に移行して除霜ヒータ1
3を断電する。例えば、除霜終了判定温度Kαが、図4
に示すように例えば5℃のときには、この5℃到達時点
で除霜ヒータ13が断電されて除霜運転が終了する。な
お、除霜終了判定温度Kαは推定着霜量に基づいてこの
図4の符号Cで示す温度範囲に決定されるものである。
After step S8, the process proceeds to step S9, and it is determined whether the defrosting temperature detected by the defrosting temperature sensor 14 has reached the determined defrosting end determination temperature Kα. If it reaches, it moves to step S10 and the defrost heater 1
Turn off 3. For example, the defrosting end determination temperature Kα is as shown in FIG.
For example, when the temperature is 5 ° C., the defrosting heater 13 is cut off and the defrosting operation ends when the temperature reaches 5 ° C., as shown in FIG. The defrosting end determination temperature Kα is determined within the temperature range indicated by the symbol C in FIG. 4 based on the estimated frost formation amount.

【0024】このような、本実施例によれば、除霜運転
時に除霜温度センサ14による検出除霜温度の変化率を
演算し、この温度変化率と外気温度により着霜量を推定
するから、実際に除霜すべき霜の量を良好に推定するこ
とができ、そして、推定着霜量に基づいて除霜終了判定
温度Kαを決定するから、着霜量に適した除霜終了判定
温度Kαに基づいて除霜ヒータ13が断電つまり除霜運
転が終了されるようになり、着霜量に応じた最適の除霜
運転が行なわれるようになる。この結果、除霜を確実に
行ない得ることはもとより、常に実際の着霜量に応じた
除霜運転を行なうことが可能で、除霜運転を無駄に長く
行なうことも防止でき、もって、庫内の温度上昇も少な
くでき、また、消費電力の無駄もなくすことができる。
According to this embodiment, the change rate of the defrosting temperature detected by the defrosting temperature sensor 14 is calculated during the defrosting operation, and the amount of frost formation is estimated based on this temperature change rate and the outside air temperature. Since the amount of frost to be actually defrosted can be properly estimated, and the defrosting end determination temperature Kα is determined based on the estimated amount of frosting, the defrosting end determination temperature suitable for the amount of frost formation. Based on Kα, the defrosting heater 13 is cut off, that is, the defrosting operation is terminated, and the optimal defrosting operation according to the amount of frost formation is performed. As a result, not only can defrost be reliably performed, but it is also possible to always perform the defrost operation according to the actual amount of frost formation, and it is possible to prevent the defrost operation from being unnecessarily long, and thus It is possible to reduce the temperature rise of the device and to reduce the waste of power consumption.

【0025】ちなみに、着霜量がかなり少ない場合に
は、除霜終了判定温度Kαが低く設定されるようにな
り、換言すれば、従来の除霜終了時点(図4のJp)よ
りも早く除霜を終了できるようになり、例えば、400
リットルクラスの冷蔵庫において、5〜8分程度短縮す
ることができる。例えば除霜ヒータ13の入力を164
[W/h]とし、1日に1回除霜運転が実行されるとし
て、8分の短縮として、これを電気代に換算すると、除
霜運転で164×(8/60)=22[W/日]削減さ
れ、しかも除霜運転による温度上昇も抑えられているた
め、冷却運転再開時の冷却エネルギーも削減されるた
め、2×22[W/日]削減されることになる。これを
一月分の電気代に換算すると、その削減分は0.67
[KW/月]にもなる。また、庫内の温度上昇も抑えら
れるものであり、冷凍室で約2deg,冷蔵室で約1d
eg低減できるものである。
By the way, when the amount of frost formation is considerably small, the defrosting end determination temperature Kα is set low, in other words, defrosting is performed earlier than the conventional defrosting end point (Jp in FIG. 4). It will be possible to finish the frost, for example 400
In a liter class refrigerator, it can be shortened by about 5 to 8 minutes. For example, input the defrost heater 13 to 164
[W / h] and the defrosting operation is performed once a day. If the defrosting operation is reduced to 8 minutes and converted into an electricity bill, 164 × (8/60) = 22 [W / Day], and since the temperature rise due to the defrosting operation is also suppressed, the cooling energy at the time of restarting the cooling operation is also reduced, resulting in a reduction of 2 × 22 [W / day]. Converting this to the electricity bill for January, the reduction is 0.67.
It also becomes [KW / month]. Also, the temperature rise in the refrigerator can be suppressed, and it is about 2 deg in the freezer and about 1 d in the refrigerator.
It is possible to reduce eg.

【0026】図6ないし図8は本発明の第2の実施例を
示している。この実施例においては次の点が第1の実施
例と異なる。すなわち、制御回路21は、温度変化率演
算手段を有さない代りに、計測手段としての機能を有す
る。制御内容を示す図7のフローチャートにおいて、ス
テップG2では除霜温度センサ14による検出除霜温度
が融解開始温度Y1に達したか否かを判断し、達すれ
ば、ステップG3に移行してマイクロコンピュータによ
るソフトタイマのカウントをスタートさせる。
6 to 8 show a second embodiment of the present invention. This embodiment differs from the first embodiment in the following points. That is, the control circuit 21 has a function as a measuring unit instead of having the temperature change rate calculating unit. In the flowchart of FIG. 7 showing the control contents, in step G2, it is judged whether or not the defrosting temperature detected by the defrosting temperature sensor 14 has reached the melting start temperature Y1. Start the soft timer count.

【0027】次のステップG4では、外気温度センサ1
6の検出外気温度を入力する。そしてステップG5で
は、除霜温度センサ14の検出除霜温度が融解終了温度
Y2例えば2℃に達したか否かを判断する。達すれば、
ステップG6にて、前記ソフトタイマのカウントを停止
すると共に、このタイマのカウント値をもって、融解温
度継続時間B(図4参照)を計測する。そしてステップ
G7では、平均外気温度を算出する。
In the next step G4, the outside air temperature sensor 1
Input the detected outside air temperature of 6. Then, in step G5, it is determined whether or not the defrosting temperature detected by the defrosting temperature sensor 14 has reached the melting end temperature Y2, for example, 2 ° C. Once you reach
In step G6, the soft timer count is stopped and the melting temperature duration B (see FIG. 4) is measured with the count value of this timer. Then, in step G7, the average outside air temperature is calculated.

【0028】ステップG8では、着霜量を推定すると共
に、除霜終了判定温度を決定する。すなわち、図8及び
前掲表1に示すように、本発明者の実験によれば、ある
一定の外気温度条件下では、着霜量が多いほど融解温度
継続時間が長くなることが分かった。そして、外気温度
が高いほど、着霜量が多くなることも分かった。また、
着霜量が多いほど除霜に要するエネルギーも多く、除霜
終了を判定する温度も高めとする必要があることも分か
った。しかして、融解温度継続時間と外気温度(本実施
例では平均外気温度)とにより着霜量を推定することが
できる。そして、この推定着霜量に基づいて第1の実施
例と同様に除霜終了判定温度Kαを決定する。なお、ス
テップG8の後は第1の実施例と同様である。
In step G8, the amount of frost formation is estimated and the defrosting end determination temperature is determined. That is, as shown in FIG. 8 and Table 1 above, according to the experiments by the present inventor, it was found that under a certain constant outside air temperature condition, the longer the melting temperature duration is, the longer the frost formation amount is. It was also found that the higher the outside air temperature, the greater the amount of frost formation. Also,
It was also found that the larger the amount of frost formed, the more energy required for defrosting, and the higher the temperature for determining the end of defrosting. Therefore, the amount of frost can be estimated from the melting temperature duration and the outside air temperature (average outside air temperature in this embodiment). Then, the defrosting end determination temperature Kα is determined based on this estimated frost formation amount as in the first embodiment. After step G8, the process is the same as in the first embodiment.

【0029】この第2の実施例によれば、融解温度継続
時間Bと外気温度とにより着霜量を推定するから、実際
に除霜すべき霜の量を良好に推定することができ、そし
て、推定着霜量に基づいて除霜終了判定温度Kαを決定
するから、着霜量に適した除霜終了判定温度に基づいて
除霜ヒータが断電つまり除霜運転が終了されるようにな
り、この結果、第1の実施例と同様の効果を奏する。
According to the second embodiment, since the amount of frost formation is estimated from the melting temperature duration B and the outside air temperature, the amount of frost to be actually defrosted can be well estimated, and Since the defrosting end determination temperature Kα is determined based on the estimated frosting amount, the defrosting heater is turned off, that is, the defrosting operation is terminated based on the defrosting ending determination temperature suitable for the frosting amount. As a result, the same effect as the first embodiment is obtained.

【0030】図9は、本発明の第3の実施例を示してい
る。この実施例においては、次の点が第1の実施例と異
なる。すなわち、ステップP3では、温度変化率演算の
ためのソフトタイマからなる第1のタイマをスタートさ
せる。ステップP5では検出除霜温度が演算終了温度K
2(融解温度継続開始温度Y1)に達したか否かを判断
し、達すれば、ステップP6にて、第1のタイマを停止
させると共に、温度変化率を演算し、そしてステップP
7にて平均外気温度を算出する。
FIG. 9 shows a third embodiment of the present invention. This embodiment differs from the first embodiment in the following points. That is, in step P3, the first timer, which is a soft timer for calculating the temperature change rate, is started. In step P5, the detected defrosting temperature is the calculation end temperature K.
2 (melting temperature continuation start temperature Y1) is determined, and if reached, the first timer is stopped and the temperature change rate is calculated in step P6.
The average outside air temperature is calculated at 7.

【0031】次いでステップP8にて、融解温度継続終
了判定のための第2のタイマのカウントをスタートす
る。そして、融解温度継続終了温度Y2に達すれば(ス
テップP9)、第2のタイマのカウントを停止し、融解
温度継続時間Bを計測する(ステップP10)。そし
て、ステップP11では、これら、温度変化率、融解温
度継続時間B及び外気温度に基づいて着霜量を推定し、
この推定着霜量に基づいて除霜終了判定温度Kαを決定
する。
Next, at step P8, the counting of the second timer for determining the end of melting temperature continuation is started. When the melting temperature continuation end temperature Y2 is reached (step P9), the counting of the second timer is stopped and the melting temperature continuation time B is measured (step P10). Then, in Step P11, the frost formation amount is estimated based on the temperature change rate, the melting temperature duration B, and the outside air temperature,
The defrosting end determination temperature Kα is determined based on this estimated frost formation amount.

【0032】この第3の実施例によれば、温度変化率と
外気温度と融解温度継続時間Bとにより着霜量を推定す
るから、実際に除霜すべき霜の量をより一層正確に推定
することができ、そして、この正確な推定着霜量に基づ
いて除霜終了判定温度Kαを決定するから、着霜量に適
した除霜終了判定温度Kαに基づいて除霜ヒータ13が
断電つまり除霜運転が終了され、もって、着霜量に応じ
た最適の除霜運転がさらに良好に行なわれるようにな
る。
According to the third embodiment, the amount of frost formation is estimated based on the temperature change rate, the outside air temperature, and the melting temperature duration B. Therefore, the amount of frost to be actually defrosted is estimated more accurately. Since the defrosting end determination temperature Kα is determined based on this accurate estimated frosting amount, the defrosting heater 13 is turned off based on the defrosting ending determination temperature Kα suitable for the frosting amount. That is, the defrosting operation is ended, and thus the optimum defrosting operation according to the amount of frost formation can be performed even better.

【0033】図10および図11は本発明の第4の実施
例を示しており、この第4の実施例においては次の点が
第1の実施例と異なる。すなわち、制御回路31には、
扉2a〜4aの開閉をそれぞれ検出する扉開閉検出手段
たる扉スイッチ32〜34からの信号が与えられるよう
になっており、そして、この制御回路31は、図11の
フローチャートには図示しないが、前回の除霜運転から
今回の除霜運転までの間における前記扉スイッチ32〜
34の開閉回数(合計値)を記憶すると共に、前回の除
霜運転から今回の除霜運転までの間における外気温度の
平均値を逐次算出するようになっており、扉開閉カウン
ト手段及び平均外気温度算出手段としても機能するよう
になっている。
10 and 11 show a fourth embodiment of the present invention. The fourth embodiment differs from the first embodiment in the following points. That is, the control circuit 31 has
Signals are supplied from door switches 32 to 34, which are door opening / closing detecting means for detecting opening / closing of the doors 2a to 4a, respectively, and the control circuit 31 is not shown in the flowchart of FIG. The door switch 32 from the last defrosting operation to the current defrosting operation
The number of opening / closing times (total value) of 34 is stored, and the average value of the outside air temperature from the previous defrosting operation to the current defrosting operation is sequentially calculated. It also functions as a temperature calculating means.

【0034】図11に示すフローチャートにおいて、ス
テップT1においては、前回の除霜運転から今回の除霜
運転までの間において記憶された扉2a〜4aの開閉回
数を入力し、ステップT2では前回の除霜運転から今回
の除霜運転までの間において算出され記憶されている平
均外気温度を入力する。そして、第1の実施例のステッ
プS1ないしステップS7と同様のステップT3ないし
ステップT9を実行して、ステップT10に移行する。
このステップT10では、ステップT8で得た温度変化
率と、ステップT9で得た外気温度と、ステップT1で
得た扉開閉回数と、ステップT2で得た平均外気温度
(ステップT9の平均外気温度とは異なる)とに基づい
て着霜量を推定すると共に、除霜終了判定温度Kαを決
定する。すなわち、扉開閉回数が多いほど、着霜量も多
くなる傾向にあり、また平均外気温度が高いほど着霜量
も多くなる傾向にある。これら傾向が加味されて着霜量
が推定される。
In the flowchart shown in FIG. 11, in step T1, the number of times of opening and closing the doors 2a to 4a stored between the previous defrosting operation and the present defrosting operation is input, and in step T2, the previous defrosting operation is entered. The average outside air temperature calculated and stored from the frost operation to the current defrost operation is input. Then, steps T3 to T9 similar to steps S1 to S7 of the first embodiment are executed, and the process proceeds to step T10.
In this step T10, the temperature change rate obtained in step T8, the outside air temperature obtained in step T9, the number of times the door is opened and closed obtained in step T1, the average outside air temperature obtained in step T2 (the average outside air temperature in step T9, And the defrosting end determination temperature Kα is determined. That is, the amount of frost formation tends to increase as the number of times of opening and closing of the door increases, and the frost formation amount tends to increase as the average outside air temperature increases. The amount of frost formation is estimated by adding these tendencies.

【0035】この第4の実施例によれば、前回の除霜運
転から今回の除霜運転までの間における扉2a〜4aの
開閉回数をカウントし、前回の除霜運転から今回の除霜
運転までの間における平均外気温度を算出し、この扉開
閉回数と平均外気温度とを加味して着霜量を推定するよ
うになっているから、着霜量の推定結果が一層正確にな
り、除霜運転がさらに良好に行なわれるようになる。
According to the fourth embodiment, the number of times the doors 2a to 4a are opened / closed between the last defrosting operation and the current defrosting operation is counted, and the last defrosting operation to the current defrosting operation is performed. During this period, the average outside air temperature is calculated, and the amount of frost formation is estimated by adding the number of times the door is opened and closed and the average outside air temperature. Frost operation will be carried out even better.

【0036】[0036]

【発明の効果】本発明は以上の説明から明らかなよう
に、次の効果を得ることができる。請求項1の発明によ
れば、温度変化率演算手段による温度変化率と外気温度
検出手段による外気温度とにより着霜量を推定するか
ら、実際に除霜すべき霜の量を良好に推定することがで
き、そして、推定着霜量に基づいて除霜終了判定温度を
決定するから、除霜を確実に行ない得ることはもとよ
り、常に実際の着霜量に応じた除霜運転を行なうことが
可能で、除霜運転を無駄に長く行なうことも防止でき、
もって、庫内の温度上昇も少なくでき、また、消費電力
の無駄もなくすことができる。
As is apparent from the above description, the present invention can obtain the following effects. According to the invention of claim 1, the frosting amount is estimated by the temperature change rate by the temperature change rate calculating means and the outside air temperature by the outside air temperature detecting means, so that the amount of frost to be actually defrosted is satisfactorily estimated. Since the defrosting end determination temperature is determined based on the estimated frosting amount, defrosting can be reliably performed, and defrosting operation according to the actual frosting amount can always be performed. It is possible to prevent the defrosting operation from being unnecessarily long,
Therefore, it is possible to reduce the temperature rise in the refrigerator and to reduce the waste of power consumption.

【0037】また、請求項2の発明によれば、計測手段
による融解温度継続時間と外気温度検出手段による外気
温度とにより着霜量を推定するから、実際に除霜すべき
霜の量を良好に推定することができ、そして、推定着霜
量に基づいて除霜終了判定温度を決定するから、請求項
1の発明と同様の効果を得ることができる。
Further, according to the second aspect of the invention, the amount of frost to be actually defrosted is good because the frosting amount is estimated by the melting temperature duration by the measuring means and the outside air temperature by the outside air temperature detecting means. Since the defrosting end determination temperature is determined based on the estimated frost formation amount, the same effect as the invention of claim 1 can be obtained.

【0038】請求項3の発明によれば、温度変化率演算
手段による温度変化率と外気温度検出手段による外気温
度と計測手段による融解温度継続時間とにより着霜量を
推定するから、実際に除霜すべき霜の量をより一層正確
に推定することができ、この結果、着霜量に応じた最適
の除霜運転がさらに良好に行なわれるようになる。
According to the invention of claim 3, the frost formation amount is estimated by the temperature change rate by the temperature change rate calculation means, the outside air temperature by the outside air temperature detection means, and the melting temperature duration by the measurement means. The amount of frost to be frosted can be more accurately estimated, and as a result, the optimum defrosting operation according to the amount of frost formation can be performed even better.

【0039】請求項4の発明によれば、前回の除霜運転
から今回の除霜運転までの間における冷蔵庫扉の開閉回
数をカウントし、前回の除霜運転から今回の除霜運転ま
での間における平均外気温度を算出し、この扉開閉回数
と平均外気温度とを加味して着霜量を推定するようにな
っているから、着霜量の推定結果が一層正確になり、除
霜運転がさらに良好に行なわれるようになる。
According to the fourth aspect of the present invention, the number of times the refrigerator door is opened and closed between the last defrosting operation and the current defrosting operation is counted, and the period between the last defrosting operation and the present defrosting operation is counted. The average outside air temperature in is calculated, and the frosting amount is estimated by adding the number of times of opening and closing the door and the average outside air temperature, so the estimation result of the frosting amount becomes more accurate, and the defrosting operation is performed. It will be performed even better.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す制御内容のフロー
チャート
FIG. 1 is a flowchart of control contents showing a first embodiment of the present invention.

【図2】冷蔵庫の縦断側面図[Figure 2] Vertical side view of the refrigerator

【図3】除霜運転に関連する電気的構成のブロック図FIG. 3 is a block diagram of an electrical configuration related to defrosting operation.

【図4】除霜温度センサの検出温度の変化を示す図FIG. 4 is a diagram showing a change in temperature detected by a defrosting temperature sensor.

【図5】着霜量と温度変化率との関係を示す図FIG. 5 is a diagram showing a relationship between a frost formation amount and a temperature change rate.

【図6】本発明の第2の実施例を示す図3相当図FIG. 6 is a diagram corresponding to FIG. 3 showing a second embodiment of the present invention.

【図7】図1相当図FIG. 7 is a view equivalent to FIG.

【図8】着霜量と融解温度継続時間との関係を示す図FIG. 8 is a diagram showing the relationship between the amount of frost and the duration of melting temperature.

【図9】本発明の第3の実施例を示す図1相当図FIG. 9 is a view corresponding to FIG. 1 showing a third embodiment of the present invention.

【図10】本発明の第4の実施例を示す図3相当図FIG. 10 is a view corresponding to FIG. 3 showing a fourth embodiment of the present invention.

【図11】図1相当図FIG. 11 is a view equivalent to FIG.

【符号の説明】[Explanation of symbols]

1は冷蔵庫本体、2a〜4aは扉(冷蔵庫扉)、6は冷
却器、13は除霜ヒータ、14は除霜温度センサ(除霜
温度検出手段)、15は制御回路(除霜運転手段、温度
変化率演算手段、着霜量推定手段及び除霜終了判定温度
決定手段)、21は制御回路(除霜運転手段、計測手
段、着霜量推定手段及び除霜終了判定温度決定手段)、
31は制御回路(除霜運転手段、温度変化率演算手段、
着霜量推定手段、除霜終了判定温度決定手段、扉開閉カ
ウント手段及び平均外気温度算出手段)を示す。
1 is a refrigerator main body, 2a-4a is a door (refrigerator door), 6 is a cooler, 13 is a defrost heater, 14 is a defrost temperature sensor (defrost temperature detection means), 15 is a control circuit (defrost operation means, Reference numeral 21 denotes a control circuit (defrosting operation means, measuring means, frost formation amount estimation means, and defrosting end determination temperature determination means);
31 is a control circuit (defrosting operation means, temperature change rate calculation means,
The frost formation amount estimating means, the defrosting end determination temperature determining means, the door opening / closing counting means, and the average outside air temperature calculating means)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 冷却器の除霜を行なう除霜ヒータと、 冷却器除霜状態検出用の除霜温度検出手段と、 前記除霜ヒータに通電し前記除霜温度検出手段に基づい
て除霜終了判定温度が検出されたときに該除霜ヒータを
断電する除霜運転手段と、 冷蔵庫周囲の温度を検出する外気温度検出手段と、 前記除霜ヒータに対する通電開始以後に前記除霜温度検
出手段の検出温度の変化率を演算する温度変化率演算手
段と、 この温度変化率演算手段による温度変化率と前記外気温
度検出手段による外気温度とにより着霜量を推定する着
霜量推定手段と、 この着霜量推定手段による推定着霜量に基づいて前記除
霜終了判定温度を決定する除霜終了判定温度決定手段と
を具備してなる冷蔵庫の除霜装置。
1. A defrost heater for defrosting a cooler, a defrost temperature detecting means for detecting a defrosting state of a cooler, and a defrost on the basis of the defrost temperature detecting means by energizing the defrost heater. Defrost operation means for turning off the defrost heater when the end determination temperature is detected, outside air temperature detection means for detecting the temperature around the refrigerator, and defrost temperature detection after the start of energization of the defrost heater Temperature change rate calculation means for calculating the change rate of the detected temperature of the means, and frost formation amount estimation means for estimating the frost formation amount by the temperature change rate by the temperature change rate calculation means and the outside air temperature by the outside air temperature detection means. A defrosting device for a refrigerator, comprising: defrosting end determination temperature determining means for determining the defrosting end determination temperature based on the estimated frosting amount estimated by the frosting amount estimating means.
【請求項2】 冷却器の除霜を行なう除霜ヒータと、 冷却器除霜状態検出用の除霜温度検出手段と、 前記除霜ヒータに通電し前記除霜温度検出手段に基づい
て除霜終了判定温度が検出されたときに該除霜ヒータを
断電する除霜運転手段と、 冷蔵庫周囲の温度を検出する外気温度検出手段と、 前記除霜ヒータに対する通電開始以後に前記冷却器が融
解温度状態にあることを検出し、この融解温度状態の継
続時間を計測する計測手段と、 この計測手段による融解温度継続時間と前記外気温度検
出手段による外気温度とにより着霜量を推定する着霜量
推定手段と、 この着霜量推定手段による推定着霜量に基づいて前記除
霜終了判定温度を決定する除霜終了判定温度決定手段と
を具備してなる冷蔵庫の除霜装置。
2. A defrosting heater for defrosting a cooler, a defrosting temperature detecting means for detecting a defrosting state of the cooler, and a defrosting method for energizing the defrosting heater based on the defrosting temperature detecting means. Defrosting operation means for turning off the defrost heater when the end determination temperature is detected, outside air temperature detecting means for detecting the temperature around the refrigerator, and the cooler melting after the start of energization of the defrost heater A frosting device that detects a temperature state and measures the duration of this melting temperature state, and a frosting amount that estimates the amount of frosting based on the melting temperature duration of this measuring device and the outside air temperature of the outside air temperature detecting device. A defrosting device for a refrigerator comprising: an amount estimating means; and a defrosting end determination temperature determining means that determines the defrosting end determination temperature based on the estimated frosting amount estimated by the frosting amount estimation means.
【請求項3】 冷却器の除霜を行なう除霜ヒータと、 冷却器除霜状態検出用の除霜温度検出手段と、 前記除霜ヒータに通電し前記除霜温度検出手段に基づい
て除霜終了判定温度が検出されたときに該除霜ヒータを
断電する除霜運転手段と、 冷蔵庫周囲の温度を検出する外気温度検出手段と、 前記除霜ヒータに対する通電開始以後に前記除霜温度検
出手段の検出温度の変化率を演算する温度変化率演算手
段と、 前記除霜ヒータに対する通電開始以後に前記冷却器が融
解温度状態にあることを検出し、この融解温度状態の継
続時間を計測する計測手段と、 前記温度変化率演算手段による温度変化率と前記外気温
度検出手段による外気温度と前記計測手段による融解温
度継続時間とにより着霜量を推定する着霜量推定手段
と、 この着霜量推定手段による推定着霜量に基づいて前記除
霜終了判定温度を決定する除霜終了判定温度決定手段と
を具備してなる冷蔵庫の除霜装置。
3. A defrosting heater for defrosting a cooler, a defrosting temperature detecting means for detecting a defrosting state of the cooler, and a defrosting method for energizing the defrosting heater based on the defrosting temperature detecting means. Defrost operation means for turning off the defrost heater when the end determination temperature is detected, outside air temperature detection means for detecting the temperature around the refrigerator, and defrost temperature detection after the start of energization of the defrost heater Temperature change rate calculating means for calculating the change rate of the detected temperature of the means, and detecting that the cooler is in a melting temperature state after the start of energization of the defrost heater, and measures the duration of this melting temperature state. Measurement means, frost formation amount estimation means for estimating the frost formation amount by the temperature change rate by the temperature change rate calculation means, the outside air temperature by the outside air temperature detection means, and the melting temperature duration by the measurement means, and this frost formation Quantity estimator Refrigerator defrosting device formed by and a defrosting end determination temperature determination means for determining the defrosting end determination temperature based on the estimated frost amount due.
【請求項4】 前回の除霜運転から今回の除霜運転まで
の間における冷蔵庫扉の開閉回数をカウントする扉開閉
カウント手段と、前回の除霜運転から今回の除霜運転ま
での間における平均外気温度を算出する平均外気温度算
出手段とを備え、着霜量推定手段は、この扉開閉カウン
ト手段による扉開閉回数と平均外気温度算出手段による
平均外気温度とを加味して着霜量を推定するようになっ
ていることを特徴とする請求項1ないし3のいずれかに
記載の冷蔵庫の除霜装置。
4. Door opening / closing counting means for counting the number of times the refrigerator door is opened / closed between the last defrosting operation and the current defrosting operation, and an average between the last defrosting operation and the current defrosting operation. An average outside air temperature calculation means for calculating the outside air temperature is provided, and the frost formation amount estimation means estimates the frost formation amount in consideration of the number of times the door is opened and closed by the door opening and closing count means and the average outside air temperature by the average outside air temperature calculation means. The defrosting device for a refrigerator according to claim 1, wherein the defrosting device is for a refrigerator.
JP06230923A 1994-09-27 1994-09-27 Refrigerator defroster Expired - Fee Related JP3103275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06230923A JP3103275B2 (en) 1994-09-27 1994-09-27 Refrigerator defroster

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06230923A JP3103275B2 (en) 1994-09-27 1994-09-27 Refrigerator defroster

Publications (2)

Publication Number Publication Date
JPH0894234A true JPH0894234A (en) 1996-04-12
JP3103275B2 JP3103275B2 (en) 2000-10-30

Family

ID=16915405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06230923A Expired - Fee Related JP3103275B2 (en) 1994-09-27 1994-09-27 Refrigerator defroster

Country Status (1)

Country Link
JP (1) JP3103275B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0924479A2 (en) * 1997-12-18 1999-06-23 Fujitsu General Limited Air conditioner control method and apparatus of the same
JP2010002127A (en) * 2008-06-20 2010-01-07 Denso Corp Refrigerating cycle device
JP2011058741A (en) * 2009-09-11 2011-03-24 Sharp Corp Refrigerator
JP2011058742A (en) * 2009-09-11 2011-03-24 Sharp Corp Refrigerator
JP2011058739A (en) * 2009-09-11 2011-03-24 Sharp Corp Refrigerator
JP2011085371A (en) * 2009-10-19 2011-04-28 Hoshizaki Electric Co Ltd Cooling storage
JP2012032120A (en) * 2010-08-02 2012-02-16 Denso Corp Heat pump device
US20120042667A1 (en) * 2009-03-18 2012-02-23 Fulmer Scott D Microprocessor controlled defrost termination
US20130020397A1 (en) * 2010-01-13 2013-01-24 Gtr Technologies, Inc. Ventilation control system and method
WO2013064659A3 (en) * 2011-11-04 2013-08-15 Arcelik Anonim Sirketi A refrigerator having a frozen food thawing function
US10247465B2 (en) 2014-10-02 2019-04-02 Arcelik Anonim Sirketi Cooling device comprising a thawing compartment and the control method thereof
WO2019111363A1 (en) * 2017-12-06 2019-06-13 三菱電機株式会社 Refrigerator, heater driving device, heater driving method, and program
CN111609665A (en) * 2020-05-15 2020-09-01 珠海格力电器股份有限公司 Defrosting control method and device
WO2024024018A1 (en) * 2022-07-28 2024-02-01 三菱電機株式会社 Refrigerator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018020653A1 (en) * 2016-07-29 2018-02-01 三菱電機株式会社 Freezer-refrigerator

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0924479A3 (en) * 1997-12-18 2000-07-26 Fujitsu General Limited Air conditioner control method and apparatus of the same
AU739317B2 (en) * 1997-12-18 2001-10-11 Fujitsu General Limited Air conditioner control method and apparatus of the same
EP0924479A2 (en) * 1997-12-18 1999-06-23 Fujitsu General Limited Air conditioner control method and apparatus of the same
JP2010002127A (en) * 2008-06-20 2010-01-07 Denso Corp Refrigerating cycle device
US20120042667A1 (en) * 2009-03-18 2012-02-23 Fulmer Scott D Microprocessor controlled defrost termination
JP2011058741A (en) * 2009-09-11 2011-03-24 Sharp Corp Refrigerator
JP2011058742A (en) * 2009-09-11 2011-03-24 Sharp Corp Refrigerator
JP2011058739A (en) * 2009-09-11 2011-03-24 Sharp Corp Refrigerator
JP2011085371A (en) * 2009-10-19 2011-04-28 Hoshizaki Electric Co Ltd Cooling storage
US9360228B2 (en) * 2010-01-13 2016-06-07 Gtr Technologies, Inc. Ventilation control system and method
US20130020397A1 (en) * 2010-01-13 2013-01-24 Gtr Technologies, Inc. Ventilation control system and method
JP2012032120A (en) * 2010-08-02 2012-02-16 Denso Corp Heat pump device
WO2013064659A3 (en) * 2011-11-04 2013-08-15 Arcelik Anonim Sirketi A refrigerator having a frozen food thawing function
US10247465B2 (en) 2014-10-02 2019-04-02 Arcelik Anonim Sirketi Cooling device comprising a thawing compartment and the control method thereof
WO2019111363A1 (en) * 2017-12-06 2019-06-13 三菱電機株式会社 Refrigerator, heater driving device, heater driving method, and program
CN111609665A (en) * 2020-05-15 2020-09-01 珠海格力电器股份有限公司 Defrosting control method and device
CN111609665B (en) * 2020-05-15 2021-12-07 珠海格力电器股份有限公司 Defrosting control method and device
WO2024024018A1 (en) * 2022-07-28 2024-02-01 三菱電機株式会社 Refrigerator

Also Published As

Publication number Publication date
JP3103275B2 (en) 2000-10-30

Similar Documents

Publication Publication Date Title
US6619058B2 (en) Refrigerator for kimchi and controlling method therefor
JPH0894234A (en) Defrosting device for refrigerator
KR910010161B1 (en) Refrigeration with quick cooling system
KR0142739B1 (en) Defrosting device for a refrigerator
JP2008075964A (en) Defrosting device of cooling device
JPH06213548A (en) Refrigerator
JPH1089834A (en) Refrigerator
KR100593632B1 (en) Method of controlling defrost cycle of refrigerator and its device
KR20040057156A (en) Defrosting control method for refrigerator
JP2003106739A (en) Refrigerator
JPH08261629A (en) Refrigerator
CN114893865A (en) Air conditioner defrosting control method and device, electronic equipment and storage medium
JP2001263912A (en) Refrigerator
JPH0634259A (en) Electrical refrigerator
KR100190126B1 (en) Defrosting cycling decision method and its apparatus for evaporator of a refrigerator
KR100239534B1 (en) Anti-freezing device
KR100276512B1 (en) De-frost period control method of a refregerator
JP2680687B2 (en) Defrost control method for open showcase
KR100597680B1 (en) Control method of defrosting a evaporator for a refrigerator
JP2885559B2 (en) Refrigerator defrost control device
KR0158010B1 (en) Defrosting method of a refrigerator
JPH03271680A (en) Controller for refrigerator
JPH03233279A (en) Device for controlling defrosting
JP2000329446A (en) Refrigerator
KR0128747Y1 (en) Temperature control apparatus of water tank of refrigerator with water dispensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees