[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0890046A - Cooling method of hot steel plate - Google Patents

Cooling method of hot steel plate

Info

Publication number
JPH0890046A
JPH0890046A JP24729694A JP24729694A JPH0890046A JP H0890046 A JPH0890046 A JP H0890046A JP 24729694 A JP24729694 A JP 24729694A JP 24729694 A JP24729694 A JP 24729694A JP H0890046 A JPH0890046 A JP H0890046A
Authority
JP
Japan
Prior art keywords
steel sheet
temperature
cooling
steel plate
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24729694A
Other languages
Japanese (ja)
Inventor
Kazuo Okamura
一男 岡村
Yoichi Haraguchi
洋一 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP24729694A priority Critical patent/JPH0890046A/en
Publication of JPH0890046A publication Critical patent/JPH0890046A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE: To prevent generation of poor flatness of a steel plate by controlling injection speed in response to the temp. distribution in the width direction of the steel plate in executing hot straightening after the hot rolled plate is rapidly cooled while transferring in the longitudinal direction. CONSTITUTION: The cooling device used is provided with nozzle headers 22 arranged with nozzles 21 in the prescribed interval wa in the longitudinal direction and in the fixed interval wb of a steel plate 1 and is capable of controlling a cooling water quantity from the nozzle 21 of nozzle header line 22. The temp. distribution on the surface of steel plate 1 at the inlet or outlet of hot straightening machine following to the cooling device is measured to obtain average temp. distribution in the width direction, the residual stress distribution and critical buckling stress after the virtual steel plate having this temp. distribution in the longitudinal direction in row is air cooled to normal temp. are operated and estimated. Successively, based on the operated value, presence/absence of generation of buckling deformation at normal temp. is discriminated, in the case of presence of buckling deformation, the correcting instruction value of cooling water quantity is obtained so that the residual stress is less than critical buckling stress, water quantity control to each nozzle header line 22 is executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、熱間圧延鋼板の圧延
後の直接焼入れ・加速冷却のように高温の鋼板を冷却す
る際において、冷却に起因する平坦不良の発生を防止す
るための熱鋼板の冷却方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to heat treatment for preventing the occurrence of flat defects due to cooling when cooling high temperature steel sheets such as direct quenching and accelerated cooling after hot rolling of steel sheets. The present invention relates to a method for cooling a steel sheet.

【0002】[0002]

【従来の技術】近年、厚板などの鋼板製造プロセスにお
いては、制御圧延後、熱鋼板を水冷することにより高強
度、高靭性鋼板を得る技術(以下加速冷却という)が広
く行われるようになってきている。すなわち加速冷却
は、従来の添加元素成分を増加させることなどにより行
っていた鋼板の高強度化、高靭性化を、制御圧延および
加速冷却を組み合せることによって実現したもので、添
加元素を低減して製造コストを大幅に削減できるばかり
でなく、溶接性にも優れた鋼板を製造することが可能と
なる。
2. Description of the Related Art In recent years, in a steel plate manufacturing process such as a thick plate, a technique for obtaining a high strength and high toughness steel plate by water cooling a hot steel plate after controlled rolling (hereinafter referred to as accelerated cooling) has been widely used. Is coming. In other words, accelerated cooling is achieved by combining controlled rolling and accelerated cooling to achieve higher strength and toughness of steel sheets, which has been achieved by increasing the conventional additive element components, etc. It is possible not only to significantly reduce the manufacturing cost, but also to manufacture a steel sheet having excellent weldability.

【0003】このように加速冷却は、優れた品質の鋼板
を安価に製造することが可能であるが、その一方で、最
近ますます高品質化のニーズが高まっていく中、いくつ
かの問題が生じてきており、その中の重要な問題とし
て、加速冷却された鋼板の平坦不良の発生がある。すな
わち、加速冷却においては、200℃〜900℃の高温
の鋼板表面に、冷却ノズルより冷却水を噴射し、鋼板を
強制的に冷却することが一般的であるが、このとき、鋼
板表面において対流沸騰熱伝達現象が発生する。加速冷
却では、この対流沸騰熱伝達現象によって自然放冷など
に比べ数十〜数百倍の高冷却速度が達成でき、より微細
な結晶構造を有する鋼板が得られ、前記した高強度、高
靭性を有する鋼板を製造することができる。
As described above, accelerated cooling can produce a steel sheet of excellent quality at a low cost, but on the other hand, as the needs for higher quality increase recently, there are some problems. This is occurring, and an important problem among them is the occurrence of poor flatness of the accelerated cooled steel sheet. That is, in accelerated cooling, it is general to inject cooling water from a cooling nozzle onto the surface of a steel sheet having a high temperature of 200 ° C. to 900 ° C. to forcibly cool the steel sheet. At this time, convection occurs on the surface of the steel sheet. A boiling heat transfer phenomenon occurs. In accelerated cooling, due to this convective boiling heat transfer phenomenon, a high cooling rate of several tens to several hundred times higher than natural cooling can be achieved, a steel sheet having a finer crystal structure is obtained, and the above-mentioned high strength and high toughness are obtained. It is possible to manufacture a steel plate having

【0004】しかしその反面、この対流沸騰熱伝達現象
においては、鋼板の表面温度が低温になるにつれて熱伝
達係数が増加するという傾向があるため、現象そのもの
が非常に不安定である。例えば、冷却開始時に鋼板表面
に僅かの温度むらがある場合、鋼板表面の熱伝達係数に
作用する因子の一つである冷却水の水量密度を鋼板表面
全体でいかに均一に制御したとしても、表面温度の低い
領域においてますます冷却が促進されるため、冷却終了
後には大きな温度むらを生じることになる。これらの温
度むらの発生は、最終的に鋼板の機械特性値のバラツキ
を生じるばかりでなく、温度むらがある限界の温度差を
超えたときは、常温に冷えるまでの間に耳波や中伸びな
どの形状不良を生じるという問題がある。
On the other hand, however, in this convective boiling heat transfer phenomenon, the heat transfer coefficient tends to increase as the surface temperature of the steel plate becomes lower, and therefore the phenomenon itself is very unstable. For example, if there is a slight temperature unevenness on the steel plate surface at the start of cooling, no matter how evenly the water quantity density of the cooling water, which is one of the factors affecting the heat transfer coefficient of the steel plate surface, is controlled over the entire steel plate surface, Since the cooling is further promoted in the low temperature region, a large temperature unevenness will occur after the cooling is completed. The occurrence of such temperature unevenness not only finally causes variations in the mechanical property values of the steel sheet, but also when the temperature unevenness exceeds a certain temperature difference, a seismic wave or medium elongation occurs until it cools to room temperature. However, there is a problem that such a defective shape is generated.

【0005】上記加速冷却における鋼板の形状不良の発
生を防止する方法としては、鋼板の冷却において、強制
冷却開始前に板幅方向温度分布を測定し、冷却後に幅方
向に均一な温度分布が得られるように演算した結果に基
づき、遮蔽樋にて鋼板幅端部を被い、鋼板幅端部に冷却
水が直接当たることを防止し、鋼板幅端部の温度低下を
防止する方法(特開昭58−32511号公報)、熱鋼
板の搬送ライン内に設置し、該熱鋼板の上方および下方
に板幅方向に延びるノズルヘッダーをそれぞれ有し、該
ノズルヘッダーの長手方向に多数の冷却水噴射ノズルを
鋼板表面に対向するごとく設けてなる、複数のゾーンに
分割した冷却装置を用いて圧延直後の熱鋼板を強制冷却
するに際し、圧延終了後から前記冷却装置に装入する前
に鋼板温度を実測して、これ以降冷却終了までの鋼板温
度を鋼板の厚さ方向、長さ方向および幅方向の各点につ
いて時々刻々予測することにより、予め決められた冷却
開始温度、停止温度および冷却速度の冷却条件を満足
し、かつ均一な冷却が可能となるような、必要冷却ゾー
ン長さ、上下面水量密度、冷却装置前および冷却装置内
の通板速度、冷却装置内の通板速度パターン、幅方向推
量密度をそれぞれ求め、この求められた冷却スケジュー
ルに基づき前記冷却装置に熱鋼板を通して冷却した後、
冷却後の鋼板温度を実測し、予測値との誤差を求め、鋼
板温度予測の板間学習をする方法(特開昭60−879
14号公報)、鋼板の少なくとも上下方向および幅方向
の中央部と側端部における水冷開始前、水冷途中および
水冷終了後の温度を検出して各測温点の温度と測温点間
の温度差を求め、各測温点の温度と測温点間の温度差に
対応して予め定めた関係式に基づき前記鋼板の常温域に
おける変形量を予測・演算し、該予測値が目標値の許容
範囲内となるように複数のノズルに対する冷却水の供給
量を制御する方法(特公昭63−47775号公報)等
が提案されている。
As a method of preventing the defective shape of the steel sheet in the above accelerated cooling, in cooling the steel sheet, the temperature distribution in the sheet width direction is measured before the start of forced cooling, and a uniform temperature distribution in the width direction is obtained after cooling. A method of covering the steel plate width end with a shielding gutter, preventing the cooling water from directly contacting the steel plate width end, and preventing the temperature drop of the steel plate width end based on the result of the calculation as JP-A-58-32511), which is installed in a hot steel plate conveying line and has nozzle headers extending in the plate width direction above and below the hot steel plate, respectively, and a large number of cooling water jets in the longitudinal direction of the nozzle header. When forcibly cooling the hot steel sheet immediately after rolling using a cooling device divided into a plurality of zones, which is provided so that the nozzles face the steel sheet surface, the temperature of the steel sheet is set after the rolling and before it is charged into the cooling device. Actual measurement Then, by predicting the steel sheet temperature until the end of cooling from moment to moment in each of the thickness direction, the length direction and the width direction of the steel sheet, the cooling conditions of the predetermined cooling start temperature, stop temperature and cooling rate are determined. Required cooling zone length, upper and lower surface water amount density, strip speed in front of and in the cooling device, strip speed pattern in the cooling device, width direction estimation so that uniform cooling can be achieved. Obtaining the density respectively, after cooling the hot plate through the cooling device based on the cooling schedule obtained,
A method of actually measuring the temperature of the steel plate after cooling, obtaining an error from the predicted value, and performing inter-plate learning for predicting the steel plate temperature (JP-A-60-879).
No. 14), the temperature at each temperature measuring point and the temperature between the temperature measuring points are detected by detecting the temperature before starting water cooling, during water cooling and after water cooling at least in the central portion and the side end portions in the vertical direction and the width direction of the steel sheet. The difference is calculated, the deformation amount in the normal temperature region of the steel sheet is predicted and calculated based on a predetermined relational expression corresponding to the temperature at each temperature measurement point and the temperature difference between the temperature measurement points, and the predicted value is the target value. A method (Japanese Patent Publication No. 63-47775) of controlling the supply amount of cooling water to a plurality of nozzles so as to be within an allowable range has been proposed.

【0006】また、鋼板の変形量推定方法としては、温
度分布を有する鋼板を所定の形状に切断加工する際に、
切断加工によって得られる部分材の変形量を推定する方
法であって、鋼板の板面温度分布を2次元的に測定し、
該測定した板面温度分布データと残留応力を取込んだ所
定の推定式とを用いて変形量を推定演算して求める方法
(特開昭62−236617号公報)が提案されてい
る。
As a method of estimating the amount of deformation of a steel sheet, when a steel sheet having a temperature distribution is cut into a predetermined shape,
A method of estimating the amount of deformation of a partial material obtained by cutting, measuring the plate surface temperature distribution of a steel plate two-dimensionally,
There has been proposed a method (Japanese Patent Laid-Open No. 62-236617) in which a deformation amount is estimated and calculated using the measured plate surface temperature distribution data and a predetermined estimation formula that incorporates residual stress.

【0007】[0007]

【発明が解決しようとする課題】上記特開昭58−32
511号公報に開示の方法は、鋼板幅端部が過冷却とな
ることを防止することにより、鋼板の波打ち変形の発生
を防止しようとするもので、鋼板の表面性状不均一や冷
却のゆらぎ等によって、鋼板の幅端部以外の部分の過冷
却が生じることがあり、この過冷却が原因となって生じ
る波打ち変形の防止はできない。また、幅端部の過冷却
の防止は、冷却前の測温結果に基づいて行っており、鋼
板の温度均一化を実現することは非常に困難である。ま
た、特開昭60−87914号公報に開示の方法は、冷
却前後の鋼板温度を測定し、冷却終了時の鋼板の温度を
均一化するよう冷却を制御することによって、鋼板の変
形を防止する方法である。しかしながら鋼板の冷却特性
は、鋼板の表面性状や冷却水のゆらぎ等によって微妙に
変化するので、ある被冷却鋼板の冷却前後の鋼板温度を
測定し均一冷却が可能な水量密度を見いだしたとして
も、冷却特性に作用する前記要因を完全に再現できない
限り、他の鋼板においての完全な均一冷却の実現は不可
能である。鋼板の変形は、鋼板温度を完全に均一にでき
れば防止できるが、鋼板の温度を完全に均一化すること
は事実上不可能に近い。したがって、鋼板の変形防止を
達成するためには、変形防止が可能な範囲の温度むらの
許容範囲を明確にしなければならない。さらに、特公昭
63−47775号公報に開示の方法は、各測温点の温
度と測温点間の温度差に対応して予め定めた関係式に基
づき前記鋼板の常温域における変形量の予測を行ってい
るが、各測温点の温度と測温点間の温度差だけでは正確
に変形量を予測することはできないという欠点を有して
いる。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The method disclosed in Japanese Patent No. 511 aims to prevent the occurrence of corrugated deformation of the steel sheet by preventing the steel sheet width end from being overcooled, and uneven surface properties of the steel sheet, fluctuation of cooling, etc. As a result, supercooling of a portion other than the width end portion of the steel sheet may occur, and it is not possible to prevent wavy deformation caused by this supercooling. Further, the prevention of the supercooling of the width end is performed based on the temperature measurement result before cooling, and it is very difficult to realize the temperature uniformity of the steel sheet. Further, the method disclosed in JP-A-60-87914 prevents deformation of the steel sheet by measuring the steel sheet temperature before and after cooling and controlling the cooling so as to make the temperature of the steel sheet uniform at the end of cooling. Is the way. However, the cooling characteristics of the steel sheet change subtly due to the surface properties of the steel sheet, fluctuations of cooling water, etc., so even if the steel sheet temperature before and after cooling of a certain cooled steel sheet is measured to find a water quantity density capable of uniform cooling, Unless the above-mentioned factors affecting the cooling characteristics can be completely reproduced, it is impossible to achieve completely uniform cooling in other steel sheets. The deformation of the steel sheet can be prevented if the temperature of the steel sheet can be made completely uniform, but it is practically impossible to make the temperature of the steel sheet completely uniform. Therefore, in order to prevent deformation of the steel sheet, it is necessary to clarify the allowable range of temperature unevenness in the range where deformation can be prevented. Further, the method disclosed in Japanese Examined Patent Publication No. 63-47775 predicts the amount of deformation of the steel sheet in the normal temperature range based on a predetermined relational expression corresponding to the temperature at each temperature measuring point and the temperature difference between the temperature measuring points. However, there is a drawback that the deformation amount cannot be accurately predicted only by the temperature at each temperature measuring point and the temperature difference between the temperature measuring points.

【0008】さらにまた、特開昭62−236617号
公報に開示の方法は、鋼板の温度分布を測定して常温で
の鋼板の残留応力を予測するもので、予測した残留応力
は鋼板を条切りした場合の条の曲がり変形予測に適用で
きるが、鋼板の加速冷却における波打ち変形(耳波、中
伸び)を予測することはできないばかりでなく、条切り
変形量と波打ち変形量は対応するものではない。上記し
たとおり、従来の技術は、鋼板の平坦不良を部分的に防
止できる場合があるものの、平坦不良を確実に防止でき
ないため、品質上の問題点が残ると共に、常温での平坦
不良の発生の有無を確認するため、冷却後の鋼板を直ち
に精製工程へ移送することができない等の工程上の不都
合を依然として有するものであった。
Furthermore, the method disclosed in JP-A-62-236617 measures the temperature distribution of a steel sheet and predicts the residual stress of the steel sheet at room temperature. Although it can be applied to predict the bending deformation of strips, it is not possible to predict the waving deformation (ear wave, medium elongation) in accelerated cooling of steel sheet, and the amount of ripping deformation and the amount of waving deformation do not correspond to each other. Absent. As described above, the conventional technique may be able to partially prevent the flatness failure of the steel sheet, but cannot reliably prevent the flatness failure, so that the quality problem remains and the occurrence of the flatness failure at room temperature occurs. In order to confirm the presence or absence, the steel sheet after cooling still has the inconvenience in the process such as not being able to be immediately transferred to the refining process.

【0009】この発明の目的は、上記従来技術の問題点
を解消し、熱鋼板の加速冷却において、加速冷却後直ち
に常温に到るまでの残留応力分布を予測し、残留応力の
分布から板材の平坦形状を予測することによって、平坦
形状の良好な鋼板を得ることができる熱鋼板の冷却方法
を提供することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art, predict the residual stress distribution until the temperature reaches normal temperature immediately after accelerated cooling in the accelerated cooling of hot steel sheets, and calculate the residual stress distribution of the plate material from the residual stress distribution. An object of the present invention is to provide a method for cooling a hot steel sheet that can obtain a steel sheet having a good flat shape by predicting the flat shape.

【0010】[0010]

【課題を解決するための手段】本発明者らは、常温での
波打ち変形は不均一冷却された鋼板が常温になるまでに
生じる内部応力が原因となって発生する座屈であると考
え鋭意試験研究を重ねた。図3(a)は加速冷却後、熱
間矯正を行う熱間矯正部で測定した鋼板の幅方向の温度
分布、図3(b)は熱間矯正後の鋼板を常温にまで自然
放冷した場合に測定した鋼板の幅方向の残留応力の分布
の一例を示すものである。鋼板の残留応力分布と熱間矯
正部での温度分布とは、図3(a)(b)に示すとおり
良く対応しており、熱間矯正機による熱間矯正によって
鋼板内部の応力は一旦解放され、熱間矯正を終了した時
点で鋼板に残存していた温度分布により、残留応力が発
生したことがわかる。また、図3(a)に示すとおり、
急速冷却によって生じる不均一温度分布は、幅端部のみ
が他の部分に比べて相対的に低温である様な単純な場合
はなく、相対的に低温である過冷却域が鋼板の幅方向に
分布する場合の方が一般的である。また、このような温
度分布の鋼板は、常温になった時に生じる残留応力分布
も、鋼板の幅方向に引張りや圧縮応力域が分布する複雑
な応力分布となる。均一な圧縮応力や均一圧縮応力と曲
げ応力を組合わせたような分布応力での座屈の発生限界
は、従来より知られているが、図3(b)に示すような
複雑な分布を有する内部応力下での座屈の発生はいまだ
明らかにされていなかった。そこで、本発明者は鋼板の
幅方向に応力分布が引張りや圧縮領域を繰り返し含むよ
うな種々の分布形態の内部応力について、座屈の発生限
界を3次元の有限要素法によって、理論的に解析し、次
の知見を得た。
Means for Solving the Problems The inventors of the present invention have thought that the corrugated deformation at room temperature is a buckling caused by an internal stress generated by a non-uniformly cooled steel sheet until it reaches room temperature. Repeated trial studies. FIG. 3 (a) is the temperature distribution in the width direction of the steel sheet measured in the hot straightening part that performs hot straightening after accelerated cooling, and FIG. 3 (b) naturally cools the steel sheet after hot straightening to room temperature. It is an example of a distribution of residual stress in the width direction of the steel sheet measured in this case. The residual stress distribution of the steel plate and the temperature distribution in the hot straightening part correspond well as shown in FIGS. 3 (a) and 3 (b), and the stress inside the steel plate is temporarily released by the hot straightening by the hot straightening machine. Then, it can be seen that the residual stress is generated due to the temperature distribution remaining in the steel sheet at the time of finishing the hot straightening. In addition, as shown in FIG.
The non-uniform temperature distribution caused by rapid cooling is not a simple case where only the width end is relatively cooler than the other parts, and the relatively cool supercooled region is in the width direction of the steel sheet. Distribution is more common. Further, in a steel sheet having such a temperature distribution, the residual stress distribution generated at normal temperature also has a complicated stress distribution in which tensile and compressive stress regions are distributed in the width direction of the steel sheet. The limit of occurrence of buckling under a uniform compressive stress or a distributed stress such as a combination of a uniform compressive stress and a bending stress is conventionally known, but has a complicated distribution as shown in FIG. 3B. The occurrence of buckling under internal stress has not been clarified yet. Therefore, the present inventor theoretically analyzes the limit of buckling occurrence by using a three-dimensional finite element method for the internal stress of various distribution forms in which the stress distribution in the width direction of the steel sheet repeatedly includes tensile and compression regions. Then, the following findings were obtained.

【0011】1) 鋼板の座屈は、圧縮の残留応力があ
る限界(臨界座屈応力)を超えると生じるが、この臨界
座屈応力は応力の分布形状によって変化する。例えば、
図4は板厚24mm、板幅3.28mの鋼板の幅方向
に、図4(a)に示すとおり過冷却域が1箇所だけ存在
し、図4(b)に示すとおり、室温にて圧縮残留応力が
幅方向に1箇所だけ発生する場合についての例を示す。
この場合臨界座屈応力は、図5に示すとおり、圧縮残留
応力の位置によって変化し、幅中央部に圧縮残留応力が
位置する場合に臨界座屈応力が最も大きくなる。したが
って、圧縮残留応力域の幅方向位置、すなわち、過冷却
域の幅方向位置によって鋼板が平坦不良を起こすにいた
る座屈限界の温度偏差(ΔTmax)CRも変化する。過
冷却域の幅と温度偏差ΔTが等しい場合、過冷却域が鋼
板の幅方向のどの位置にあっても発生する圧縮残留応力
の大きさは同じである。しかし、臨界座屈応力は、圧縮
残留応力域の幅方向の位置によって変化するため、過冷
却域が幅中央部にある時は座屈しないが、過冷却域の幅
と温度偏差ΔTが同じであっても、過冷却域が幅端部に
ある時は座屈するといった現象が生じる。
1) Buckling of a steel sheet occurs when the residual stress of compression exceeds a certain limit (critical buckling stress), and this critical buckling stress changes depending on the stress distribution shape. For example,
FIG. 4 shows that there is only one supercooling zone in the width direction of a steel plate having a plate thickness of 24 mm and a plate width of 3.28 m, as shown in FIG. 4 (a), and compressed at room temperature as shown in FIG. 4 (b). An example in which the residual stress is generated at only one position in the width direction will be shown.
In this case, as shown in FIG. 5, the critical buckling stress changes depending on the position of the compressive residual stress, and the critical buckling stress becomes maximum when the compressive residual stress is located in the width center part. Therefore, the buckling limit temperature deviation (ΔTmax) CR that causes the flatness of the steel sheet also changes depending on the widthwise position of the compressive residual stress region, that is, the widthwise position of the supercooling region. When the width of the supercooled region and the temperature deviation ΔT are equal, the magnitude of the compressive residual stress generated is the same regardless of the position of the supercooled region in the width direction of the steel sheet. However, since the critical buckling stress changes depending on the position in the width direction of the compressive residual stress region, it does not buckle when the supercooled region is at the center of the width, but the width of the supercooled region and the temperature deviation ΔT are the same. Even if there is, a phenomenon such as buckling occurs when the supercooled region is at the width end.

【0012】2) また、複数の圧縮残留応力域が存在
する場合は、図6および図7に示すとおり、温度分布が
変化すると、応力分布が変化して臨界座屈応力分布が変
化するため、臨界座屈応力分布を生じる幅方向温度分布
(座屈臨界温度分布)における最大温度差(ΔTma
x)CRの値も、温度分布によって大きく異なる。図6お
よび図7において、幅方向の温度差ΔTが(ΔTma
x)CRよりも大きくなれば、圧縮残留応力が臨界座屈応
力以上となって座屈が生じることを意味する。図6に示
すように座屈限界の最大温度偏差(ΔTmax)CRは、
温度分布が幅対称であれば増加する。また、幅対称温度
分布の場合は、図7に示すように相対的低温部がそれぞ
れ板幅の1/4にくるときに最大となる。このように幅
方向の座屈限界最大温度偏差(ΔTmax)CRの値は、
温度分布によっては3倍以上異なるのである。
2) When there are a plurality of compressive residual stress regions, as shown in FIGS. 6 and 7, when the temperature distribution changes, the stress distribution changes and the critical buckling stress distribution also changes. The maximum temperature difference (ΔTma) in the widthwise temperature distribution (buckling critical temperature distribution) that causes the critical buckling stress distribution
x) The CR value also greatly varies depending on the temperature distribution. In FIGS. 6 and 7, the temperature difference ΔT in the width direction is (ΔTma
x) If it is larger than CR , it means that the compressive residual stress becomes higher than the critical buckling stress and buckling occurs. As shown in FIG. 6, the maximum temperature deviation (ΔTmax) CR of the buckling limit is
It increases if the temperature distribution is width symmetric. Further, in the case of the width symmetric temperature distribution, as shown in FIG. 7, the temperature becomes maximum when the relative low temperature parts reach 1/4 of the plate width. Thus, the value of the maximum buckling limit temperature deviation (ΔTmax) CR in the width direction is
Depending on the temperature distribution, it is three times or more different.

【0013】以上のことから明らかなとおり、鋼板の内
部応力による座屈の発生有無は、単に温度むらの偏差の
大小で論じられるものではなく、圧縮残留応力の分布に
よって論じる必要がある。しかも、圧縮残留応力の大小
を論じるだけでも不十分であり、圧縮残留応力の幅や位
置、個数などの圧縮残留応力域の総合的な形態によって
決定可能なものであることを究明し、この発明に到達し
た。
As is clear from the above, the presence or absence of buckling due to the internal stress of the steel sheet should be discussed not only by the magnitude of the deviation of the temperature unevenness but by the distribution of the compressive residual stress. Moreover, it is not enough to discuss the magnitude of the compressive residual stress, and it is clarified that it can be determined by the overall form of the compressive residual stress region such as the width, position, and number of the compressive residual stress. Reached

【0014】すなわち本願の第1発明は、熱鋼板を長手
方向に移送しつつ加速冷却したのち熱間矯正する工程で
の熱鋼板の冷却方法において、鋼板の長手方向に所定間
隔でノズルヘッダーを配したノズルヘッダー列を鋼板幅
方向に所定間隔で設け、各ノズルヘッダー列の噴射ノズ
ルからの冷却水量を制御可能な流量調整機構を有する冷
却装置を使用し、該冷却装置に続く熱間矯正機の入口あ
るいは出口で鋼板上表面全体の温度分布を測定し、該鋼
板上表面全体の平均幅方向温度分布を予め定めた設定値
と比較し、前記冷却装置の各ノズルヘッダー列への冷却
水量を制御することを特徴とする熱鋼板の冷却方法であ
る。
That is, the first invention of the present application is a method of cooling a hot steel sheet in a step of accelerating cooling while transporting the hot steel sheet in the longitudinal direction and then performing hot straightening, in which nozzle headers are arranged at predetermined intervals in the longitudinal direction of the steel sheet. Nozzle header rows provided at predetermined intervals in the steel plate width direction, using a cooling device having a flow rate adjusting mechanism capable of controlling the amount of cooling water from the injection nozzles of each nozzle header row, of the hot straightener following the cooling device. The temperature distribution of the entire upper surface of the steel sheet is measured at the inlet or the outlet, and the average widthwise temperature distribution of the entire upper surface of the steel sheet is compared with a preset set value to control the amount of cooling water to each nozzle header row of the cooling device. The method for cooling a hot steel plate is characterized by

【0015】また、本願の第2発明は、熱鋼板を長手方
向に移送しつつ加速冷却したのち熱間矯正する工程での
熱鋼板の冷却方法において、鋼板の長手方向に所定間隔
でノズルヘッダーを配したノズルヘッダー列を鋼板幅方
向に所定間隔で設け、各ノズルヘッダー列の噴射ノズル
からの冷却水量を制御可能な流量調整機構を有する冷却
装置を使用し、該冷却装置に続く熱間矯正機の入口ある
いは出口で鋼板上表面全体の温度分布を測定し、該鋼板
上表面全体の温度分布に基づいて鋼板の長さ方向の個々
の位置における幅方向温度分布を平均することによって
平均幅方向温度分布を求め、この平均幅方向温度分布を
長さ方向に連続して有する仮想鋼板が常温にまで放冷さ
れた後の残留応力分布と臨界座屈応力とを演算予測し、
予測した残留応力および臨界座屈応力に基づいて常温に
おける座屈変形の発生有無を判定し、座屈変形発生有り
の場合は、残留応力が臨界座屈応力未満となるように、
熱間矯正機の入口あるいは出口での鋼板面内温度分布を
逆算し、前記測定した熱間矯正機の入口あるいは出口の
鋼板面内温度分布との差に応じて、前記冷却装置におけ
る幅方向の各ノズルヘッダー列の冷却水量の修正指示値
を演算し、前記冷却装置の各ノズルヘッダー列への冷却
水量を制御することを特徴とする熱鋼板の冷却方法であ
る。
The second invention of the present application is a method for cooling a hot steel plate in a step of accelerating cooling while transporting the hot steel plate in the longitudinal direction and then performing hot straightening, in which nozzle nozzles are provided at predetermined intervals in the longitudinal direction of the steel plate. A hot straightening machine is provided which is provided with nozzle header rows arranged at predetermined intervals in the width direction of the steel plate, and which uses a cooling device having a flow rate adjusting mechanism capable of controlling the amount of cooling water from the injection nozzles of each nozzle header row. The average width-direction temperature is measured by measuring the temperature distribution over the entire upper surface of the steel sheet at the inlet or outlet and averaging the width-direction temperature distribution at each position in the length direction of the steel sheet based on the temperature distribution over the entire upper surface of the steel sheet. Obtaining the distribution, virtual steel sheet having this average width direction temperature distribution continuously in the length direction is calculated and predicted residual stress distribution and critical buckling stress after being allowed to cool to room temperature,
Based on the predicted residual stress and critical buckling stress, it is determined whether or not buckling deformation occurs at room temperature, and if there is buckling deformation, the residual stress is less than the critical buckling stress,
Inverse calculation of the steel plate in-plane temperature distribution at the inlet or outlet of the hot straightening machine, depending on the difference between the measured steel plate in-plane temperature distribution at the inlet or outlet of the hot straightening machine, in the width direction of the cooling device A method for cooling a hot steel sheet, comprising: calculating a correction instruction value for the amount of cooling water in each nozzle header row and controlling the amount of cooling water to each nozzle header row of the cooling device.

【0016】[0016]

【作用】本願の第1発明においては、鋼板の長手方向に
所定間隔でノズルヘッダーを配したノズルヘッダー列を
鋼板幅方向に所定間隔で設け、各ノズルヘッダー列の噴
射ノズルからの冷却水量を制御可能な流量調整機構を有
する冷却装置を使用し、該冷却装置に続く熱間矯正機の
入口あるいは出口で鋼板上表面全体の温度分布を測定
し、該鋼板上表面全体の平均幅方向温度分布を予め定め
た設定値と比較し、前記冷却装置の各ノズルヘッダー列
への冷却水量を制御することによって、鋼板幅方向での
冷却水量の制御が可能となり、鋼板の長さ方向および幅
方向の温度分布をほぼ均一に制御することができ、鋼板
の内部応力に起因する耳波や中延び等が防止され、平坦
形状の良好な鋼板を製造することができる。
In the first invention of the present application, the nozzle header rows in which nozzle headers are arranged at predetermined intervals in the longitudinal direction of the steel sheet are provided at predetermined intervals in the steel sheet width direction, and the amount of cooling water from the injection nozzles of each nozzle header row is controlled. Using a cooling device having a possible flow rate adjusting mechanism, the temperature distribution of the entire upper surface of the steel sheet is measured at the inlet or outlet of the hot straightening machine following the cooling device, and the average width direction temperature distribution of the entire upper surface of the steel sheet is measured. By comparing the amount of cooling water to each nozzle header row of the cooling device by comparing with a preset set value, it becomes possible to control the amount of cooling water in the steel plate width direction, and the temperature in the length direction and width direction of the steel plate. It is possible to control the distribution substantially uniformly, prevent seismic waves, inward extension, etc. due to internal stress of the steel sheet, and manufacture a steel sheet having a good flat shape.

【0017】また、本願の第2発明においては、鋼板の
長手方向に所定間隔でノズルヘッダーを配したノズルヘ
ッダー列を鋼板幅方向に所定間隔で設け、各ノズルヘッ
ダー列の噴射ノズルからの冷却水量を制御可能な流量調
整機構を有する冷却装置を使用し、該冷却装置に続く熱
間矯正機の入口あるいは出口で鋼板上表面全体の温度分
布を測定し、該鋼板上表面全体の温度分布に基づいて鋼
板の長さ方向の個々の位置における幅方向温度分布を平
均することによって平均幅方向温度分布を求め、この平
均幅方向温度分布を長さ方向に連続して有する仮想鋼板
が常温にまで放冷された後の残留応力分布と臨界座屈応
力とを演算予測し、予測した残留応力および臨界座屈応
力に基づいて常温における座屈変形の発生有無を判定
し、座屈変形発生有りの場合は、残留応力が臨界座屈応
力未満となるように、熱間矯正機の入口あるいは出口で
の鋼板面内温度分布を逆算し、前記測定した熱間矯正機
の入口あるいは出口の鋼板面内温度分布との差に応じ
て、前記冷却装置における幅方向の各ノズルヘッダー列
の冷却水量の修正指示値を演算し、前記冷却装置の各ノ
ズルヘッダー列への冷却水量を制御することによって、
鋼板の長さ方向および幅方向の温度分布を常温における
座屈変形が発生しない温度分布に制御することができ、
鋼板の内部応力に起因する耳波や中延び等が防止され、
平坦形状の良好な鋼板を製造することができる。
In the second invention of the present application, nozzle header rows in which nozzle headers are arranged at predetermined intervals in the longitudinal direction of the steel sheet are provided at predetermined intervals in the steel sheet width direction, and the amount of cooling water from the injection nozzles of each nozzle header row is set. Using a cooling device having a controllable flow rate adjusting mechanism, the temperature distribution of the entire upper surface of the steel sheet is measured at the inlet or outlet of the hot straightening machine following the cooling device, and based on the temperature distribution of the entire upper surface of the steel sheet. The average width-direction temperature distribution is obtained by averaging the width-direction temperature distribution at each position in the length direction of the steel plate, and the virtual steel plate having this average width-direction temperature distribution continuously in the length direction is released to room temperature. The residual stress distribution after cooling and the critical buckling stress are calculated and predicted. Based on the predicted residual stress and critical buckling stress, it is determined whether or not buckling deformation occurs at room temperature. In the case of, so that the residual stress is less than the critical buckling stress, the temperature distribution in the steel sheet plane at the inlet or outlet of the hot straightening machine is calculated backward, and the steel sheet surface at the inlet or outlet of the hot straightening machine is measured. Depending on the difference with the internal temperature distribution, the correction instruction value of the cooling water amount of each nozzle header row in the width direction of the cooling device is calculated, and by controlling the cooling water amount to each nozzle header row of the cooling device,
It is possible to control the temperature distribution in the length direction and the width direction of the steel plate to a temperature distribution where buckling deformation does not occur at room temperature,
Prevents seismic waves, inward extension, etc. due to internal stress of the steel plate,
A steel plate having a good flat shape can be manufactured.

【0018】熱鋼板を加速冷却した際に生じる平坦不良
は、加速冷却によって生じた鋼板面内の温度不均一によ
って、鋼板が加速冷却後室温に至るまでの間に発生する
鋼板長さ方向の熱応力による座屈変形である。この鋼板
長さ方向の熱応力は、加速冷却後に熱間矯正機による矯
正を行うと、矯正によってそれまでに生じている応力が
解放されるため、矯正終了後に新たに発生する熱応力を
求めることによって予測することができる。したがっ
て、 (i) 熱間矯正機による矯正終了時点での鋼板の面内
温度分布を測定することによって、矯正終了後から室温
に至るまでに新たに発生する熱応力を計算することがで
きる。 (ii) 座屈の判定基準となる臨界座屈応力は、残留
応力の分布形状に依存する。そこで、上記計算によって
求められた残留応力の分布より、臨界座屈応力を求め、
残留応力の値と比較することによって、常温まで冷却し
た場合の平坦不良の発生の有無を判定することができ
る。 (iii) 上記の判定で座屈の発生が予測された場合
には、残留応力分布が臨界座屈応力分布以下となるよう
に熱間矯正位置での鋼板面内温度分布を逆算し、前記
(i)で測定した面内温度分布との差に応じて、急速冷
却装置における幅方向の冷却水量を増減することによっ
て、鋼板の幅方向温度むらを適正範囲内に抑えることが
でき、次に冷却される鋼板の平坦不良を防止することが
できる。
The flatness failure that occurs when the hot steel sheet is accelerated cooled is caused by the nonuniform temperature in the surface of the steel sheet caused by the accelerated cooling, and the heat generated in the lengthwise direction of the steel sheet after the accelerated cooling reaches the room temperature. Buckling deformation due to stress. Regarding the thermal stress in the length direction of the steel sheet, if the straightening is performed by the hot straightening machine after the accelerated cooling, the stress generated up to that point is released. Can be predicted by Therefore, (i) By measuring the in-plane temperature distribution of the steel sheet at the end of the straightening by the hot straightening machine, it is possible to calculate the thermal stress newly generated from the end of the straightening to the room temperature. (Ii) The critical buckling stress which is the criterion for buckling depends on the residual stress distribution shape. Therefore, from the distribution of residual stress obtained by the above calculation, the critical buckling stress is obtained,
By comparing with the value of the residual stress, it is possible to determine whether or not the flatness defect occurs when cooled to room temperature. (Iii) When the occurrence of buckling is predicted by the above determination, the in-plane temperature distribution of the steel sheet at the hot straightening position is calculated backward so that the residual stress distribution becomes equal to or less than the critical buckling stress distribution, and By increasing / decreasing the amount of cooling water in the width direction of the rapid cooling device according to the difference from the in-plane temperature distribution measured in i), it is possible to suppress the temperature unevenness in the width direction of the steel plate within an appropriate range, and then cool. It is possible to prevent the flatness of the steel sheet to be flattened.

【0019】この発明において、加速冷却に続く熱間矯
正機の入口あるいは出口で鋼板の表面温度分布を測定す
る理由は、熱間矯正によって鋼板にそれまでの工程で生
じていた残留応力が解放されるために、鋼板の平坦不良
の原因となる熱応力が、熱間矯正終了時点でのの温度む
らのみによって決定されるためである。通常鋼板の矯正
は、鋼板を熱間矯正機の中を往復させながら行っている
ので、矯正の最終に近い時刻で鋼板の温度を測定すれば
よいのであるから、温度計は熱間矯正機の入側、出側の
どちらにあっても差し支えない。また、残留応力を計算
する理由は、後述するように、臨界座屈応力が残留応力
分布で変化するため、座屈の発生予測を行うのに残留応
力分布が必要となるためである。
In the present invention, the reason why the surface temperature distribution of the steel sheet is measured at the inlet or the outlet of the hot straightening machine following the accelerated cooling is that the residual stress generated in the steel sheet in the previous steps is released by the hot straightening. Therefore, the thermal stress that causes the flatness failure of the steel plate is determined only by the temperature unevenness at the end of hot straightening. Normally, the straightening of the steel sheet is carried out while reciprocating the steel sheet in the hot straightening machine, so the temperature of the steel sheet can be measured at a time close to the end of the straightening. It does not matter whether it is on the entry side or the exit side. The reason for calculating the residual stress is that, as will be described later, the critical buckling stress changes with the residual stress distribution, and therefore the residual stress distribution is necessary to predict the occurrence of buckling.

【0020】鋼板上表面全体の温度を測定する理由は、
鋼板の幅方向温度分布を鋼板の長さ方向に平均化処理し
て、平均幅方向温度分布を求めるためである。また、一
般の加速冷却、熱間矯正のラインにおいては、長大な長
さの鋼板も製造可能なように、加速冷却装置と熱間矯正
機とは十分な間隔をとって配置されており、加速冷却装
置から熱間矯正機に鋼板が搬送されるまでの間に、鋼板
の板厚方向の温度分布はほぼ均一化されるため、鋼板の
上表面温度を測定すれば十分である。鋼板の上表面温度
を測定するに際しては、サーモグラフィー等の面温度計
を用いるのが得策である。面温度計であれば、上表面全
体の温度が瞬時に測定できるが、スポット温度計やスポ
ット温度計を板幅方向に走査する型の温度計では、搬送
される鋼板の板幅方向の温度分布を十分な精度でかつ正
確に測定することが困難である。なお、面温度計の精度
は、面温度計の画素点数が鋼板の幅方向および長さ方向
にどの程度あるかで決まる。鋼板全体を面温度計の視野
範囲に入れる場合は、幅2〜4.5m、長さ20〜30
mの鋼板で幅方向に約50〜130画素、長さ方向に約
300〜400画素とることで可能であり、残留応力の
計算には十分である。
The reason for measuring the temperature of the entire upper surface of the steel sheet is as follows.
This is because the widthwise temperature distribution of the steel sheet is averaged in the lengthwise direction of the steel sheet to obtain the average widthwise temperature distribution. In addition, in a general accelerated cooling and hot straightening line, the accelerated cooling device and the hot straightening machine are arranged with a sufficient interval so that a steel sheet with a long length can be manufactured. By the time the steel sheet is conveyed from the cooling device to the hot straightening machine, the temperature distribution in the steel sheet in the plate thickness direction becomes substantially uniform, so it is sufficient to measure the upper surface temperature of the steel sheet. When measuring the upper surface temperature of the steel sheet, it is a good idea to use a surface thermometer such as thermography. With a surface thermometer, the temperature of the entire upper surface can be measured instantly, but with a spot thermometer or a type of thermometer that scans the spot thermometer in the plate width direction, the temperature distribution in the plate width direction of the conveyed steel plate Is difficult to measure with sufficient precision and accuracy. The accuracy of the surface thermometer depends on how many pixel points the surface thermometer has in the width direction and the length direction of the steel sheet. When putting the entire steel plate into the visual field range of the surface thermometer, width 2 to 4.5 m, length 20 to 30
It is possible to set about 50 to 130 pixels in the width direction and about 300 to 400 pixels in the length direction for a steel plate of m, which is sufficient for calculating the residual stress.

【0021】鋼板の長さ方向に平均した幅方向温度分布
を求める理由は、鋼板の幅方向温度分布が鋼板の長さ方
向に必ずしも一定ではないためである。鋼板の座屈は、
長さ方向の各位置における局所的な長さ方向応力の幅方
向分布によって生じるものではなく、長さ方向応力の幅
方向分布が長さ方向にある程度連続しないと生じない。
そこで、この影響を考慮するためには、幅方向(y方
向)の温度分布を長さ方向に平均化し、この平均幅方向
温度分布TAVE(y)から長さ方向応力の平均的な幅方
向分布を求め、座屈評価を行うことが、座屈の評価の精
度を確保し、しかも演算時間の短縮を図るうえで、最も
好ましい方法だからである。しかし、なお、鋼板の搬送
方向の先後端の領域は、冷却が端面からも行われるため
に温度が極端に下がり易いので、これらの領域は除い
て、平均幅方向温度分布を求めるのが一般的である。平
均幅方向温度分布の計算から除く鋼板先後端の長さは、
板幅1m〜4.5mの鋼板の急速冷却によって急激な温
度低下を生じる長さ範囲が約0.5〜2mであることか
ら、板幅の1/2長さとする。
The reason why the widthwise temperature distribution averaged in the lengthwise direction of the steel sheet is obtained is that the widthwise temperature distribution of the steel sheet is not necessarily constant in the lengthwise direction of the steel sheet. Buckling of steel plate is
This does not occur due to the local distribution of the longitudinal stress in the width direction at each position in the longitudinal direction, and does not occur unless the lateral distribution of the longitudinal stress is continuous to some extent in the longitudinal direction.
Therefore, in order to consider this influence, the temperature distribution in the width direction (y direction) is averaged in the length direction, and from this average width direction temperature distribution T AVE (y), the average width direction stress in the length direction is calculated. This is because obtaining the distribution and performing buckling evaluation is the most preferable method in order to secure the accuracy of buckling evaluation and shorten the calculation time. However, since the temperature of the front and rear regions of the steel sheet in the transport direction tends to drop extremely because cooling is also performed from the end faces, it is general to determine the average width direction temperature distribution excluding these regions. Is. The length of the front and rear edges of the steel plate excluded from the calculation of the average width direction temperature distribution is
Since the length range in which a rapid temperature decrease occurs due to the rapid cooling of a steel plate having a plate width of 1 m to 4.5 m is about 0.5 to 2 m, the length is 1/2 of the plate width.

【0022】鋼板の長さ方向(x方向)残留応力σの幅
方向(y方向)分布の計算は、熱間矯正機以後の放冷過
程では組成変形よりも弾性座屈変形が先に生じることか
ら、弾性応力計算で十分であり、鋼板を幅方向に微小な
幅dyiの鋼板に分割し、平均幅方向温度分布と室温
(RT)との温度差T(y)(=TAVE(y)−RT)
を用いて、例えば以下の計算式で残留応力分布が計算で
きることが従来より知られている。 σ(yi)=αΕΤ(yi)−1/W・ΣαΕΤ(yi)dyi−12yi/ W3・ΣαΕΤ(yi)yidyi (1)式 ただし、Eはヤング率、αは熱線膨張係数、σYは鋼板
の降伏応力、Wは板幅であり、Σは全微小板幅の鋼板に
ついて総和をとることを表す。得られた残留応力分布か
ら座屈の発生を次のようにして予測する。鋼板に生じる
残留応力分布において、圧縮応力域が1個の場合は、図
8(a)に示すとおり、圧縮応力域の幅BはB=Baと
して求める。複数の圧縮応力域が混在する場合は、圧縮
応力域に挟まれる引張り応力域をも含めて、等価的な圧
縮応力域と考え、図8(b)に示すとおりその幅BはB
=Bbとする。圧縮応力域が幅端部を含む場合は、図8
(c)図に示すとおり、実質の圧縮応力域Bcの2倍の
幅を圧縮応力域の幅B=2Bcとする。上記等価圧縮応
力域における平均圧縮応力σc σc=1/BΣcσ(yi)dyi (2)式 を用い、 |σc|≧σCR (3)式 ならば、座屈が発生すると定義する。ただしここで、Σ
cは圧縮応力(σ(yi)が負)のみについて総和をと
るものとする。座屈発生を(2)式と(3)式で定義し
た場合、臨界座屈応力σCRの値を本発明者らは有限要素
法を用いた座屈解析の結果より、次式で近似できること
を見いだした。 σCR=(K1+KΔ)Eπ2/12(1−ν2)・(t/B)2 (4)式 ここで、K1は圧縮応力域が1個の場合の座屈応力係数
であり、KΔは圧縮応力域が複数ある(等価圧縮応力域
の中に引張り応力域を含む)場合の座屈応力係数、tは
板厚、πは円周率、νはポアソン比である。圧縮応力域
が1個の場合の座屈応力係数K1は、次式で表される。 K1=0.085(B/W)0.9・exp(5.8dG/W) (5)式 ここで、dGは板幅端部から等価圧縮応力域の重心まで
の距離の小さい方を表す。また、圧縮応力域が複数ある
場合の座屈応力係数KΔは、 KΔ=12(1−ν2)B2/{Eπ2242}・(0.71β−1.6) (6)式 β=1/BW・Σ{(dG−di)・exp(5.8dG/W)・∫biσdy} (7)式 と表される。ここで、diはi番目の圧縮応力域または
引張り応力域の重心位置、∫bidyは、i番目の圧縮ま
たは引っ張り応力域における積分を表す。以上の(4)
式〜(7)式で計算される臨界座屈応力σCRの値は、図
9に示すとおり、有限要素法により求めた結果とよい一
致を示している。なお、(3)式の座屈判定基準を実際
に適用するにあたっては、安全率を考慮して、(4)式
〜(7)式で定義される臨界座屈応力を0.9倍したも
のを臨界座屈応力として用いる。
The calculation of the width direction (y direction) distribution of the residual stress σ in the length direction (x direction) of the steel sheet is such that elastic buckling deformation occurs before composition deformation in the cooling process after the hot straightening machine. Therefore, the elastic stress calculation is sufficient, and the steel plate is divided into steel plates having a small width dy i in the width direction, and the temperature difference T (y) (= T AVE (y ) -RT)
It has been conventionally known that the residual stress distribution can be calculated by using, for example, the following calculation formula. σ (y i ) = α Ε Τ (y i ) −1 / W · Σα Ε Τ (y i ) dy i −12 y i / W 3 Σα Ε Τ (y i ) y i dy i (1) where E is Young's modulus, α is a coefficient of linear thermal expansion, σY is a yield stress of a steel plate, W is a plate width, and Σ is a sum of steel plates having all minute plate widths. The occurrence of buckling is predicted from the obtained residual stress distribution as follows. In the residual stress distribution generated in the steel sheet, when the number of compressive stress regions is one, the width B of the compressive stress region is calculated as B = Ba, as shown in FIG. When a plurality of compressive stress areas are mixed, the tensile stress area sandwiched between the compressive stress areas is considered to be an equivalent compressive stress area, and the width B is B as shown in FIG. 8B.
= Bb. If the compressive stress region includes the width end,
(C) As shown in the figure, the width twice the actual compressive stress area Bc is defined as the compressive stress area width B = 2Bc. Using the average compressive stress σc σc = 1 / BΣcσ (y i ) dy i (2) in the above equivalent compressive stress region, it is defined that buckling occurs if | σc | ≧ σ CR (3). Where Σ
c is the sum of only compressive stress (σ (y i ) is negative). When the buckling occurrence is defined by the equations (2) and (3), the inventors can approximate the value of the critical buckling stress σ CR by the following equation based on the result of the buckling analysis using the finite element method. I found it. σ CR = (K 1 + KΔ ) Eπ 2/12 (1-ν 2) · (t / B) 2 (4) equation, where, K 1 is an buckling stress coefficient when compressive stress zone is one , KΔ is a buckling stress coefficient when there are a plurality of compressive stress regions (including a tensile stress region in the equivalent compressive stress region), t is a plate thickness, π is a circular constant, and ν is a Poisson's ratio. The buckling stress coefficient K 1 in the case of one compressive stress region is expressed by the following equation. K 1 = 0.085 (B / W) 0.9 · exp (5.8d G / W) (5) where d G is the smaller distance from the edge of the plate width to the center of gravity of the equivalent compressive stress region. Represent The buckling stress coefficient KΔ in the case where there are a plurality of compressive stress regions is KΔ = 12 (1-ν 2 ) B 2 / {Eπ 2 24 2 } · (0.71β-1.6) (6) Equation β = 1 / BW · Σ {(d G −d i ) · exp (5.8 d G / W) · ∫ bi σdy} (7) Expression Here, d i represents the center of gravity of the i-th compressive stress region or the tensile stress region, and ∫ bi dy represents the integral in the i-th compressive or tensile stress region. Above (4)
The value of the critical buckling stress σ CR calculated by the equations (7) shows a good agreement with the result obtained by the finite element method as shown in FIG. 9. When actually applying the buckling criterion of the formula (3), considering the safety factor, the critical buckling stress defined by the formulas (4) to (7) is multiplied by 0.9. Is used as the critical buckling stress.

【0023】鋼板の座屈は、ロットごとにまとまって発
生することが多いので、ある鋼板について座屈の発生が
予測された場合、次の鋼板では、残留応力を臨界座屈応
力以下となるように急速冷却水量を調整し、熱間矯正終
了時の幅方向温度分布を制御し、座屈の発生を防止する
ことが必要である。本発明者らが調査した結果では、鋼
板の幅方向の温度分布は、高温部と高温部あるいは低温
部と低温部との間隔は、最も小さい場合で約250mm
であった。この間にノズルが3個あれば、その水量を調
整することで、温度むらを発生を抑えた冷却が可能にな
る。したがって、必要なノズルピッチは、鋼板の幅方向
に約125mmとなる。急速冷却される鋼板の板幅は、
通常2〜5mであり、幅方向のノズル個数の下限を板幅
の1/15、上限を1/40と定めた。
Since the buckling of steel sheets often occurs in batches for each lot, when the occurrence of buckling is predicted for one steel sheet, the residual stress of the next steel sheet should be below the critical buckling stress. It is necessary to control the amount of rapid cooling water, control the temperature distribution in the width direction at the end of hot straightening, and prevent buckling. As a result of investigation by the present inventors, the temperature distribution in the width direction of the steel sheet is about 250 mm when the distance between the high temperature portion and the high temperature portion or the distance between the low temperature portion and the low temperature portion is the smallest.
Met. If there are three nozzles in the meantime, by adjusting the amount of water, it becomes possible to perform cooling while suppressing the occurrence of temperature unevenness. Therefore, the required nozzle pitch is about 125 mm in the width direction of the steel sheet. The width of the rapidly cooled steel plate is
It is usually 2 to 5 m, and the lower limit of the number of nozzles in the width direction is set to 1/15 of the plate width and the upper limit thereof is set to 1/40.

【0024】座屈発生を防止するように温度分布を修正
する第1の方法(以下温度修正法1という)は、予測さ
れた臨界座屈応力と残留応力との比r、 r=σCR/|σc| (≦1) (8)式 を求め、図10に示すとおり、鋼板の平均温度( ̄T
AVE)と平均幅方向温度分布TAVE(y)での幅方向各位
置yにおける温度との差ΔT(y)(=TAVE(y)−
 ̄TAVE)は、座屈発生判定時のr倍未満となるよう
に、平均幅方向温度分布を全体的に縮小することであ
る。幅方向平均温度差を縮小するためには、幅方向に冷
却水量が可変な冷却装置において相対的に高温な部分の
ノズルからの水量を増加させ、相対的に低温域な部分の
水量を減少させれば良い。各ノズルの水量の増減量ΔQ
iは、座屈判定がされたときの幅方向各ノズルの水量の
平均値QAVEと各スプレー水量Qiから次のように定め
る。一般に、鋼板の急速冷却においては、金属組織的な
観点から、冷却終了時の鋼板の温度を所定温度に制御す
るために、鋼板板厚や冷却開始時の鋼板の温度毎に、冷
却水量搬送速度と冷却終了時の鋼板温度との関係が調査
されている。これと同様に、ノズル1個あたりの平均冷
却水量と熱間矯正部での鋼板平均温度との関係を図11
(a)(b)に示すように、鋼板板厚、冷却開始時の鋼
板平均温度や搬送速度別に予め求めておく。これより、
水量変化に応じた鋼板平均温度の変化率Δ ̄TAVE/Δ
AVEを用いて、 ΔQi=(1−r)(TAVE(y)− ̄TAVE)÷(Δ ̄TAVE/ΔQAVE) 9式 より、各スプレーの流量変更量を求めることができる。
The first method for modifying the temperature distribution so as to prevent buckling (hereinafter referred to as temperature modifying method 1) is the predicted ratio r of critical buckling stress to residual stress r, r = σ CR / | Σc | (≦ 1) Equation (8) is calculated, and as shown in FIG. 10, the average temperature of the steel sheet (−T
AVE ) and the temperature at each position y in the width direction in the average width direction temperature distribution T AVE (y), ΔT (y) (= T AVE (y) −
(T AVE ) is to reduce the average temperature distribution in the width direction as a whole so that the temperature becomes less than r times that when buckling occurs. In order to reduce the average temperature difference in the width direction, in the cooling device in which the cooling water amount is variable in the width direction, the water amount from the nozzle in the relatively high temperature part is increased and the water amount in the relatively low temperature part is decreased. Just go. Increase / decrease in water quantity of each nozzle ΔQ
i is determined as follows from the average value Q AVE of the water amount of each nozzle in the width direction when the buckling is determined and each spray water amount Q i . Generally, in rapid cooling of a steel sheet, from the viewpoint of metallographic structure, in order to control the temperature of the steel sheet at the end of cooling to a predetermined temperature, the cooling water flow rate is set for each steel sheet thickness or the temperature of the steel sheet at the start of cooling. The relationship between the temperature and the steel plate temperature at the end of cooling has been investigated. Similarly, the relationship between the average amount of cooling water per nozzle and the average temperature of the steel plate in the hot straightening part is shown in FIG.
As shown in (a) and (b), the thickness of the steel sheet, the average temperature of the steel sheet at the start of cooling, and the transport speed are obtained in advance. Than this,
Rate of change of average temperature of steel plate according to change in water amount Δ  ̄ T AVE / Δ
With Q AVE, from ΔQ i = (1-r) (T AVE (y) -¯T AVE) ÷ (Δ¯T AVE / ΔQ AVE) 9 formula, it is possible to obtain the flow rate change amount of each spray .

【0025】座屈を防止するように温度分布を修正する
第2の方法(以下温度修正法2という)は、鋼板に同じ
幅方向温度差が生じたとしても、座屈がより生じにくい
残留応力分布になるように、幅方向温度分布の形状、す
なわち、相対的低温部の位置や幅を修正する方法であ
る。図12は圧縮応力が鋼板幅方向に対称に2個ある場
合の臨界座屈応力と圧縮応力の位置との関係を示す図で
ある。圧縮応力域が板幅のそれぞれ1/4の位置にある
場合に臨界座屈応力は最大となり、最も座屈し難いこと
がわかる。そこで、板幅の1/4の位置に相対的低温部
を位置せしめることが、鋼板に同じ幅方向温度差が生じ
る場合には最も座屈を起こしにくくする方法となる。通
常、鋼板の急速冷却においては、鋼板の温度偏差は座屈
のみならず、金属組織的な要請からもその下限を規定さ
れることが多い。そこで例えば、この金属組織的な要請
による温度偏差の下限を40℃とした場合、温度偏差4
0℃においても座屈を発生させない温度分布の条件を図
13(a)(b)に例示するように求めておく。図13
(a)(b)は、温度差40℃の場合に相対的低温部の
重心位置の関数として、座屈を発生させないための相対
的低温領域の幅を示すものである。相対的低温部の位置
が板幅のそれぞれ1/4に位置するときは、他の場所に
位置する場合に比べて、低温領域の幅が広くても座屈し
難いことを示している。図13(a)(b)に示す座屈
防止温度条件を満足する温度分布を目標値TOBJ(y)
とし、平均幅方向温度分布TAVE(y)をTOBJ(y)と
するための各ノズルの水量の増減量ΔQiは、 ΔQi=(TOBJ(y)−TAVE(y))÷(Δ ̄TAVE/ΔQAVE) (10)式 によって与えられる。
The second method for correcting the temperature distribution so as to prevent buckling (hereinafter referred to as "temperature correction method 2") is a residual stress in which the buckling is less likely to occur even if the same temperature difference in the width direction occurs in the steel sheet. This is a method of correcting the shape of the temperature distribution in the width direction, that is, the position and width of the relative low temperature portion so that the distribution becomes a distribution. FIG. 12 is a diagram showing the relationship between the critical buckling stress and the position of the compressive stress when two compressive stresses are symmetrical in the width direction of the steel sheet. It can be seen that the critical buckling stress becomes maximum when the compressive stress regions are at positions of 1/4 of the plate width, and buckling is most difficult. Therefore, locating the relatively low temperature portion at a position of 1/4 of the plate width is a method of making buckling less likely to occur when the same temperature difference in the width direction occurs in the steel plate. Usually, in the rapid cooling of steel sheets, the lower limit of the temperature deviation of the steel sheet is often specified not only by buckling but also by metallographic requirements. Therefore, for example, when the lower limit of the temperature deviation due to the metallographic requirement is set to 40 ° C., the temperature deviation is 4
Conditions for temperature distribution that does not cause buckling even at 0 ° C. are obtained as illustrated in FIGS. 13 (a) and 13 (b). FIG.
(A) and (b) show the width of the relative low temperature region for preventing buckling as a function of the position of the center of gravity of the relative low temperature part when the temperature difference is 40 ° C. It is shown that when the positions of the relative low temperature parts are located at ¼ of the plate width, the buckling is less likely to occur even if the width of the low temperature region is wider than in the case of being located at other places. The temperature distribution satisfying the buckling prevention temperature condition shown in FIGS. 13 (a) and 13 (b) is set to a target value T OBJ (y).
Then, the increase / decrease amount ΔQ i of the water amount of each nozzle for setting the average width direction temperature distribution T AVE (y) to T OBJ (y) is ΔQ i = (T OBJ (y) −T AVE (y)) ÷ (ΔT AVE / ΔQ AVE ) It is given by the equation (10).

【0026】上記温度修正法1の(9)式あるいは、温
度修正法2の(10)式に基づき、冷却装置のそれぞれ
のノズルに連結された流量計と流量調整弁により、ノズ
ル流量を適正範囲内に制御することによって、座屈防止
平均幅方向温度分布が達成でき、鋼板の形状を平坦に保
つことができる。なお、温度修正法1や温度修正法2で
の座屈防止は、座屈が発生すると判定された次の鋼板か
ら有効である。そこで、座屈が発生すると判定された鋼
板については、そのまま室温にまで冷却するとやがて座
屈が発生するので、座屈が発生する前に再度、温間矯正
を行い、残留応力を解放することによって座屈の発生を
防ぐことが好ましい。放冷時には、鋼板の平均温度の低
下に伴って急速冷却で生じていた幅方向温度差も減少す
るが、この時の鋼板の平均温度と幅方向温度差とはほぼ
比例関係にある。圧縮残留応力は幅方向温度差の減少に
伴って直線的に増加するため、残留応力が臨界座屈応力
に到達するときの鋼板平均温度 ̄TAVE’は次のように
与えられる(図14(a)(b))。  ̄TAVE’=R.T.+r( ̄TAVE−R.T.) (11 )式 ここで、rは(8)式で与えられる予測された臨界座屈
応力と残留応力との比である。鋼板平均温度 ̄TAVE
(11)式で与えられる ̄TAVE’未満となる前に再度
レベラーによって矯正することで座屈の発生を防止する
ことができる。
Based on the equation (9) of the temperature correction method 1 or the equation (10) of the temperature correction method 2, the flow rate of the nozzle connected to each nozzle of the cooling device and the flow rate adjusting valve allow the nozzle flow rate to be in an appropriate range. By controlling inside, the buckling prevention average width direction temperature distribution can be achieved and the shape of the steel sheet can be kept flat. Note that the buckling prevention by the temperature correction method 1 and the temperature correction method 2 is effective from the next steel plate determined to cause buckling. Therefore, for a steel plate that is determined to be buckled, if it is cooled to room temperature as it is, buckling will eventually occur, so before the buckling occurs, warm correction is performed again to release the residual stress. It is preferable to prevent buckling. At the time of cooling, the widthwise temperature difference generated by the rapid cooling also decreases as the average temperature of the steel sheet decreases, but the average temperature of the steel sheet and the widthwise temperature difference at this time are in a substantially proportional relationship. Since the compressive residual stress increases linearly with the decrease of the temperature difference in the width direction, the steel plate average temperature  ̄ T AVE 'when the residual stress reaches the critical buckling stress is given as follows (Fig. 14 ( a) (b)).  ̄ T AVE '= R. T. + R (¯T AVE -R.T.) ( 11) formula, where, r is the ratio between the residual stress and the critical buckling stress predicted given by equation (8). It is possible to prevent buckling by correcting the average temperature of the steel sheet −T AVE before it becomes less than −T AVE 'given by the equation (11) by the leveler again.

【0027】[0027]

【実施例】【Example】

実施例1 以下にこの発明方法の詳細を実施の一例を示す図1およ
び図2に基づいて説明する。図1はこの発明方法を実施
する鋼板の急速冷却ラインの概略構成図、図2は鋼板幅
方向に所定ピッチで冷却水量を制御するためのノズルヘ
ッダー列配置の説明図である。図1において、1は鋼
板、2は熱間圧延機、3は板幅方向に温度制御可能な急
速冷却装置、4は熱間矯正機、5は熱間矯正機4の入口
上部に設けたサーモグラフィーからなる面温度計、6は
熱間圧延機2の出側上下面に設けた温度計である。7は
冷却制御部、8は冷却水量調整部で、冷却制御部7は、
温度計6、6から入力される鋼板1の上下面温度と予め
定めた冷却開始設定温度を比較し、冷却開始温度が冷却
開始設定温度となるよう熱間圧延機2から強制冷却装置
3までの搬送時間を制御し、冷却開始温度を冷却開始設
定温度に制御する。また、冷却制御部7は、面温度計5
から入力される鋼板1の表面温度に基づいて幅方向温度
分布を求め、幅方向(y方向)の温度分布を長さ方向に
平均化し、この平均幅方向温度分布TAVE(y)と予め
定めた平均幅方向設定温度と比較し、幅方向冷却水量の
修正量を演算して冷却水量調整部8に指令し、急速冷却
装置3から板幅方向の上下面に噴射される冷却水量を制
御し、鋼板1の幅方向温度分布が所定温度となるよう制
御するよう構成されている。急速冷却装置3で所定温度
に冷却された鋼板1は、熱間矯正機4で熱間矯正された
のち、次工程に搬送される。
Example 1 Details of the method of the present invention will be described below with reference to FIGS. 1 and 2 showing an example of an embodiment. FIG. 1 is a schematic configuration diagram of a steel plate rapid cooling line for carrying out the method of the present invention, and FIG. 2 is an explanatory diagram of a nozzle header row arrangement for controlling the amount of cooling water at a predetermined pitch in the steel plate width direction. In FIG. 1, 1 is a steel plate, 2 is a hot rolling mill, 3 is a rapid cooling device capable of controlling the temperature in the strip width direction, 4 is a hot straightening machine, and 5 is a thermography provided at the upper inlet of the hot straightening machine 4. Is a surface thermometer, and 6 is a thermometer provided on the upper and lower surfaces of the hot rolling mill 2 on the delivery side. 7 is a cooling control unit, 8 is a cooling water amount adjusting unit, and the cooling control unit 7 is
The upper and lower surface temperatures of the steel plate 1 input from the thermometers 6 and 6 are compared with a predetermined cooling start set temperature, and the hot rolling mill 2 to the forced cooling device 3 are controlled so that the cooling start temperature becomes the cooling start set temperature. The transport time is controlled, and the cooling start temperature is controlled to the cooling start set temperature. In addition, the cooling control unit 7 uses the surface thermometer 5
The temperature distribution in the width direction is obtained based on the surface temperature of the steel sheet 1 input from the above, the temperature distribution in the width direction (y direction) is averaged in the length direction, and this average width direction temperature distribution T AVE (y) is predetermined. Compared with the average set temperature in the width direction, the correction amount of the cooling water amount in the width direction is calculated, and the cooling water amount adjusting unit 8 is instructed to control the cooling water amount injected from the rapid cooling device 3 to the upper and lower surfaces in the plate width direction. The temperature distribution in the width direction of the steel plate 1 is controlled to be a predetermined temperature. The steel sheet 1 cooled to a predetermined temperature by the rapid cooling device 3 is hot-corrected by the hot-correcting machine 4 and then conveyed to the next step.

【0028】急速冷却装置3は、図2に示すとおり、間
隔Waが125mmとなるようノズル21を配した長さ
5mのパイプラミナヘッダー22を鋼板1搬送方向に沿
って図示していないが4本配置し、板幅方向には、隣り
合うパイプラミナヘッダー22のノズル21との間隔W
bが125mmになるように幅方向に36列、計144
本のパイプラミナヘッダー22を配置した。それぞれの
パイプラミナヘッダー22に図示していないが流調弁と
流量計を接続し、冷却水量調整部8により幅方向36列
のパイプラミナヘッダー22への冷却水量を調整し、板
幅方向に125mmピッチで冷却水量を制御できるよう
構成する。冷却水の総供給能力は、200Ton/分で
あり、全ノズル21の個数は5760本であるので、ノ
ズル21一本あたりの最大水量は約34.7リットル/
分である。
As shown in FIG. 2, the rapid cooling device 3 has four pipe laminar headers 22 each having a nozzle 21 arranged so that the distance Wa is 125 mm, although the pipe laminar header 22 is not shown along the conveying direction of the steel sheet 1. In the plate width direction, the distance W between the nozzles 21 of the adjacent pipe lamina headers 22 is arranged.
36 rows in the width direction so that b is 125 mm, a total of 144
The pipe laminar header 22 of the book was arranged. Although not shown in the drawings, a flow control valve and a flow meter are connected to each pipe lamina header 22, and the cooling water amount adjusting unit 8 adjusts the amount of cooling water to the 36 pipe laminar headers 22 in the width direction to 125 mm in the plate width direction. It is configured so that the amount of cooling water can be controlled by the pitch. The total cooling water supply capacity is 200 Ton / min, and the total number of nozzles 21 is 5760, so the maximum amount of water per nozzle 21 is about 34.7 liters / min.
Minutes.

【0029】また、冷却制御部7は、面温度計5から入
力される鋼板1の表面温度に基づいて、板幅方向50m
mピッチ、板長さ方向に500mmピッチの格子状に再
度、補間計算し直した後、平均幅方向温度分布や残留応
力、臨界座屈応力の計算と座屈発生の有無の判定を行
う。これらの温度データの転送処理と温度データから座
屈評価までに要する時間は、鋼板1枚あたり、約10〜
15秒であった。さらに、冷却制御部7は、座屈発生有
りと判定した場合、鋼板1の幅方向冷却水量の修正量を
計算し、冷却水量調整部8に指令して所定のパイプラミ
ナヘッダー22列のノズル21からの冷却水量を指示値
に制御するよう構成されている。
Further, the cooling control section 7 determines, based on the surface temperature of the steel plate 1 inputted from the surface thermometer 5, 50 m in the plate width direction.
Interpolation calculation is performed again in the form of a grid with m pitches and 500 mm pitches in the plate length direction, and then the average temperature distribution in the width direction, residual stress, critical buckling stress are calculated, and the presence or absence of buckling is determined. The time required for the transfer processing of these temperature data and the buckling evaluation from the temperature data is approximately 10 to 10 per steel plate.
It was 15 seconds. Further, when the cooling control unit 7 determines that buckling has occurred, the cooling control unit 7 calculates a correction amount of the cooling water amount in the width direction of the steel plate 1 and instructs the cooling water amount adjusting unit 8 to instruct the nozzles 21 of the predetermined row of the pipe laminar header 22. It is configured to control the amount of cooling water from the indicated value.

【0030】上記のとおり構成したことによって、冷却
制御部7は、温度計6、6から入力される鋼板1の上下
面温度と予め定めた冷却開始設定温度を比較し、冷却開
始温度が冷却開始設定温度となるよう熱間圧延機2から
強制冷却装置3までの搬送時間を制御し、冷却開始温度
を冷却開始設定温度に制御する。また、冷却制御部7
は、面温度計5から入力される鋼板1の表面温度に基づ
いて、板幅方向50mmピッチ、板長さ方向に500m
mピッチの格子状に再度、補間計算し直した後、平均幅
方向温度分布や残留応力、臨界座屈応力の計算と座屈発
生の有無の判定を行い、座屈発生有りと判定した場合、
鋼板1の幅方向冷却水量の修正量を計算し、冷却水量調
整部8に指令して所定のパイプラミナヘッダー22列の
ノズル21からの冷却水量を指示値に制御する。したが
って、鋼板1の幅方向および長手方向の温度は、通常誤
差範囲(±5℃)の範囲に抑えることができ、熱鋼板の
急速冷却時に発生する温度むらによって、鋼板が室温に
まで温度低下する過程で発生する座屈変形の有無を直ち
に予測でき、座屈変形なしと判定された鋼板1について
は、直ちに精製工程へ移送することができるとともに、
座屈変形ありと判定された鋼板1については、直ちに再
矯正行程へ移送することができる。また、座屈変形が発
生すると判定された鋼板1の後に急速冷却を受ける鋼板
1については、鋼板1の温度分布が座屈発生限度内とな
るように、急速冷却における鋼板幅方向の冷却水量を制
御することによって、座屈変形の発生を確実に防止する
ことができる。なお、本実施例においては、面温度計5
を熱間矯正機4の入口上部に設けたが、熱間矯正機4の
出口上部に設けても本発明の効果には影響しない。ま
た、面温度計5により鋼板1の上面温度を測定したが、
別途鋼板1の下面にも温度計を設置し、鋼板1の上下面
温度に差がないことを確認している。
With the above configuration, the cooling control unit 7 compares the upper and lower surface temperatures of the steel sheet 1 input from the thermometers 6 and the predetermined cooling start set temperature, and the cooling start temperature starts cooling. The conveyance time from the hot rolling mill 2 to the forced cooling device 3 is controlled so as to reach the set temperature, and the cooling start temperature is controlled to the cooling start set temperature. In addition, the cooling control unit 7
Is based on the surface temperature of the steel plate 1 input from the surface thermometer 5 and has a pitch of 50 mm in the plate width direction and 500 m in the plate length direction.
After the interpolating calculation is again performed for the m-pitch grid pattern, the average width direction temperature distribution, residual stress, critical buckling stress are calculated, and the presence or absence of buckling is determined. When it is determined that buckling occurs,
The correction amount of the cooling water amount in the width direction of the steel plate 1 is calculated, and the cooling water amount adjusting unit 8 is instructed to control the cooling water amount from the nozzles 21 of the predetermined pipe laminar header 22 row to the instructed value. Therefore, the temperature of the steel sheet 1 in the width direction and the longitudinal direction can be suppressed within a range of a normal error (± 5 ° C.), and the temperature unevenness that occurs during rapid cooling of the hot steel sheet causes the temperature of the steel sheet to drop to room temperature. The presence or absence of buckling deformation occurring in the process can be immediately predicted, and the steel plate 1 determined to have no buckling deformation can be immediately transferred to the refining process,
The steel plate 1 determined to have buckling deformation can be immediately transferred to the re-correction step. Further, regarding the steel plate 1 that undergoes rapid cooling after the steel plate 1 determined to undergo buckling deformation, the cooling water amount in the steel plate width direction in the rapid cooling is set so that the temperature distribution of the steel plate 1 is within the buckling occurrence limit. By controlling, it is possible to reliably prevent the occurrence of buckling deformation. In this embodiment, the surface thermometer 5
Although the above is provided above the inlet of the hot straightening machine 4, providing the above above the outlet of the hot straightening machine 4 does not affect the effect of the present invention. Moreover, the upper surface temperature of the steel plate 1 was measured by the surface thermometer 5,
A thermometer is also installed on the lower surface of the steel plate 1 to confirm that there is no difference in the upper and lower surface temperatures of the steel plate 1.

【0031】実施例2 上記実施例1の急速冷却装置を使用し、本発明の方法を
表1の鋼板に表1のNo.1〜5の条件で実施し、鋼板
幅方向の1本のノズルの冷却水量の平均偏差ΔQi、実
績冷却終了温度、平均温度偏差ΔTAVE、常温まで冷却
した場合の平坦不良率を測定した。その結果を、比較例
と共に表2に示す。なお、No.1〜5の各条件とも、
100〜200枚の鋼板について本発明方法と比較法と
を実施した。平坦不良発生率は、本発明方法において
は、各条件の全板数に対して平坦不良と判定された板数
の占める割合で、比較例においては各条件の全板数に対
して実際に平坦不良が発生した板数の占める割合で求め
た。
Example 2 Using the rapid cooling device of Example 1 above, the method of the present invention was applied to the steel plate of Table 1 and No. 1 of Table 1. The measurement was carried out under the conditions of 1 to 5, and the average deviation ΔQi of the cooling water amount of one nozzle in the steel plate width direction, the actual cooling end temperature, the average temperature deviation ΔT AVE , and the flatness failure rate when cooled to room temperature were measured. The results are shown in Table 2 together with the comparative example. In addition, No. For each condition 1 to 5,
The method of the present invention and the comparative method were carried out on 100 to 200 steel plates. In the method of the present invention, the flatness defect occurrence rate is the ratio of the number of plates determined to be flatness to the total number of plates under each condition, and in the comparative example, the flatness is actually flat against the total number of plates under each condition. It was calculated by the ratio of the number of plates with defects.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】表1および表2に示すとおり、本発明の方
法を適用することによって、幅方向の温度制御を行わな
い比較例では、最大41%もの平坦不良発生があった条
件においても、平坦不良発生率を3%以下に抑えること
ができた。また、冷却終了温度は、幅方向冷却水量制御
による温度制御を行った場合でも通常誤差範囲(±5
℃)の範囲に抑えることができた。なお、本発明の方法
にて平坦不良発生と判定された鋼板については、室温に
まで冷却される前に、11式に示した条件で、再度、温
間矯正を行うことにより、鋼板が実際に平坦不良を起こ
すことを防止することができた。
As shown in Tables 1 and 2, by applying the method of the present invention, in the comparative example in which the temperature control in the width direction is not performed, the flatness defect is as high as 41% even if the flatness defect occurs. The occurrence rate could be suppressed to 3% or less. Further, the cooling end temperature is usually within the error range (± 5) even when the temperature control by the width direction cooling water amount control is performed.
The temperature could be suppressed to the range of (° C). In addition, regarding the steel sheet determined to have a flatness failure by the method of the present invention, before being cooled to room temperature, the steel sheet is actually subjected to warm straightening again under the condition shown in Formula 11 It was possible to prevent flatness from occurring.

【0035】[0035]

【発明の効果】以上述べたとおり、この発明方法によれ
ば、熱鋼板の急速冷却時に発生する温度むらによって、
鋼板が室温にまで温度低下する過程で発生することのあ
る座屈変形の発生有無を、急速冷却後直ちに予測できる
ので、座屈変形なしと判定された鋼板については、直ち
に精製工程へ移送することができるとともに、座屈変形
ありと判定された鋼板については、直ちに再矯正行程へ
移送することができる。また、座屈変形が発生すると判
定された鋼板の後に急速冷却を受ける鋼板については、
鋼板の温度分布が座屈発生限度内となるように、急速冷
却における鋼板幅方向の冷却水量を制御することによっ
て、座屈変形の発生を確実に防止することができる。
As described above, according to the method of the present invention, due to the temperature unevenness generated during the rapid cooling of the hot steel sheet,
The presence or absence of buckling deformation that may occur in the process of cooling the steel plate down to room temperature can be predicted immediately after rapid cooling.Therefore, if the steel plate is determined to have no buckling deformation, transfer it immediately to the refining process. In addition to the above, the steel sheet determined to have buckling deformation can be immediately transferred to the re-correction step. In addition, for the steel plate that is subjected to rapid cooling after the steel plate determined to cause buckling deformation,
By controlling the amount of cooling water in the width direction of the steel plate in the rapid cooling so that the temperature distribution of the steel plate is within the buckling occurrence limit, it is possible to reliably prevent the buckling deformation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を熱間鋼板の冷却ラインに適用し
た場合の構成図である。
FIG. 1 is a configuration diagram when a method of the present invention is applied to a hot steel sheet cooling line.

【図2】鋼板幅方向に所定ピッチで冷却水量を制御する
ためのノズルヘッダー列の配置の説明斜視図である。
FIG. 2 is an explanatory perspective view of an arrangement of nozzle header rows for controlling the amount of cooling water at a predetermined pitch in the width direction of the steel plate.

【図3】急速冷却後、熱間矯正部で測定した鋼板の幅方
向の温度分布と、熱間矯正後の鋼板を常温にまで自然放
冷した後の鋼板の幅方向の残留応力の分布の一例を示す
もので、(a)図は機械側(MS)からの板幅方向距離
と熱間矯正前鋼板温度との関係を示すグラフ、(b)図
は板幅方向距離と内部応力との関係を示すグラフであ
る。
FIG. 3 shows the temperature distribution in the width direction of the steel sheet measured in the hot straightening part after rapid cooling and the distribution of the residual stress in the width direction of the steel sheet after the hot straightening steel sheet was naturally cooled to room temperature. An example is shown, (a) is a graph showing the relationship between the sheet width direction distance from the machine side (MS) and the steel sheet temperature before hot straightening, and (b) figure is the sheet width direction distance and internal stress It is a graph which shows a relationship.

【図4】鋼板の幅方向の温度分布例を示すもので、
(a)図は相対的低温域が幅方向に一箇所のみ存在する
場合の温度分布と残留応力分布を、(b)図は幅方向に
一箇所のみ圧縮応力分布が存在する場合の臨界座屈応力
と圧縮応力位置との関係を示す図である。
FIG. 4 shows an example of temperature distribution in the width direction of a steel plate,
Figure (a) shows the temperature distribution and residual stress distribution when the relative low temperature region exists in only one location in the width direction, and (b) shows the critical buckling when there is only one compressive stress distribution in the width direction. It is a figure which shows the relationship between a stress and a compression stress position.

【図5】幅方向に一箇所のみ圧縮応力分布が存在する場
合の臨界座屈応力と圧縮応力位置との関係を示すグラフ
である。
FIG. 5 is a graph showing the relationship between the critical buckling stress and the compressive stress position when the compressive stress distribution exists only at one location in the width direction.

【図6】複数の圧縮応力域を生じる温度分布における座
屈臨界温度差(ΔTmax)CRが温度分布によって異な
ることを示すもので、(a)図は幅方向非対象温度分布
の場合、(b)図は幅方向対象温度分布による座屈臨界
温度差(ΔTmax)CRの増加を示す図である。
FIG. 6 shows that the critical buckling temperature difference (ΔTmax) CR in a temperature distribution that causes a plurality of compressive stress regions varies depending on the temperature distribution. FIG. ) The figure shows the increase in the critical buckling temperature difference (ΔTmax) CR due to the temperature distribution in the width direction.

【図7】低温域(圧縮応力域)の幅方向位置の差による
座屈臨界温度差(ΔTmax)CRの差を示すもので、
(a)図は低温域が両端近くにある場合、(b)図は低
温域が幅方向1/4に存在する場合を示す図である。
FIG. 7 shows the difference in critical buckling temperature difference (ΔTmax) CR due to the difference in position in the width direction in the low temperature region (compressive stress region),
FIG. 7A is a diagram showing a case where the low temperature region is near both ends, and FIG. 9B is a diagram showing a case where the low temperature region exists in the width direction ¼.

【図8】圧縮応力域の幅Bの求め方の定義を説明するも
ので、(a)図は圧縮応力域が幅方向に1個の場合、
(b)図は圧縮応力域が幅方向に複数個の場合、(c)
図は圧縮応力域が幅端部を含む場合を示す図である。
FIG. 8 is a diagram for explaining the definition of how to obtain the width B of the compressive stress region. FIG. 8 (a) shows that when the compressive stress region is one in the width direction,
(B) The figure shows (c) when there are multiple compressive stress regions in the width direction.
The figure shows a case where the compressive stress region includes the width end portion.

【図9】(4)式〜(7)式で表した臨界座屈応力と有
限要素法での座屈解析によって求めた臨界座屈応力との
関係を示すグラフである。
FIG. 9 is a graph showing the relationship between the critical buckling stress expressed by equations (4) to (7) and the critical buckling stress obtained by buckling analysis by the finite element method.

【図10】温度修正法1による温度分布修正を説明する
図である。
FIG. 10 is a diagram for explaining temperature distribution correction by temperature correction method 1.

【図11】搬送速度と鋼板平均温度と平均冷却水量との
関係を示すもので、(a)図は搬送速度と鋼板平均温度
とノズル1個あたりの平均冷却水量との関係を示すグラ
フ、(b)図はノズル1個あたりの平均冷却水量と鋼板
平均温度との関係を示すグラフである。
FIG. 11 is a graph showing the relationship between the transport speed, the steel plate average temperature, and the average cooling water amount, and FIG. 11A is a graph showing the relationship between the transport speed, the steel plate average temperature, and the average cooling water amount per nozzle; b) The figure is a graph showing the relationship between the average amount of cooling water per nozzle and the average steel plate temperature.

【図12】圧縮応力が幅方向に対称に2個ある場合の臨
界座屈応力と圧縮応力の位置との関係を示すもので、
(a)図は板幅に占める低温域幅の割合との臨界座屈応
力と圧縮応力との関係を示すグラフ、(b)図は低温域
幅の位置を示す図である。
FIG. 12 shows the relationship between the critical buckling stress and the position of compressive stress when two compressive stresses are symmetrical in the width direction,
FIG. 5A is a graph showing the relationship between the critical buckling stress and the compressive stress with the ratio of the low temperature region width to the plate width, and FIG. 8B is a diagram showing the position of the low temperature region width.

【図13】温度偏差40℃において板厚10mmの鋼板
を座屈を発生させない温度分布の条件を示すもので、
(a)図は鋼板の幅方向距離と温度分布を示す図、
(b)図は板幅に占める低温域幅の割合と鋼板端部から
の距離を示すグラフである。
FIG. 13 shows conditions of temperature distribution that does not cause buckling of a steel plate having a thickness of 10 mm at a temperature deviation of 40 ° C.
(A) is a diagram showing the widthwise distance and temperature distribution of the steel plate,
FIG. 6B is a graph showing the ratio of the low temperature region width to the plate width and the distance from the steel plate end.

【図14】放冷過程において鋼板の残留応力が臨界座屈
応力に到達する時の鋼板平均温度 ̄TAVE’の求め方の
説明図で、(a)図は板材平均温度と板幅方向温度偏差
との関係を示すグラフ、(b)図は板幅平均温度と圧縮
残留応力との関係を示すグラフである。
FIG. 14 is an explanatory diagram of how to determine a steel plate average temperature −T AVE 'when the residual stress of the steel plate reaches the critical buckling stress in the cooling process, and FIG. 14A shows the plate material average temperature and the plate width direction temperature. A graph showing the relationship with the deviation, and FIG. 6B is a graph showing the relationship between the plate width average temperature and the compressive residual stress.

【符号の説明】[Explanation of symbols]

1 鋼板 2 熱間圧延機 3 急速冷却装置 4 熱間矯正機 5 面温度計 6 温度計 7 冷却制御部 8 冷却水量調整部 21 ノズル 22 パイプラミナヘッダー DESCRIPTION OF SYMBOLS 1 Steel plate 2 Hot rolling mill 3 Rapid cooling device 4 Hot straightening machine 5 Surface thermometer 6 Thermometer 7 Cooling control unit 8 Cooling water amount adjusting unit 21 Nozzle 22 Pipe lamina header

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱鋼板を長手方向に移送しつつ加速冷却
したのち熱間矯正する工程での熱鋼板の冷却方法におい
て、鋼板の長手方向に所定間隔でノズルヘッダーを配し
たノズルヘッダー列を鋼板幅方向に所定間隔で設け、各
ノズルヘッダー列の噴射ノズルからの冷却水量を制御可
能な流量調整機構を有する冷却装置を使用し、該冷却装
置に続く熱間矯正機の入口あるいは出口で鋼板上表面全
体の温度分布を測定し、該鋼板上表面全体の平均幅方向
温度分布を予め定めた設定値と比較し、前記冷却装置の
各ノズルヘッダー列への冷却水量を制御することを特徴
とする熱鋼板の冷却方法。
1. A method for cooling a hot steel sheet in a step of accelerating cooling while transporting the hot steel sheet in a longitudinal direction and then performing hot straightening, wherein a nozzle header row in which nozzle headers are arranged at predetermined intervals in a longitudinal direction of the steel sheet is provided. A cooling device having a flow rate adjusting mechanism capable of controlling the amount of cooling water from the injection nozzles of each nozzle header row is provided at a predetermined interval in the width direction, and a steel plate is introduced at the inlet or the outlet of the hot straightener following the cooling device. The temperature distribution of the entire surface is measured, the average width direction temperature distribution of the entire upper surface of the steel sheet is compared with a predetermined set value, and the amount of cooling water to each nozzle header row of the cooling device is controlled. How to cool hot steel plates.
【請求項2】 熱鋼板を長手方向に移送しつつ加速冷却
したのち熱間矯正する工程での熱鋼板の冷却方法におい
て、鋼板の長手方向に所定間隔でノズルヘッダーを配し
たノズルヘッダー列を鋼板幅方向に所定間隔で設け、各
ノズルヘッダー列の噴射ノズルからの冷却水量を制御可
能な流量調整機構を有する冷却装置を使用し、該冷却装
置に続く熱間矯正機の入口あるいは出口で鋼板上表面全
体の温度分布を測定し、該鋼板上表面全体の温度分布に
基づいて鋼板の長さ方向の個々の位置における幅方向温
度分布を平均することによって平均幅方向温度分布を求
め、この平均幅方向温度分布を長さ方向に連続して有す
る仮想鋼板が常温にまで放冷された後の残留応力分布と
臨界座屈応力とを演算予測し、予測した残留応力および
臨界座屈応力に基づいて常温における座屈変形の発生有
無を判定し、座屈変形発生有りの場合は、残留応力が臨
界座屈応力未満となるように、熱間矯正機の入口あるい
は出口での鋼板面内温度分布を逆算し、前記測定した熱
間矯正機の入口あるいは出口の鋼板面内温度分布との差
に応じて、前記冷却装置における幅方向の各ノズルヘッ
ダー列の冷却水量の修正指示値を演算し、前記冷却装置
の各ノズルヘッダー列への冷却水量を制御することを特
徴とする熱鋼板の冷却方法。
2. A method of cooling a hot steel sheet in a step of accelerating cooling while transporting the hot steel sheet in a longitudinal direction and then hot-correcting the hot steel sheet, wherein a nozzle header row in which nozzle headers are arranged at predetermined intervals in the longitudinal direction of the steel sheet is provided. A cooling device having a flow rate adjusting mechanism capable of controlling the amount of cooling water from the injection nozzles of each nozzle header row is provided at a predetermined interval in the width direction, and a steel plate is introduced at the inlet or the outlet of the hot straightener following the cooling device. The temperature distribution of the entire surface is measured, and the average width direction temperature distribution is obtained by averaging the width direction temperature distribution at each position in the length direction of the steel sheet based on the temperature distribution of the entire steel plate upper surface. Prediction of residual stress distribution and critical buckling stress after virtual steel sheet having continuous directional temperature distribution in the longitudinal direction after being left to cool to room temperature is calculated and based on the predicted residual stress and critical buckling stress. The presence or absence of buckling deformation at room temperature is determined, and if buckling deformation occurs, the in-plane temperature distribution of the steel plate at the inlet or outlet of the hot straightening machine should be adjusted so that the residual stress is less than the critical buckling stress. Is calculated back, in accordance with the difference between the measured temperature distribution in the steel plate surface of the inlet or outlet of the hot straightener, to calculate the correction instruction value of the cooling water amount of each nozzle header row in the width direction of the cooling device, A method for cooling a hot steel sheet, comprising controlling the amount of cooling water to each nozzle header row of the cooling device.
JP24729694A 1994-09-13 1994-09-13 Cooling method of hot steel plate Pending JPH0890046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24729694A JPH0890046A (en) 1994-09-13 1994-09-13 Cooling method of hot steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24729694A JPH0890046A (en) 1994-09-13 1994-09-13 Cooling method of hot steel plate

Publications (1)

Publication Number Publication Date
JPH0890046A true JPH0890046A (en) 1996-04-09

Family

ID=17161326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24729694A Pending JPH0890046A (en) 1994-09-13 1994-09-13 Cooling method of hot steel plate

Country Status (1)

Country Link
JP (1) JPH0890046A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294351A (en) * 2001-03-29 2002-10-09 Nkk Corp Manufacturing method for high-strength cold-rolled steel plate
JP4712149B2 (en) * 1999-02-01 2011-06-29 エス・エム・エス・ジーマーク・アクチエンゲゼルシャフト Method and equipment for deforming strips
EP3395461A4 (en) * 2015-12-23 2019-01-23 Posco Straightening system and straightening method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4712149B2 (en) * 1999-02-01 2011-06-29 エス・エム・エス・ジーマーク・アクチエンゲゼルシャフト Method and equipment for deforming strips
JP2002294351A (en) * 2001-03-29 2002-10-09 Nkk Corp Manufacturing method for high-strength cold-rolled steel plate
EP3395461A4 (en) * 2015-12-23 2019-01-23 Posco Straightening system and straightening method
US10994316B2 (en) 2015-12-23 2021-05-04 Posco Straightening system and straightening method

Similar Documents

Publication Publication Date Title
EP1153673B1 (en) Metal plate flatness controlling method
JPS62158825A (en) Method for cooling hot rolled steel plate
CN114888094B (en) Rolling plate shape compensation method based on residual stress prediction in cooling process
KR101516476B1 (en) Apparatus for calculating set value, method of calculating set value, and program recording medium for calculating set value
US8197746B2 (en) Method of arranging and setting spray cooling nozzles and hot steel plate cooling apparatus
JPH08215734A (en) Uniformly cooling method of steel plate
US9566625B2 (en) Apparatus for cooling hot-rolled steel sheet
JPH0534093B2 (en)
EP2764932B1 (en) Method for cooling hot-rolled steel sheet
EP2929949A1 (en) Device for cooling hot-rolled steel sheet
JPH0890046A (en) Cooling method of hot steel plate
JPH105868A (en) Method for controlling shape of control-cooled steel plate
CN113423517B (en) Cooling control method and cooling control device for thick steel plate, and manufacturing method for thick steel plate
JP7077574B2 (en) Manufacturing method of heat-treated steel sheet and steel sheet cooling device
JP3458758B2 (en) Method and apparatus for cooling steel sheet
JPH02179825A (en) Controller for cooling hot-rolled steel sheet
EP2933031B1 (en) Method for producing steel sheet
JP3460755B2 (en) Controlled cooling method and apparatus for hot rolled steel sheet
JP3114593B2 (en) Steel plate manufacturing method
JP4010301B2 (en) Hot rolled steel sheet production line and method
JP7128163B2 (en) Thick steel plate cooling method
JP2979913B2 (en) Metal strip cooling device
JP3282714B2 (en) Cooling method for hot steel sheet
KR100891869B1 (en) Method for Manufacturing Hot-Rolled Steel Sheet
JP2019155372A (en) Thick steel plate cooling method