[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0888013A - Thin film electrolyte for normal temperature fuel cell and normal temperature fuel cell using it - Google Patents

Thin film electrolyte for normal temperature fuel cell and normal temperature fuel cell using it

Info

Publication number
JPH0888013A
JPH0888013A JP6221606A JP22160694A JPH0888013A JP H0888013 A JPH0888013 A JP H0888013A JP 6221606 A JP6221606 A JP 6221606A JP 22160694 A JP22160694 A JP 22160694A JP H0888013 A JPH0888013 A JP H0888013A
Authority
JP
Japan
Prior art keywords
electrolyte
thin film
fuel cell
temperature fuel
phosphoric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6221606A
Other languages
Japanese (ja)
Inventor
Yuzo Izumi
祐三 出水
Natsuko Shimizu
奈津子 清水
Keiichi Koseki
恵一 古関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP6221606A priority Critical patent/JPH0888013A/en
Publication of JPH0888013A publication Critical patent/JPH0888013A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE: To prevent increase in electrolyte ohmic loss even if a film is thick, and make temperature control of a cell easy by impregnating void pores of a polymer porous film with an electrolyte solution containing phosphoric acid and an organic solvent in and conducting moisture control. CONSTITUTION: A thin film electrolyte 3 is produced by impregnating void pores 2 of a polymer porous film 1 with an electrolyte solution 4 containing phosphoric acid and a solvent. The thin film electrolyte 3 is interposed between a pair of electrodes 5, and current collectors 6 surrounded by a Teflon gasket 7 are arranged on both side of the thin film electrolyte 3. The current collectors 6 are sealed between a sealing member 15 having a hydrogen supply port 10 and a hydrogen exhaust gas port 11 and a sealing member 16 having an oxygen supply port 12 and an oxygen exhaust gas port 13, and a supporting member 14 which supports the current collector 6 is arranged inside each sealing member. When hydrogen fuel and oxygen fuel are supplied from the supply ports 10, 12, the reaction takes place on the anode side and the cathode side, and electromotive force is generated between an anode terminal 8 and a cathode terminal 9. Since water is produced by reaction, moisture control is made unnecessary.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、常温型燃料電池用の薄
膜電解質、特に、固体高分子型燃料電池用の新規高分子
薄膜電解質とこれを用いた常温型燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film electrolyte for a room temperature fuel cell, and more particularly to a novel polymer thin film electrolyte for a solid polymer fuel cell and a room temperature fuel cell using the same.

【0002】[0002]

【従来の技術】常温型燃料電池用の固体高分子電解質と
してデュポン社のナフィオン(登録商標)に代表される
フッ素樹脂系イオン交換膜が知られている。このような
イオン交換膜を用いた燃料電池は、100℃以下の低温
において、燃料極では H2 → 2H + + 2e- 、空気極では
O2 + 4H + + 4e- → 2H2O の反応が進むことによって作
動する。このように低温で作動する(常温型の)固体高
分子型燃料電池は、一般に出力密度が高く、装置の作製
が容易であり小型軽量化が図れるなどの特徴を有し、車
載用途や小規模コジェネレーションへの応用が期待され
ている。
2. Description of the Related Art As a solid polymer electrolyte for room temperature fuel cells, a fluororesin ion exchange membrane represented by Nafion (registered trademark) manufactured by DuPont is known. A fuel cell using such an ion-exchange membrane is H 2 → 2H + + 2e − at the fuel electrode and at the air electrode at a low temperature of 100 ° C. or lower.
O 2 + 4H + + 4e - → 2H 2 O in the reaction is activated by proceeding. Such a polymer electrolyte fuel cell that operates at a low temperature (normal temperature type) generally has high output density, is easy to manufacture, and can be made compact and lightweight. It is expected to be applied to cogeneration.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
ナフィオン(登録商標)に代表されるフッ素樹脂系イオ
ン交換膜にはガスのクロスリークが大きいという本質的
な欠点があるため、膜厚を通常100〜180μmにす
る必要がある。膜が厚いほど、出力密度の増大と共に電
解質オーム損による発熱も大きくなるため、セルの温度
管理が難しくなり、エネルギーロスも大きくなるといっ
た問題が生じる。
However, the fluororesin ion-exchange membrane represented by Nafion (registered trademark) has an essential drawback of large gas cross-leakage. It is necessary to set the thickness to 180 μm. The thicker the film, the more the power density increases and the more heat is generated due to the ohmic loss of the electrolyte, which makes it difficult to control the temperature of the cell and increases the energy loss.

【0004】また、フッ素樹脂系イオン交換膜の製造に
は多段階工程が必要であるため製造コストが非常に高い
という欠点がある。さらに、フッ素樹脂系イオン交換膜
は、膜中に水分が含まれていなければイオン導電体とし
て機能しないため、水蒸気による加湿(水分管理)を施
す必要がある。
Further, there is a drawback that the manufacturing cost is very high because a multi-step process is required to manufacture the fluororesin ion exchange membrane. Further, since the fluororesin ion exchange membrane does not function as an ionic conductor unless water is contained in the membrane, it needs to be humidified by water vapor (water management).

【0005】[0005]

【課題を解決するための手段】本発明は、上記の如き課
題を解決するために、 (1)リン酸及び有機溶媒を含む電解質溶液を高分子多
孔質膜の空孔中に含浸してなる常温型燃料電池用薄膜電
解質 を提供する。さらに、本発明は、 (2)(1)項記載の薄膜電解質を用いた常温型燃料電
池 をも提供する。
In order to solve the above problems, the present invention comprises (1) impregnating the pores of a polymer porous membrane with an electrolyte solution containing phosphoric acid and an organic solvent. Provide a thin film electrolyte for room temperature fuel cells. Further, the present invention also provides an ambient temperature fuel cell using the thin film electrolyte according to (2) and (1).

【0006】本発明の好ましい実施態様を以下に項分け
して列挙する。 (3)多孔質膜の膜厚が0.1μm〜50μm、空孔率
が40%〜90%、破断強度が200kg/cm2 以上
及び平均貫通孔径が0.001μm〜0.7μmである
ことを特徴とする(1)項記載の常温型燃料電池用薄膜
電解質。 (4)有機溶媒が、ベンゾニトリル、シアン化ベンジ
ル、1−フェニル−1−シクロプロパンカルボニトリ
ル、DL−2−フェニルブチロニトリル、4−フェニル
ブチロニトリル、2,2−ジフェニルプロピオニトリ
ル、ポリエチレングリコールジメチルエーテル、ポリプ
ロピレングリコールジメチルエーテル、2−フェニルエ
タノール及び2−フェノキシエタノール並びにこれらの
2種以上を組み合わせた混合物の中から選ばれることを
特徴とする、(1)項又は(3)項記載の常温型燃料電
池用薄膜電解質。 (5)リン酸水溶液としての水分を含んだリン酸と有機
溶媒との合計重量に対する有機溶媒の重量が10〜30
重量%であることを特徴とする、(1)項、(3)項又
は(4)項記載の常温型燃料電池用薄膜電解質。 (6)(3)〜(5)項のいずれか一項に記載の薄膜電
解質を用いた常温型燃料電池。
The preferred embodiments of the present invention are listed below item by item. (3) The thickness of the porous film is 0.1 μm to 50 μm, the porosity is 40% to 90%, the breaking strength is 200 kg / cm 2 or more, and the average through pore diameter is 0.001 μm to 0.7 μm. A thin film electrolyte for a room temperature fuel cell according to item (1). (4) The organic solvent is benzonitrile, benzyl cyanide, 1-phenyl-1-cyclopropanecarbonitrile, DL-2-phenylbutyronitrile, 4-phenylbutyronitrile, 2,2-diphenylpropionitrile, It is selected from polyethylene glycol dimethyl ether, polypropylene glycol dimethyl ether, 2-phenylethanol and 2-phenoxyethanol, and a mixture of two or more thereof in combination, which is a room temperature type according to item (1) or (3). Thin film electrolyte for fuel cells. (5) The weight of the organic solvent is 10 to 30 relative to the total weight of the phosphoric acid containing water as the phosphoric acid aqueous solution and the organic solvent.
The thin film electrolyte for a room temperature fuel cell according to item (1), (3) or (4), characterized in that the content is% by weight. (6) An ambient temperature fuel cell using the thin film electrolyte according to any one of (3) to (5).

【0007】本発明の薄膜電解質に用いられる多孔質膜
には、膜厚0.1μm〜50μm、空孔率40%〜90
%、破断強度200kg/cm2 以上及び平均貫通孔径
0.001μm〜0.7μmを示すものが好ましく用い
られる。
The porous film used in the thin film electrolyte of the present invention has a film thickness of 0.1 μm to 50 μm and a porosity of 40% to 90%.
%, A breaking strength of 200 kg / cm 2 or more and an average through hole diameter of 0.001 μm to 0.7 μm are preferably used.

【0008】多孔質膜の厚さは一般に0.1μm〜50
μmであり、好ましくは1μm〜25μmである。厚さ
が0.1μm未満では支持体としての機械的強度の低下
及び取扱性の面から実用に供することが難しい。一方、
50μmを越える場合には実効抵抗を抑えるという観点
から好ましくない。多孔質膜の空孔率は40%〜90%
とするのがよく、好ましくは60%〜90%の範囲であ
る。空孔率が40%未満では薄膜電解質としてのイオン
導電性が不十分となり、一方90%を越えると支持体と
しての機械的強度が小さくなり実用に供することが難し
い。
The thickness of the porous film is generally 0.1 μm to 50 μm.
μm, and preferably 1 μm to 25 μm. When the thickness is less than 0.1 μm, it is difficult to put it into practical use from the viewpoints of a decrease in mechanical strength as a support and handleability. on the other hand,
When it exceeds 50 μm, it is not preferable from the viewpoint of suppressing the effective resistance. Porosity of porous film is 40% ~ 90%
It is good to be, and it is preferably in the range of 60% to 90%. When the porosity is less than 40%, the ionic conductivity as a thin film electrolyte becomes insufficient, while when it exceeds 90%, the mechanical strength as a support becomes small and it is difficult to put it into practical use.

【0009】多孔質膜の平均貫通孔径は、空孔中に電解
質溶液を固定化できればよいが、一般に0.001μm
〜0.7μmである。好ましい平均貫通孔径は多孔質膜
の材質や孔の形状にもよる。多孔質膜の破断強度は一般
に200kg/cm2 以上、より好ましくは500kg
/cm2 以上を有することにより支持体としての実用化
に好適である。
The average through-pore diameter of the porous membrane should be such that the electrolyte solution can be fixed in the pores, but it is generally 0.001 μm.
Is about 0.7 μm. The preferable average through-hole diameter depends on the material of the porous membrane and the shape of the holes. The breaking strength of the porous membrane is generally 200 kg / cm 2 or more, more preferably 500 kg.
It is suitable for practical use as a support by having a ratio of / cm 2 or more.

【0010】本発明に用いる多孔質膜は、電解質溶液の
支持体としての機能を持ち、機械的強度の優れた高分子
材料からなる。化学的・電気化学的安定性の観点から、
例えば、ポリオレフィン、ポリテトラフルオロエチレ
ン、ポリフッ化ビニリデンを用いることができるが、本
発明の多孔構造の設計や薄膜化と機械的強度の両立の容
易さの観点から好適な高分子材料の一例は、特に重量平
均分子量が5×105 以上のポリオレフィンである。そ
の他好適な高分子材料の例として、ポリカーボネート、
ポリエステル、ポリメタクリレート、ポリアセタール、
ポリ塩化ビニリデン、ポリテトラフルオロエチレン、等
が挙げられる。
The porous membrane used in the present invention has a function as a support for an electrolyte solution and is made of a polymer material having excellent mechanical strength. From the viewpoint of chemical and electrochemical stability,
For example, polyolefin, polytetrafluoroethylene, polyvinylidene fluoride can be used, but an example of a suitable polymer material from the viewpoint of the compatibility of the design and thinning of the porous structure and mechanical strength of the present invention, Particularly, it is a polyolefin having a weight average molecular weight of 5 × 10 5 or more. Examples of other suitable polymer materials include polycarbonate,
Polyester, polymethacrylate, polyacetal,
Examples thereof include polyvinylidene chloride and polytetrafluoroethylene.

【0011】本発明の薄膜電解質用の電解質溶液にはリ
ン酸を用いる。リン酸を用いることにより常温型燃料電
池が可能にされる。リン酸が水分を多量に含むと電解質
溶液のイオン伝導度が低下するので、水分はできるだけ
少ないことが望まれるが、通常85%以上に高濃度のリ
ン酸水溶液は入手できない。但し、水分は少ない方が好
ましい(通常は85%リン酸水溶液を使用する)が、よ
り多くの水が含まれる場合を排除するわけではない。
Phosphoric acid is used in the electrolyte solution for the thin film electrolyte of the present invention. The use of phosphoric acid enables a room temperature fuel cell. If the phosphoric acid contains a large amount of water, the ionic conductivity of the electrolyte solution will decrease, so it is desirable that the water content be as low as possible, but usually a phosphoric acid aqueous solution having a high concentration of 85% or more is not available. However, it is preferable that the water content is low (usually, an 85% phosphoric acid aqueous solution is used), but the case where more water is contained is not excluded.

【0012】電解質溶液の成分に用いられる有機溶媒
は、リン酸を高分子多孔質膜の空孔中に含浸させるため
に必要であり、リン酸(水溶液)と相溶性があり且つ高
分子多孔質膜に対して濡れ性があるものから選択され
る。また本発明による常温型燃料電池の作動温度(約8
0〜150℃)において低い蒸気圧を示すものがよい。
使用可能な有機溶媒の例として、ベンゾニトリル、シア
ン化ベンジル、1−フェニル−1−シクロプロパンカル
ボニトリル、DL−2−フェニルブチロニトリル、4−
フェニルブチロニトリル、2,2−ジフェニルプロピオ
ニトリル、ポリエチレングリコールジメチルエーテル、
ポリプロピレングリコールジメチルエーテル、2−フェ
ニルエタノール及び2−フェノキシエタノール並びにこ
れらの2種以上を組み合わせた混合物、等が挙げられる
が、これらに限定はされない。有機溶媒の沸点は約20
0℃以上であることが好ましい。
The organic solvent used as a component of the electrolyte solution is necessary for impregnating the pores of the porous polymer membrane with phosphoric acid, is compatible with phosphoric acid (aqueous solution), and is highly porous. It is selected from those that are wettable to the membrane. Further, the operating temperature of the room temperature fuel cell according to the present invention (about 8
Those exhibiting a low vapor pressure at 0 to 150 ° C. are preferable.
Examples of usable organic solvents are benzonitrile, benzyl cyanide, 1-phenyl-1-cyclopropanecarbonitrile, DL-2-phenylbutyronitrile, 4-
Phenylbutyronitrile, 2,2-diphenylpropionitrile, polyethylene glycol dimethyl ether,
Examples thereof include, but are not limited to, polypropylene glycol dimethyl ether, 2-phenylethanol and 2-phenoxyethanol, and a mixture of two or more thereof. The boiling point of the organic solvent is about 20
It is preferably 0 ° C. or higher.

【0013】電解質溶液における有機溶媒の好適な比率
は、リン酸(水溶液としての水分を含む)と有機溶媒と
の合計重量に対して約10〜30重量%、より好ましく
は10〜15重量%である。有機溶媒が少ないとリン酸
を高分子多孔質膜の空孔中に含浸させることが困難であ
る。一方、有機溶媒が多過ぎると薄膜電解質のイオン導
電性が低下する。
A suitable ratio of the organic solvent in the electrolyte solution is about 10 to 30% by weight, more preferably 10 to 15% by weight, based on the total weight of phosphoric acid (including water as an aqueous solution) and the organic solvent. is there. If the amount of organic solvent is small, it is difficult to impregnate the pores of the polymer porous membrane with phosphoric acid. On the other hand, when the amount of the organic solvent is too much, the ionic conductivity of the thin film electrolyte is lowered.

【0014】本発明の薄膜電解質は、上記の高分子多孔
質膜にリン酸及び有機溶媒を含む電解質溶液を含浸させ
ることによって製造される。高分子多孔質膜の空孔中に
電解質溶液を含浸させる方法については、本出願人が特
開平1−158051号公報及び同2−291607号
公報等に既に開示しているので、詳しくはこれらを参照
されたい。電解質溶液の表面張力が高い場合には、必要
に応じて多孔質膜を104 パスカル以下に真空引きする
ことによって溶液を含浸させてもよい。多孔質膜の表面
物性によるが、一般に表面張力が50ダイン/cm以上
の電解質溶液の場合には真空引きした方が含浸させ易
い。
The thin film electrolyte of the present invention is produced by impregnating the above-mentioned polymer porous membrane with an electrolyte solution containing phosphoric acid and an organic solvent. The method of impregnating the pores of the polymer porous membrane with the electrolyte solution has already been disclosed by the present applicant in Japanese Patent Laid-Open Nos. 1-158051 and 2-291607, and so on. Please refer. When the surface tension of the electrolyte solution is high, the solution may be impregnated by vacuuming the porous membrane to 10 4 pascals or less, if necessary. Although it depends on the physical properties of the surface of the porous membrane, generally, in the case of an electrolyte solution having a surface tension of 50 dynes / cm or more, it is easier to impregnate it by vacuuming.

【0015】本発明の薄膜電解質は、全体として固体と
して取り扱うことができ、液漏れの心配がなく、しかも
含浸した電解質溶液を用いるのでイオン導電性に優れ、
また薄膜化が可能である、等の特徴を有する。
The thin film electrolyte of the present invention can be handled as a solid as a whole, there is no fear of liquid leakage, and since the impregnated electrolyte solution is used, it has excellent ionic conductivity,
Further, it has a feature that it can be thinned.

【0016】本発明は、上記の薄膜電解質を用いた常温
型燃料電池をも提供する。電解質以外の電極やその他の
構造は、フッ素樹脂系イオン交換膜を電解質に用いた従
来の常温型燃料電池において知られているものを採用す
ることができる。本発明による常温型燃料電池は約80
℃〜150℃の温度で好適に作動する。作動温度が約8
0℃より低いと電解質としてのイオン導電性が低くなり
実用に供することが難しく、一方、約150℃より高い
と、リン酸の酸度が上がり膜が腐食される。好ましい作
動温度範囲は約80℃〜100℃である。
The present invention also provides an ambient temperature fuel cell using the above-mentioned thin film electrolyte. For the electrodes and other structures other than the electrolyte, those known in conventional room temperature fuel cells using a fluororesin ion exchange membrane as the electrolyte can be adopted. The room temperature fuel cell according to the present invention has about 80
It suitably operates at temperatures of ℃ to 150 ℃. Operating temperature is about 8
When the temperature is lower than 0 ° C, the ionic conductivity as an electrolyte is low and it is difficult to put it into practical use. On the other hand, when the temperature is higher than about 150 ° C, the acidity of phosphoric acid increases and the membrane is corroded. The preferred operating temperature range is about 80 ° C to 100 ° C.

【0017】図1〜図3を参照して、本発明の常温型燃
料電池本体の典型的な構成例を説明する。
With reference to FIGS. 1 to 3, a typical configuration example of the room temperature fuel cell main body of the present invention will be described.

【0018】図1に、本発明の薄膜電解質に用いられる
多孔質膜1の一例を模式的に示す。多孔質膜1は一般に
二軸延伸法で作製され、内部に空孔2を有する。図1で
は、空孔2を模式的に示したが、実際には、空孔2が規
則的な配置や形状を取る必要はない。
FIG. 1 schematically shows an example of the porous membrane 1 used in the thin film electrolyte of the present invention. The porous membrane 1 is generally produced by a biaxial stretching method and has pores 2 inside. Although the holes 2 are schematically shown in FIG. 1, the holes 2 do not actually need to have a regular arrangement or shape.

【0019】図2に、図1の如き多孔質膜1の空孔2に
電解質溶液4を含浸させて作製した薄膜電解質3の一例
を模式的に示す。電解質溶液4は空孔2の内部に固定さ
れるので、薄膜電解質3は全体的に固体として取り扱う
ことができる。図2でも、空孔2の断面が規則的な配置
や形状を取る必要はない。
FIG. 2 schematically shows an example of the thin film electrolyte 3 produced by impregnating the pores 2 of the porous membrane 1 with the electrolyte solution 4 as shown in FIG. Since the electrolyte solution 4 is fixed inside the pores 2, the thin film electrolyte 3 can be handled as a solid as a whole. Also in FIG. 2, it is not necessary for the cross section of the holes 2 to have a regular arrangement or shape.

【0020】図3は、図2の如き薄膜電解質3を用いた
常温型燃料電池本体の一例を示すものである。電解質溶
液を含浸させた1層以上の高分子多孔質膜からなる薄膜
電解質3を一対の電極5の間に挟持し、その両側に、テ
フロン製ガスケット7で囲まれている集電材6を配置す
る。この集成体を、水素供給口10及び水素排ガス口1
1を有する封止部材15と、酸素供給口12及び酸素排
ガス口13を有する封止部材16との間に封入する。封
入部材15、16の内側には、集電材6を支持するため
の支持部材14が設けられている。集電材6には、例え
ば白金を被覆したチタン基材が用いられる。封入部材1
5、16には、例えばステンレスが用いられる。電極間
の起電力によって得られる電流を取り出すため、封入部
材15にはアノード端子8(水素供給側)が、また封入
部材16にはカソード端子9(酸素供給側)がそれぞれ
設けられている。
FIG. 3 shows an example of a room temperature fuel cell body using the thin film electrolyte 3 as shown in FIG. A thin film electrolyte 3 composed of one or more polymer porous membranes impregnated with an electrolyte solution is sandwiched between a pair of electrodes 5, and a current collector 6 surrounded by a Teflon gasket 7 is arranged on both sides thereof. . This assembly is provided with a hydrogen supply port 10 and a hydrogen exhaust gas port 1
It is sealed between the sealing member 15 having No. 1 and the sealing member 16 having the oxygen supply port 12 and the oxygen exhaust gas port 13. A support member 14 for supporting the current collector 6 is provided inside the enclosing members 15 and 16. For the current collector 6, for example, a titanium base material coated with platinum is used. Encapsulation member 1
For example, stainless steel is used for 5 and 16. The encapsulating member 15 is provided with an anode terminal 8 (hydrogen supply side) and the encapsulating member 16 is provided with a cathode terminal 9 (oxygen supply side) in order to extract a current obtained by an electromotive force between the electrodes.

【0021】図3の如き燃料電池本体を、これを作動温
度(80℃〜150℃)に保つための恒温槽(図示な
し)の中に配置し、水素供給口10に水素燃料を、そし
て酸素供給口12に酸素を供給すると、前記の H2 → 2
H + + 2e- (アノード側)及びO2 + 4H + + 4e- → 2H2
O (カソード側)の反応が起こり、その際アノード端子
8、カソード端子9間に起電力が発生する。
The fuel cell main body as shown in FIG. 3 is placed in a thermostatic chamber (not shown) for maintaining the operating temperature (80 ° C. to 150 ° C.), and hydrogen fuel is supplied to the hydrogen supply port 10 and oxygen. When oxygen is supplied to the supply port 12, the above H 2 → 2
H + + 2e - (anode) and O 2 + 4H + + 4e - → 2H 2
O (cathode side) reaction occurs, and at that time, electromotive force is generated between the anode terminal 8 and the cathode terminal 9.

【0022】[0022]

【実施例】二軸延伸して得られた空孔率41%、平均貫
通孔径0.02μm、厚さ25μmのポリエチレン多孔
質膜に、ジプロピレングリコールジエチルエーテル10
重量%とリン酸(85%水溶液)90重量%とを含む電
解質溶液を含浸して薄膜電解質を作製した。
Example: A polyethylene porous film having a porosity of 41%, an average through-pore diameter of 0.02 μm and a thickness of 25 μm, obtained by biaxial stretching, was coated with dipropylene glycol diethyl ether 10.
A thin film electrolyte was prepared by impregnating with an electrolyte solution containing 90% by weight of phosphoric acid (85% aqueous solution) by weight.

【0023】この薄膜電解質を2枚重ね(電解質の全体
厚50μm)、図3に示したような燃料電池本体を組み
立てた。燃料電池本体の電極5には、白金を0.35m
g/cm2 担持させたカーボン粉末をグラッシーカーボ
ン及びカーボンクロスからなる支持材と組み合わせたも
のを使用した。
Two thin film electrolytes were stacked (the total thickness of the electrolyte was 50 μm), and a fuel cell body as shown in FIG. 3 was assembled. 0.35 m of platinum is used for the electrode 5 of the fuel cell body.
A carbon powder supported g / cm 2 was used in combination with a support material composed of glassy carbon and carbon cloth.

【0024】この燃料電池本体に1kg/cm2 の圧力
下で酸素ガスを40ml/分、水素ガスを40ml/分
の流速で供給し、80℃で連続10時間発電させた。
Oxygen gas and hydrogen gas were supplied to the fuel cell body at a pressure of 1 kg / cm 2 at a flow rate of 40 ml / min and 40 ml / min, respectively, and power was continuously generated at 80 ° C. for 10 hours.

【0025】その結果、開放電圧0.80ボルト、出力
密度0.18W/cm2 が得られた。なお、上記実施例
の燃料電池本体において厚さ25μmの薄膜電解質を1
枚で使用して同様に発電させた場合にも同等の開放電
圧、出力密度が得られた。比較例として、薄膜電解質3
を厚さ125μmのナフィオン(登録商標)膜に置き換
えたこと以外は同じ条件で実験したところ、加湿されて
いないため起電力が得られなかった。
As a result, an open circuit voltage of 0.80 V and an output density of 0.18 W / cm 2 were obtained. In addition, in the fuel cell main body of the above-mentioned embodiment, a thin film electrolyte having a thickness of 25 μm
The same open circuit voltage and power density were obtained when used in a single sheet and similarly generated. As a comparative example, thin film electrolyte 3
An experiment was conducted under the same conditions except that the film was replaced with a 125 μm-thick Nafion (registered trademark) film, and no electromotive force was obtained because it was not humidified.

【0026】[0026]

【発明の効果】本発明の常温型燃料電池用薄膜電解質
は、固体電解質として取り扱うことができ且つ従来のフ
ッ素樹脂系イオン交換膜に匹敵する高い常温発電性能を
示し、しかも薄膜に溶液を含浸させて製造されるためフ
ッ素樹脂系イオン交換膜と比べ製造コストが格段に低く
なる。また、ガス透過性を抑制することができるので従
来より薄い電解質とすることが可能である。さらに、溶
液を含浸させた膜であるため複数枚重ねて使用しても接
触抵抗は比較的低く抑えられ、オーム損による発熱を抑
制することができる。その上、本発明の薄膜電解質は、
燃料電池作動時の水分管理が不要であるため燃料電池シ
ステム全体としての小型化・低コスト化に寄与する。
INDUSTRIAL APPLICABILITY The thin film electrolyte for a room temperature fuel cell of the present invention can be handled as a solid electrolyte and exhibits high room temperature power generation performance comparable to that of a conventional fluororesin ion exchange membrane, and further, the thin film is impregnated with a solution. Manufacturing cost is significantly lower than that of a fluororesin ion exchange membrane. Further, since gas permeability can be suppressed, it is possible to make the electrolyte thinner than before. Further, since the films are impregnated with the solution, the contact resistance can be suppressed to be relatively low even when a plurality of films are stacked and used, and heat generation due to ohmic loss can be suppressed. Moreover, the thin film electrolyte of the present invention is
Contribution to downsizing and cost reduction of the entire fuel cell system because there is no need for water management when the fuel cell operates.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の薄膜電解質用多孔質膜を模式的に示す
斜視図である。
FIG. 1 is a perspective view schematically showing a porous membrane for a thin film electrolyte of the present invention.

【図2】本発明の薄膜電解質を模式的に示す縦断面図で
ある。
FIG. 2 is a vertical sectional view schematically showing a thin film electrolyte of the present invention.

【図3】本発明の燃料電池本体の構成例を示す展開斜視
図である。
FIG. 3 is a developed perspective view showing a configuration example of a fuel cell body of the present invention.

【符号の説明】[Explanation of symbols]

1…多孔質膜 2…空孔 3…薄膜電解質 4…電解質溶液 5…電極 6…集電材 7…ガスケット 8…アノード端子 9…カソード端子 10…水素供給口 11…水素排ガス口 12…酸素供給口 13…酸素排ガス口 14…支持部材 15、16…封止部材 DESCRIPTION OF SYMBOLS 1 ... Porous film 2 ... Porosity 3 ... Thin film electrolyte 4 ... Electrolyte solution 5 ... Electrode 6 ... Current collector 7 ... Gasket 8 ... Anode terminal 9 ... Cathode terminal 10 ... Hydrogen supply port 11 ... Hydrogen exhaust port 12 ... Oxygen supply port 13 ... Oxygen exhaust gas port 14 ... Support member 15, 16 ... Sealing member

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リン酸及び有機溶媒を含む電解質溶液を
高分子多孔質膜の空孔中に含浸してなる常温型燃料電池
用薄膜電解質。
1. A thin film electrolyte for a room temperature fuel cell, which is obtained by impregnating pores of a polymer porous membrane with an electrolyte solution containing phosphoric acid and an organic solvent.
【請求項2】 請求項1記載の薄膜電解質を用いた常温
型燃料電池。
2. An ambient temperature fuel cell using the thin film electrolyte according to claim 1.
JP6221606A 1994-09-16 1994-09-16 Thin film electrolyte for normal temperature fuel cell and normal temperature fuel cell using it Pending JPH0888013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6221606A JPH0888013A (en) 1994-09-16 1994-09-16 Thin film electrolyte for normal temperature fuel cell and normal temperature fuel cell using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6221606A JPH0888013A (en) 1994-09-16 1994-09-16 Thin film electrolyte for normal temperature fuel cell and normal temperature fuel cell using it

Publications (1)

Publication Number Publication Date
JPH0888013A true JPH0888013A (en) 1996-04-02

Family

ID=16769397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6221606A Pending JPH0888013A (en) 1994-09-16 1994-09-16 Thin film electrolyte for normal temperature fuel cell and normal temperature fuel cell using it

Country Status (1)

Country Link
JP (1) JPH0888013A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004501492A (en) * 2000-05-08 2004-01-15 本田技研工業株式会社 Fuel cell
US8137852B2 (en) 2004-11-09 2012-03-20 Ube Industries, Ltd. Liquid electrolyte
KR20190022658A (en) 2016-07-25 2019-03-06 데이진 가부시키가이샤 Substrate for composite film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004501492A (en) * 2000-05-08 2004-01-15 本田技研工業株式会社 Fuel cell
US8137852B2 (en) 2004-11-09 2012-03-20 Ube Industries, Ltd. Liquid electrolyte
KR20190022658A (en) 2016-07-25 2019-03-06 데이진 가부시키가이샤 Substrate for composite film
KR20210060655A (en) 2016-07-25 2021-05-26 데이진 가부시키가이샤 Composite membrane substrate
EP4032946A1 (en) 2016-07-25 2022-07-27 Teijin Limited Substrate for composite membrane
US11929531B2 (en) 2016-07-25 2024-03-12 Teijin Limited Composite membrane

Similar Documents

Publication Publication Date Title
US6596422B2 (en) Air breathing direct methanol fuel cell
US4390603A (en) Methanol fuel cell
US6458479B1 (en) Air breathing direct methanol fuel cell
JP5182559B2 (en) Polymer electrolyte fuel cell
JP3358222B2 (en) Activation method of polymer electrolyte fuel cell
JP2008525961A (en) Direct oxidation fuel cell and direct oxidation fuel cell system operating at high concentration fuel and low oxidant stoichiometry
JPH06231781A (en) Solid high polymer electrolytic type fuel cell
EP1721355B1 (en) Membrane electrode unit
EP1342282A1 (en) Air breathing direct methanol fuel cell
JP2001167775A (en) Ion conductive film, method of manufacturing the same, and fuel cell using the same
CA2685798C (en) Membraneless fuel cell and method of operating same
JP2010536151A (en) Electrode for hydrocarbon membrane electrode assembly of direct oxidation fuel cell
CA2568763C (en) Cell module having water permeable hollow body, and fuel cell comprising cell module
JPH0888013A (en) Thin film electrolyte for normal temperature fuel cell and normal temperature fuel cell using it
JP2011171301A (en) Direct oxidation fuel cell
JPH10208757A (en) Fuel cell generating set
Ioroi et al. Surface-modified nanopore glass membrane as electrolyte for DMFCs
JP2002319421A (en) Starting method and manufacturing method of solid polymer fuel cell
JP2009043688A (en) Fuel cell
JPH0684528A (en) Solid high polymer electrolyte type fuel cell
JPH06251792A (en) Solid polymer electrolyte type fuel cell
JPH06231783A (en) Improved solid high polymer electrolytic type fuel cell
KR20030014895A (en) Portable fuel cell system
JPH04132168A (en) Electrode for liquid fuel battery and liquid fuel battery using same
JP2001006700A (en) Electrochemical device