[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0886490A - Predicting equipment of thermal load - Google Patents

Predicting equipment of thermal load

Info

Publication number
JPH0886490A
JPH0886490A JP6220098A JP22009894A JPH0886490A JP H0886490 A JPH0886490 A JP H0886490A JP 6220098 A JP6220098 A JP 6220098A JP 22009894 A JP22009894 A JP 22009894A JP H0886490 A JPH0886490 A JP H0886490A
Authority
JP
Japan
Prior art keywords
heat load
heat
day
prediction model
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6220098A
Other languages
Japanese (ja)
Inventor
Akihiro Nagaiwa
明弘 長岩
Nobutaka Nishimura
信孝 西村
Tsutomu Fujikawa
勉 藤川
Yukihiro Yamada
幸弘 山田
Nobuhito Fujita
信人 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6220098A priority Critical patent/JPH0886490A/en
Publication of JPH0886490A publication Critical patent/JPH0886490A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/10Weather information or forecasts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Air Conditioning Control Device (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE: To enable highly accurate prediction of a thermal load of the next day without relying on manual efforts, by formulating the nonlinear relationship between factors of change of a thermal load such as week days and weather and the thermal load. CONSTITUTION: While a thermal load consumed by a heat consuming apparatus 5 is detected, a weather measured value and a weather predicted value of an atmospheric temperature etc., are inputted and these are stored by a data storage means 11. A calender data generating means 12 generates week day data, while a prediction model learning means 13 learns weighting factors of a day thermal load prediction model and a time thermal load pattern prediction model by using selectively the weather measured value, the weather predicted value, the thermal load, the week day data and thermal load feature amount data on the morning and afternoon obtained from measured value of a time thermal load, which are stored, and stores them. Based on the weighting factors and the prediction models being stored, a time thermal load pattern is predicted and object heat source machines 3 are controlled by using this predicted time thermal load pattern.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ビルを含む各種の建物
に設置される空調機等の熱消費機器で翌日消費される熱
負荷を予測する熱負荷予測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat load predicting device for predicting a heat load to be consumed the next day in a heat consuming device such as an air conditioner installed in various buildings including a building.

【0002】[0002]

【従来の技術】ビル、家屋その他公共施設等の建物にお
いては、蓄熱槽を備えた冷暖房装置が設置されている。
電気による蓄熱システムでは、昼間に消費される熱負荷
の一部または全部を夜間に冷水,温水として蓄熱し、こ
れによって昼間に熱源機器の熱負荷を軽減できることか
ら、熱源機器の設備容量を小さくできる。
2. Description of the Related Art In buildings such as buildings, houses and other public facilities, an air conditioner having a heat storage tank is installed.
In the heat storage system using electricity, part or all of the heat load consumed in the daytime is stored as cold water or hot water at night, and the heat load of the heat source device can be reduced in the daytime, so that the installed capacity of the heat source device can be reduced. .

【0003】また、電気による冷暖房の場合には、電力
会社との間で業務用蓄熱調整契約を行うことにより、安
価な夜間電力を利用してランニングコストを節約するこ
とができる。
Further, in the case of heating and cooling by electricity, by making a heat storage adjustment contract for business use with an electric power company, it is possible to save running costs by utilizing inexpensive nighttime electric power.

【0004】従って、このような冷暖房装置において
は、蓄熱槽を効率よく使用する観点から、前日の業務用
蓄熱調整契約の始まる時間前に、当日(予測日)に消費
されるべく熱負荷を予測し、契約時間帯(夜間)の間に
その予測に基づいて過不足なく熱量を蓄熱する。そし
て、当日、予測に従って熱源機器を制御し、熱消費機器
である冷暖房装置に対して冷水,温水および蒸気を供給
する構成となっている。
Therefore, in such a cooling and heating apparatus, from the viewpoint of efficiently using the heat storage tank, the heat load is predicted to be consumed on the current day (prediction day) before the start of the business heat storage adjustment contract on the previous day. Then, during the contract time period (night), the amount of heat is stored without excess or deficiency based on the prediction. Then, on the day, the heat source device is controlled according to the prediction, and cold water, hot water and steam are supplied to the cooling and heating device which is a heat consuming device.

【0005】一方、ガスによる冷暖房の場合には、ボイ
ラや熱源機器の予熱に時間がかかるので、安定した熱供
給や効率的な熱製造を行う意味から、当日に消費される
熱負荷を予測し、それに十分に対応可能なように運転準
備を行うことが必要となってくる。
On the other hand, in the case of heating and cooling by gas, it takes time to preheat the boiler and the heat source equipment, so from the meaning of stable heat supply and efficient heat production, the heat load consumed on the day is predicted. However, it will be necessary to prepare for operation so that it can respond sufficiently.

【0006】そこで、従来、予測日となる当日の熱負荷
を前日に予測する手段として、予め月別ごとの基準熱負
荷を設定し、この基準熱負荷について実績熱負荷や外気
温度に基づいて線形補正を行うことによって熱負荷を予
測したり、或いは日射量,外気侵入熱量,室内発生熱
量,室内蓄熱等の要因毎に求めた熱量を合計して冷暖房
の熱負荷を予測することが試みられている。
Therefore, conventionally, as a means for predicting the heat load of the current day, which is the predicted date, a reference heat load for each month is set in advance, and this reference heat load is linearly corrected based on the actual heat load and the outside air temperature. It has been attempted to predict the heat load by performing the above, or to predict the heat load for cooling and heating by summing the heat amounts obtained for each factor such as the amount of solar radiation, the amount of heat entering the outside air, the amount of heat generated indoors, and the amount of heat stored indoors. .

【0007】[0007]

【発明が解決しようとする課題】ところで、以上のよう
な熱負荷予測方式は、熱を供給する熱源設備に合った定
数や補正演算式に用いる係数を設定する必要があり、こ
れら定数,係数等の数値の設定には過去の運転実績に基
づくデ−タによる調整作業をしなければならない。ま
た、熱を供給する熱源設備の種々の条件は設備の新設,
改造等によって変化することから、新設,改造の都度、
既に設定してある定数および係数を変更しなければなら
ない。
By the way, in the heat load prediction method as described above, it is necessary to set constants suitable for the heat source equipment for supplying heat and coefficients used in the correction arithmetic expression. To set the value of, it is necessary to make an adjustment work by data based on the past operation record. In addition, various conditions of heat source equipment for supplying heat are
Since it changes due to remodeling, etc.
You must change the constants and coefficients that have already been set.

【0008】このような一連の作業は、実運転上ではオ
ペレ−タよる手作業によることから作業の煩雑さを理由
に使用しなくなり、実際には冷暖房設備を運用するオペ
レータが過去の熱負荷実績や翌日の天候,現在の気温な
どから経験的に判断し、翌日の熱負荷を予測することが
多い。
[0008] Such a series of work is not used due to the complexity of the work because it is a manual work by an operator in actual operation, and the operator who operates the cooling and heating equipment actually has a past heat load record. It is often the case that the heat load of the next day is predicted by making an empirical decision based on the weather conditions of the next day and the current temperature.

【0009】しかしながら、オペレ−タの経験に基づく
熱負荷の予測に依存したビル冷暖房設備の運用では、オ
ペレ−タの負担を軽減化することが難しい。また、従来
の手法をそのまま採り入れて熱負荷の予測を継続する
と、予測誤差が原因となって、熱源機器の運転効率が低
下し、安価な夜間電力を有効に利用できなくなる問題が
ある。
However, it is difficult to reduce the burden on the operator in the operation of the building cooling and heating equipment which depends on the prediction of the heat load based on the experience of the operator. Further, if the conventional method is adopted as it is and the prediction of the heat load is continued, there is a problem that the operation efficiency of the heat source device is deteriorated due to a prediction error and the inexpensive nighttime power cannot be effectively used.

【0010】また、前日に蓄積された熱量が不足した
り、過剰となる場合が多く、当日,冷暖房機器に適切に
熱を供給できなくなるという不具合が発生する。さら
に、熱負荷は、曜日,天気などの気象条件等の要因によ
り変動することが分かっているが、例えば曜日による分
類ではテナント毎に異なる場合がある。曜日によってテ
ナントの定休が異なるためである。
In addition, the amount of heat accumulated on the previous day is often insufficient or excessive, which causes a problem that heat cannot be appropriately supplied to the cooling and heating equipment on the day. Furthermore, it is known that the heat load fluctuates due to factors such as the day of the week and weather conditions such as the weather, but for example, the classification by day of the week may differ for each tenant. This is because the fixed holidays of tenants differ depending on the day of the week.

【0011】従って、従来の熱負荷予測は、種々の分類
に応じた統計処理ができないので、精度の高い熱負荷予
測値を用いた熱源機器の予測台数を制御するとき、最適
な予測台数が得られず、結果として熱源機器の始動・停
止頻度の増大によるランニングコストの増大や熱源機器
の寿命を短くするといった問題がある。
Therefore, since the conventional heat load prediction cannot perform statistical processing according to various classifications, when controlling the predicted number of heat source devices using a highly accurate predicted heat load value, the optimum predicted number is obtained. As a result, there is a problem that the running cost of the heat source device is increased due to an increase in the frequency of starting and stopping the heat source device and the life of the heat source device is shortened.

【0012】本発明は上記実情に鑑みてなされたもの
で、曜日,気象等の熱負荷変動要因と熱負荷との間の非
線形関係を定式化し、人手によらずに翌日の熱負荷予測
値を高精度に予測する熱負荷予測装置を提供することを
目的とする。
The present invention has been made in view of the above circumstances, and formulates a non-linear relationship between a heat load variation factor such as a day of the week, weather and the like and a heat load, and predicts a heat load predicted value for the next day without human intervention. An object is to provide a heat load prediction device that predicts with high accuracy.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するため
に、請求項1に対応する発明は、対象熱源設備で製造さ
れる冷熱・温熱を建物の空調機等の熱消費機器に輸送す
るに際し、当該熱消費機器で翌日に消費される熱負荷を
予測する熱負荷予測装置において、前記熱消費機器で消
費される熱負荷を検出する熱負荷検出手段と、気温等の
気象実績値および気象予報値を入力する気象デ−タ入力
手段と、前記熱負荷,前記気象実績値および前記気象予
報値を記憶するデ−タ記憶手段と、曜日デ−タを発生す
るカレンダ−デ−タ発生手段と、前記気象実績値、前記
気象予報値、前記熱負荷、前記曜日デ−タ、時間熱負荷
の実績値から得られる午前・午後の熱負荷特徴量デ−タ
を選択的に用いて、日熱負荷予測モデルおよび時間熱負
荷パタ−ン予測モデルの重み係数を学習する学習手段
と、この学習手段で学習された予測モデルの重み係数を
記憶する予測モデル記憶手段と、前記予測モデル記憶手
段に記憶された重み係数と前記予測モデルとに基づいて
時間熱負荷パタ−ンを予測する時間熱負荷パタ−ン予測
手段と、前記予測手段で予測された時間熱負荷パタ−ン
を前記対象熱源設備を制御する熱源設備制御手段に送出
するデ−タ出力手段とを設けた熱負荷予測装置である。
In order to solve the above-mentioned problems, the invention according to claim 1 is for transporting cold / hot heat produced by a target heat source facility to heat consuming equipment such as an air conditioner of a building. A heat load predicting device for predicting a heat load consumed on the next day by the heat consuming device, a heat load detecting means for detecting a heat load consumed by the heat consuming device, and a meteorological actual value such as temperature and a weather forecast Meteorological data input means for inputting a value, data storage means for storing the heat load, the actual weather value and the weather forecast value, and calendar data generating means for generating day of the week data. , The weather actual value, the weather forecast value, the heat load, the day of the week data, the heat load characteristic amount data of the morning and afternoon obtained from the actual value of the hour heat load, selectively using Load prediction model and time heat load pattern prediction model Based on the weighting coefficient and the prediction model stored in the prediction model storage means, the learning means for learning the weighting coefficient of the prediction model, the prediction model storage means for storing the weighting coefficient of the prediction model learned by the learning means, Time heat load pattern predicting means for predicting the time heat load pattern according to the above, and the data for sending the time heat load pattern predicted by the predicting means to the heat source equipment control means for controlling the target heat source equipment. And a thermal load predicting device provided with a data output means.

【0014】次に、請求項2に対応する発明は、対象熱
源設備で製造される冷熱・温熱を建物の空調機等の熱消
費機器に輸送するに際し、当該熱消費機器で翌日に消費
される熱負荷を予測する熱負荷予測装置において、前記
熱消費機器で消費される熱負荷を検出する熱負荷検出手
段と、気温等の気象実績値および気象予報値を入力する
気象デ−タ入力手段と、前記熱負荷,前記気象実績値お
よび前記気象予報値を記憶するデ−タ記憶手段と、曜日
デ−タを発生するカレンダ−デ−タ発生手段と、前記気
象実績値、前記気象予報値、前記熱負荷、前記曜日デ−
タ、時間熱負荷の実績値から得られる午前・午後の熱負
荷特徴量データを選択的に用いて、日熱負荷予測モデル
および時間熱負荷パタ−ン予測モデルの重み係数を学習
する学習手段と、この学習手段で学習された予測モデル
の重み係数を記憶する予測モデル記憶手段と、この予測
モデル記憶手段に記憶された重み係数と前記予測モデル
とに基づいて日熱負荷を予測する日熱負荷予測手段と、
前記予測モデル記憶手段に記憶された重み係数と前記予
測モデルとに基づいて時間熱負荷パタ−ンを予測する時
間熱負荷パタ−ン予測手段と、前記熱消費機器の熱消費
による変動負荷量を求める熱消費機器変動負荷量演算手
段と、前記予測手段で予測された日熱負荷、時間熱負荷
パタ−ンおよび熱消費機器の変動負荷量から時間単位の
熱負荷予測値を求める時間熱負荷予測手段とを設け、こ
の時間単位の熱負荷予測値を前記対象熱源設備を制御す
る熱源設備制御手段に送出する熱負荷予測装置である。
Next, in the invention corresponding to claim 2, when transporting cold / hot heat produced by the target heat source equipment to a heat consuming device such as an air conditioner of a building, the heat consuming device consumes the heat on the next day. In a heat load predicting device for predicting heat load, a heat load detecting means for detecting a heat load consumed by the heat consuming device, and a meteorological data input means for inputting a meteorological actual value such as an air temperature and a meteorological forecast value. Data storage means for storing the heat load, the meteorological performance value and the weather forecast value, calendar data generating means for generating day of the week data, the meteorological performance value, the meteorological forecast value, The heat load, the day of the week
And learning means for learning the weighting factors of the daily heat load prediction model and the hourly heat load pattern prediction model by selectively using the morning and afternoon heat load feature amount data obtained from the actual values of the hourly heat load. , A prediction model storage means for storing the weighting coefficient of the prediction model learned by the learning means, and a day heat load for predicting the day heat load based on the weight coefficient stored in the prediction model storage means and the prediction model Prediction means,
A temporal heat load pattern predicting means for predicting a temporal heat load pattern based on the weighting coefficient stored in the predictive model storage means and the predictive model, and a variable load amount due to heat consumption of the heat consuming equipment. Heat consumption equipment fluctuating load amount calculating means to be obtained, and time heat load prediction for obtaining a heat load prediction value in hour units from the daily heat load, the temporal heat load pattern and the fluctuating load quantity of the heat consumption equipment predicted by the predicting means. Means and sends the predicted heat load value in units of time to the heat source equipment control means for controlling the target heat source equipment.

【0015】さらに、請求項3に対応する発明は、予測
モデル学習手段および日熱負荷予測手段として、ニュ−
ラルネットワ−クを構成し、このニュ−ラルネットワ−
クの入力層に気象実績値、気象予報値および1日の熱負
荷を入力し、各層のニュ−ロン間の重み係数をバックプ
ロパゲ−ション法により修正し、この修正によって得ら
れる重み係数を前記予測モデル記憶手段に記憶し、前記
カレンダ−デ−タ発生手段から発生するカレンダ−デ−
タに基づいて前記予測モデル記憶手段から前記ニュ−ラ
ルネットワ−クの重み係数を選択し、この選択された重
み係数と前記気象予報値とを用いて予測日1日分の熱負
荷を予測するものである。
Further, the invention according to claim 3 is a new model as a prediction model learning means and a solar heat load prediction means.
This network consists of a laural network.
The actual weather value, the weather forecast value and the daily heat load are input to the input layer of the network, the weighting coefficient between the neurons of each layer is corrected by the backpropagation method, and the weighting coefficient obtained by this correction is predicted. Calendar data stored in the model storage means and generated from the calendar data generating means.
Selecting a weighting factor of the neural network from the prediction model storage means based on the data, and using the selected weighting factor and the meteorological forecast value to predict the heat load for one forecast day. Is.

【0016】さらに、請求項4に対応する発明は、予測
モデル学習手段および時間熱負荷パタ−ン予測手段は、
ニュ−ラルネットワ−クを構成し、このニュ−ラルネッ
トワ−クの入力層に気象実績値、気象予報値および時間
単位の熱負荷を入力し、各層のニュ−ロン間の重み係数
をバックプロパゲ−ション法により修正し、この修正に
よって得られる重み係数を前記予測モデル記憶手段に記
憶し、前記カレンダ−デ−タ発生手段から発生するカレ
ンダ−デ−タに基づいて前記予測モデル記憶手段から前
記ニュ−ラルネットワ−クの重み係数を選択し、この選
択された重み係数と前記気象予報値とを用いて予測日の
時間熱負荷パタ−ンを予測し、この予測日の時間熱負荷
パタ−ンを前記日熱負荷予測手段で得られる当日の日熱
負荷予測量で按分することにより、時間単位の熱負荷予
測値を予測するものである。
Further, in the invention corresponding to claim 4, the predictive model learning means and the time heat load pattern predicting means are:
A neural network is constructed, and the actual weather value, the weather forecast value, and the heat load in units of time are input to the input layer of this neural network, and the weighting factor between the neurons of each layer is backpropagated. And the weighting factor obtained by this correction is stored in the prediction model storage means, and based on the calendar data generated from the calendar data generation means, the prediction model storage means stores the neural network. Selecting a weighting coefficient for the time, predicting the time heat load pattern on the forecast day using the selected weight coefficient and the weather forecast value, and calculating the time heat load pattern on the forecast day The estimated value of the heat load in units of hours is estimated by apportioning the daily heat load estimated amount of the day obtained by the heat load estimation means.

【0017】[0017]

【作用】従って、請求項1に対応する発明は、以上のよ
うな手段を講じたことにより、熱負荷検出手段および気
象データ入力手段から熱消費機器で消費される熱負荷、
気温等の気象実績値および気象予報値をデータ記憶手段
に記憶する。しかる後、予測モデル学習手段は、カレン
ダ−デ−タ発生手段から発生する曜日に基づいて気象実
績値、気象予報値、熱負荷、時間熱負荷の実績値から得
られる午前・午後の熱負荷特徴量データを選択的に用い
て、日熱負荷予測モデルおよび時間熱負荷パタ−ン予測
モデルの重み係数を学習し、予測モデル記憶手段に記憶
する。
Therefore, according to the invention corresponding to claim 1, by taking the above means, the heat load consumed by the heat consuming equipment from the heat load detecting means and the weather data inputting means,
Meteorological actual values such as temperature and weather forecast values are stored in the data storage means. Thereafter, the predictive model learning means is a heat load characteristic in the morning and afternoon obtained from the actual value of the actual weather value, the weather forecast value, the heat load, and the time heat load based on the day of the week generated from the calendar data generating means. The weight data of the daily heat load prediction model and the time heat load pattern prediction model are learned by selectively using the quantity data, and stored in the prediction model storage means.

【0018】ここで、時間熱負荷パタ−ン予測手段は、
予測モデル記憶手段に記憶される重み係数と予測モデル
とに基づいて時間熱負荷パタ−ンを予測し、デ−タ出力
手段を介して対象熱源設備を制御する熱源設備制御手段
に送出するので、人手による演算を必要とせずに精度の
高い時間熱負荷パタ−ンを予測できる。
Here, the time heat load pattern prediction means is
Since the time heat load pattern is predicted based on the weighting coefficient and the prediction model stored in the prediction model storage means, and is sent to the heat source equipment control means for controlling the target heat source equipment via the data output means, A highly accurate time heat load pattern can be predicted without the need for manual calculation.

【0019】また、請求項2に対応する発明は、熱負荷
検出手段および気象データ入力手段から熱消費機器で消
費される熱負荷、気温等の気象実績値および気象予報値
をデータ記憶手段に記憶する。しかる後、予測モデル学
習手段は、カレンダ−デ−タ発生手段から発生する曜日
に基づいて気象実績値、気象予報値、熱負荷、時間熱負
荷の実績値から得られる午前・午後の熱負荷特徴量デー
タを選択的に用いて、日熱負荷予測モデルおよび時間熱
負荷パタ−ン予測モデルの重み係数を学習し、予測モデ
ル記憶手段に記憶する。
In the invention according to claim 2, the heat load consumed by the heat consuming equipment from the heat load detection means and the meteorological data input means, the actual weather value such as the temperature, and the weather forecast value are stored in the data storage means. To do. Thereafter, the predictive model learning means is a heat load characteristic in the morning and afternoon obtained from the actual value of the actual weather value, the weather forecast value, the heat load, and the time heat load based on the day of the week generated from the calendar data generating means. The weight data of the daily heat load prediction model and the time heat load pattern prediction model are learned by selectively using the quantity data, and stored in the prediction model storage means.

【0020】ここで、日熱負荷予測手段は予測モデル記
憶手段に記憶されている重み係数と前記予測モデルとを
用いて日熱負荷を予測し、一方、時間熱負荷パタ−ン予
測手段は同じく予測モデル記憶手段に記憶されている重
み係数と前記予測モデルとを用いて時間熱負荷パタ−ン
を予測する。
Here, the solar heat load predicting means predicts the solar heat load by using the weighting coefficient stored in the predictive model storage means and the prediction model, while the hourly heat load pattern predicting means is the same. The time heat load pattern is predicted using the weighting coefficient stored in the prediction model storage means and the prediction model.

【0021】しかる後、時間熱負荷予測手段は、前記各
予測手段で予測された日熱負荷、時間熱負荷パタ−ンの
他、熱消費機器変動負荷量演算手段によって求めた熱消
費機器の変動負荷量とから時間単位の熱負荷予測値を求
め、熱源設備制御手段に送出するので、人手による演算
を必要とせずに精度の高い熱負荷を予測できる。また、
徐々に予測された当日の熱負荷予測が外れていく場合で
も、最新の熱負荷検出値に基づいて予測モデルを修正
し、かつ、熱消費機器の変動負荷量を考慮して熱負荷を
予測するので、高精度な熱負荷予測が可能である。
Thereafter, the time heat load predicting means, in addition to the daily heat load and the time heat load pattern predicted by each of the predicting means, also the fluctuation of the heat consuming equipment obtained by the heat consuming equipment fluctuation load amount calculating means. Since the heat load predicted value in units of time is calculated from the load amount and sent to the heat source equipment control means, it is possible to predict the heat load with high accuracy without requiring manual calculation. Also,
Even if the predicted heat load for the day gradually deviates, the prediction model is modified based on the latest heat load detection value, and the heat load is predicted in consideration of the fluctuating load amount of the heat consuming equipment. Therefore, highly accurate heat load prediction is possible.

【0022】[0022]

【実施例】以下、本発明装置の実施例について図面を参
照して説明する。図1は本発明装置の一実施例を示す構
成図である。同図において1は熱負荷予測値を予測する
熱負荷予測装置本体部であって、この装置本体部1によ
って予測される熱負荷予測値は熱源設備制御手段2に送
られ、ここで熱負荷予測値と対象熱源設備3からの計測
信号とに基づいて制御信号を求め、対象熱源設備3を制
御する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of the device of the present invention. In the figure, reference numeral 1 denotes a heat load predicting apparatus main body for predicting a heat load predictive value, and the heat load predictive value predicted by the apparatus main body 1 is sent to a heat source facility control means 2, where the heat load predicting value is predicted. A control signal is obtained based on the value and the measurement signal from the target heat source equipment 3, and the target heat source equipment 3 is controlled.

【0023】この対象熱源設備3は、ヒ−トポンプ,ボ
イラ,蓄熱槽等の何れか1種または複数種からなる冷暖
房設備などを意味し、ここで製造される冷熱・温熱は熱
輸送系統4を介して建物内に設置される例えば空調機等
の熱消費機器5に輸送され、冷房・暖房に利用される。
The target heat source equipment 3 means a heating / cooling equipment or the like composed of one or more of a heat pump, a boiler, a heat storage tank, etc., and the cold / hot heat produced here is the heat transport system 4. It is transported to a heat consuming device 5 such as an air conditioner installed in the building via the air conditioner and used for cooling and heating.

【0024】前記熱負荷予測装置本体部1には、熱消費
機器5で消費される熱負荷を検出する熱負荷検出手段
6、熱負荷の変動要因となる最高気温,最低気温等の気
象実績値デ−タを入力する気象実績値入力手段7の他、
同じく熱負荷の変動要因となる最高気温,最低気温等の
気象予報値デ−タを入力する気象予報値入力手段8およ
び熱消費機器の熱消費による変動負荷量を求める熱消費
機器負荷変動量演算手段9等が接続され、また内部的に
は次のような構成を有している。
The heat load predicting apparatus main body 1 has a heat load detecting means 6 for detecting a heat load consumed by the heat consuming device 5, and a meteorological performance value such as a maximum temperature and a minimum temperature which are factors of fluctuation of the heat load. In addition to the meteorological performance value input means 7 for inputting data,
Similarly, the weather forecast value input means 8 for inputting the weather forecast value data such as the maximum temperature and the minimum temperature, which also cause the variation of the heat load, and the load variation calculation of the heat consuming device for obtaining the variable load amount due to the heat consumption of the heat consuming device The means 9 and the like are connected, and internally have the following configuration.

【0025】すなわち、熱負荷予測装置本体部1は、外
部の各手段6〜9から入力されるデ−タを記憶するデ−
タ記憶手段11と、曜日などのカレンダ−デ−タを発生
するカレンダ−デ−タ発生手段12と、デ−タ記憶手段
11から熱負荷予測に必要なデ−タを取り込んで予測モ
デルの重み係数を学習する予測モデル学習手段13と、
この予測モデル学習手段13によって学習された予測モ
デルの重み係数を保存する予測モデル記憶手段14とが
設けられている。
That is, the heat load predicting apparatus main body 1 stores the data input from the external means 6 to 9.
Data storage means 11, calendar data generation means 12 for generating calendar data such as the day of the week, and data required for heat load prediction from the data storage means 11 to load the prediction model. A predictive model learning means 13 for learning the coefficient,
A prediction model storage unit 14 for storing the weighting coefficient of the prediction model learned by the prediction model learning unit 13 is provided.

【0026】また、熱負荷予測装置本体部1は、記憶さ
れた重み係数デ−タと予測モデルとに基づいて日熱負荷
を予測する日熱負荷予測手段15と、同じく記憶された
重み係数デ−タと予測モデルとに基づいて時間熱負荷パ
タ−ンを予測する時間熱負荷パタ−ン予測手段16と、
日熱負荷予測手段15の日熱負荷量と時間熱負荷パタ−
ン予測手段16の時間熱負荷パタ−ンと前記熱消費機器
変動負荷量演算手段9から入力される変動負荷量を取り
込み、時間単位の熱負荷(時間熱負荷)を予測する時間
熱負荷予測手段17と、この時間熱負荷予測手段17に
よって得られた熱負荷予測値を前記熱源設備制御手段2
に送出し、またデ−タ記憶手段11にも記憶するデ−タ
出力手段18とが設けられている。
Further, the heat load predicting apparatus main body 1 has a day heat load predicting means 15 for predicting a day heat load based on the stored weight coefficient data and a prediction model, and a weight coefficient data stored similarly. -Time heat load pattern predicting means 16 for predicting the time heat load pattern based on the data and the prediction model,
The daily heat load amount and the hourly heat load pattern of the daily heat load predicting means 15
Time heat load predicting means for predicting an hourly heat load (time heat load) by taking in the time heat load pattern of the heat predicting means 16 and the fluctuating load quantity inputted from the heat consuming equipment fluctuating load quantity calculating means 9. 17, and the heat load predicted value obtained by the time heat load predicting means 17 is used as the heat source equipment control means 2
And a data output means 18 for sending the data to the data storage means 11 and storing it in the data storage means 11 as well.

【0027】次に、以上のように構成された装置の動作
について説明する。先ず、気象実績値入力手段7および
気象予報値入力手段8等から前日の最高気温,最低気温
等の気象実績値デ−タ,翌日の最高気温,最低気温等の
気象予報値デ−タが入力され、デ−タ記憶手段11に記
憶される。さらに、予測モデルの学習に必要なデ−タ例
えば日熱負荷等がデータ記憶手段11に記憶されてい
る。 A.予測モデル学習手段13による予測モデルの学習動
作について 予測モデル学習手段13は、デ−タ記憶手段11に記憶
されている最高気温,最低気温,熱負荷デ−タを取り込
み、さらにカレンダ−デ−タ発生手段12から発生する
曜日モ−ド(例えば休日,土曜,平日等)毎に以下のよ
うな処理を実行する。 A−1 気温データ 最高気温および最低気温に関するデ−タは以下の方法で
処理する。
Next, the operation of the apparatus configured as described above will be described. First, from the meteorological actual value input means 7 and the meteorological forecast value input means 8 etc., the meteorological actual value data such as the maximum temperature and the minimum temperature of the previous day and the meteorological forecast value data such as the maximum temperature and the minimum temperature of the next day are input. And is stored in the data storage means 11. Further, data necessary for learning the prediction model, such as the heat load, is stored in the data storage means 11. A. Learning operation of the prediction model by the prediction model learning means 13 The prediction model learning means 13 fetches the maximum temperature, the minimum temperature, and the heat load data stored in the data storage means 11, and further, the calendar data. The following processing is executed for each day of the week mode (for example, holiday, Saturday, weekday, etc.) generated by the generating means 12. A-1 Temperature data The data on the maximum and minimum temperatures are processed as follows.

【0028】[0028]

【数1】 次に、平均値からの偏りは次の演算式により求める。[Equation 1] Next, the deviation from the average value is calculated by the following arithmetic expression.

【0029】[0029]

【数2】 A−2 熱負荷デ−タ 一方、熱負荷に関するデ−タは次のような方法により処
理する。
[Equation 2] A-2 Heat load data On the other hand, data related to heat load is processed by the following method.

【0030】[0030]

【数3】 次に、平均値からの偏りは次の演算式により求める。(Equation 3) Next, the deviation from the average value is calculated by the following arithmetic expression.

【0031】[0031]

【数4】 A−3 熱負荷特徴量 熱負荷の午前の特徴量Rsa(i) は以下の演算式から求め
る。
[Equation 4] A-3 Heat load feature amount The morning load feature amount R sa (i) is obtained from the following arithmetic expression.

【0032】[0032]

【数5】 ここで、qs(i,j):i日のj時の時間熱負荷実績
[cal/h ] j:23〜22,すなわち22時から翌日22時までを
1日とし、例えば9時(j=9)の時間熱負荷とは8:
00〜8:59の時間熱負荷積算を意味する。 同様に、熱負荷の午後の特徴量Rsp(i) は以下の演算式
から求められる。
(Equation 5) Here, qs (i, j): Time heat load performance [cal / h] at j o'clock on i day, j: 23 to 22, that is, 22:00 to 22:00 on the next day is set as one day, for example, 9 o'clock (j = What is the time heat load of 9) 8:
It means the cumulative heat load from 00 to 8:59. Similarly, the afternoon feature amount R sp (i) of the heat load is obtained from the following arithmetic expression.

【0033】[0033]

【数6】 A−4 ニュ−ラルネットワ−クによる日熱負荷予測モ
デルの学習 予測モデル学習手段13は、以上のような処理によって
得られたデータを用いて日熱負荷予測モデルの重み係数
を学習する。ここで、日熱負荷予測モデルは、図2に示
す通りであり、例えば入力層,中間層,出力層からなる
3層のニュ−ラルネットワ−ク構造となっている。
(Equation 6) A-4 Learning of solar heat load prediction model by neural network The predictive model learning means 13 learns the weight coefficient of the solar heat load prediction model using the data obtained by the above processing. Here, the solar heat load prediction model is as shown in FIG. 2, and has a three-layer neural network structure including, for example, an input layer, an intermediate layer, and an output layer.

【0034】このとき、ニュ−ラルネットワ−クには、
データ記憶手段11に記憶されている当日の最高気温,
最低気温,前日の最高気温,最低気温,前日の熱負荷等
のデ−タを入力層に入力し、またデ−タ記憶手段11に
記憶されている当日の熱負荷を教示デ−タとして用い、
バックプロパゲ−ション法により、ニュ−ロン間の重み
係数を学習する。
At this time, in the neural network,
Maximum temperature of the day stored in the data storage means 11,
Data such as the minimum temperature, the maximum temperature of the previous day, the minimum temperature, and the heat load of the previous day is input to the input layer, and the heat load of the day stored in the data storage means 11 is used as teaching data. ,
The back propagation method learns the weighting coefficient between neurons.

【0035】この日熱負荷予測の重み係数には、 Wv12 (i,j) :入力層−中間層間の重み係数 Wv23 (i,k) :中間層−出力層間の重み係数 i,j,k :各々の入力層,中間層,出力層の個数 がある。The weighting coefficient for this daily heat load prediction is as follows : W v12 (i, j): Weighting coefficient between input layer and middle layer W v23 (i, k): Weighting coefficient between middle layer and output layer i, j, k: There are the number of input layers, intermediate layers, and output layers.

【0036】ここで、バックプロパゲ−ション法とは、
本予測モデルのような階層型の構造をしたニュ−ラルネ
ットワ−クに対し、ネットワ−クの誤差が出力層から入
力層に逆伝搬していく学習方式であって、一般に良く知
られている学習方式である。
Here, the back propagation method is
This is a learning method in which the network error is propagated back from the output layer to the input layer in contrast to the neural network having a hierarchical structure like this prediction model. It is a method.

【0037】このようにして学習された日熱負荷予測モ
デルの重み係数は予測モデル記憶手段14に記憶され
る。 A−5 ニュ−ラルネットワ−クによる時間熱負荷パタ
−ン予測モデルの学習 前記A−4と同様の方法により、図3に示すようなニュ
−ラルネットワ−クの時間熱負荷パタ−ン予測モデルが
用いられ、ニュ−ラルネットワ−クに対し、当日の最高
気温,最低気温,前日の最高気温,最低気温,前日の午
前の特徴量,前日の午後の特徴量等のデ−タを入力層に
入力し、当日の午前の特徴量,当日の午後の特徴量を教
示デ−タとして用い、バックプロパゲ−ション法によ
り、ニュ−ロン間の重み係数を学習する。
The weighting coefficient of the solar heat load prediction model learned in this way is stored in the prediction model storage means 14. A-5 Learning of time heat load pattern prediction model by neural network By the same method as A-4, a time heat load pattern prediction model of a neural network as shown in FIG. 3 is obtained. It is used to input data such as maximum temperature, minimum temperature of the day, maximum temperature of the previous day, minimum temperature, morning feature amount of the previous day, feature amount of the previous day afternoon, etc. to the input layer for the neural network. Then, by using the feature amount of the morning of the day and the feature amount of the afternoon of the day as teaching data, the weighting coefficient between neurons is learned by the back propagation method.

【0038】この時間熱負荷パ−ン予測の重み係数に
は、 Wp12 (i,j) :入力層−中間層間の重み係数 Wp23 (i,k) :中間層−出力層間の重み係数 i,j,k :各々の入力層,中間層,出力層の個数 がある。ここで、学習された時間熱負荷パタ−ン予測モ
デルの重み係数は、予測モデル記憶手段14に記憶され
る。 B.日熱負荷予測手段の動作について この日熱負荷予測手段15は、図2に示す日熱負荷予測
モデルを用い、予測モデル記憶手段14に記憶されてい
る図2に示す日熱負荷予測モデルの重み係数を用い、か
つ、ニュ−ラルネットワ−クの入力層には前日の最高気
温,最低気温,当日の予想最高気温,予想最低気温,前
日の熱負荷を入力し、当日の熱負荷予測を行う。さら
に、前記(6)式で付した逆の演算,すなわち、
The weight coefficients for predicting the temporal heat load pattern include W p12 (i, j): weight coefficient between the input layer and the intermediate layer W p23 (i, k): weight coefficient between the intermediate layer and the output layer i , J, k: There are numbers of input layers, intermediate layers, and output layers. Here, the weighting coefficient of the learned temporal heat load pattern prediction model is stored in the prediction model storage means 14. B. Operation of solar heat load predicting means The solar heat load predicting means 15 uses the solar heat load predicting model shown in FIG. 2, and the weight of the solar heat load predicting model shown in FIG. Using the coefficient, the maximum temperature, the minimum temperature of the previous day, the expected maximum temperature of the day, the expected minimum temperature, and the heat load of the previous day are input to the input layer of the neural network, and the heat load of the day is predicted. Further, the reverse operation given by the equation (6), that is,

【0039】[0039]

【数7】 を行い、日熱負荷予測値を予測する。 C 時間熱負荷パタ−ン予測手段による動作について この時間熱負荷パタ−ン予測手段16は、図3に示す時
間熱負荷パタ−ン予測モデルを用い、予測モデル記憶手
段14に記憶されている図3に示す時間熱負荷パタ−ン
予測モデルの重み係数を用い、かつ、図4に示すように
流れによって処理し、時間熱負荷パタ−ンを予測する。
(Equation 7) And predict the solar heat load prediction value. About the operation by the C time heat load pattern prediction means This time heat load pattern prediction means 16 uses the time heat load pattern prediction model shown in FIG. 3 and is stored in the prediction model storage means 14. The time heat load pattern is predicted by using the weighting coefficient of the time heat load pattern prediction model shown in FIG. 3 and by processing as shown in FIG.

【0040】すなわち、ニュ−ラルネットワ−クの入力
層には前日の最高気温,最低気温,当日の予想最高気
温,予想最低気温,前日の午前の特徴量,前日の午後の
特徴量,前日の熱負荷を入力し、当日の午前の特徴量,
当日の午後の特徴量を予測する(S1)。
That is, in the input layer of the neural network, the maximum temperature of the previous day, the minimum temperature, the expected maximum temperature of the day, the expected minimum temperature, the characteristic amount of the morning of the previous day, the characteristic amount of the afternoon of the previous day, the heat of the previous day. Input the load, and the feature quantity on the morning of the day,
A feature amount in the afternoon of the day is predicted (S1).

【0041】さらに、過去の実績(i日,例えば30日
間)の特徴量をデータ記憶手段11から読み出し、その
中から最も類似した日,すなわち次式で示すI(i)が
最も小さい日の1日を類似日として選び出す(S2)。
Further, the characteristic amount of the past performance (i days, for example, 30 days) is read from the data storage means 11, and the most similar day among them, that is, the day on which I (i) shown in the following equation is the smallest 1 A day is selected as a similar day (S2).

【0042】[0042]

【数8】 [Equation 8]

【0043】ここで、類似日が第k日であるとすると、
この第k日の時間熱負荷パタ−ンを当日の時間熱負荷パ
タ−ンとして予測する(S3)。この時間熱負荷パタ−
ンとは、次式で示す按分日をいう。
If the similar date is the kth day,
The time heat load pattern of the k-th day is predicted as the time heat load pattern of the current day (S3). This time heat load pattern
Is the proration date shown by the following formula.

【0044】[0044]

【数9】 [Equation 9]

【0045】Ps (k,i) :第k日の時間熱負荷パタ−ン
(i=23時間〜22時) qs (k,i) :第k日i時の時間熱負荷(i=23時間〜
22時)[cal/h ] D 時間熱負荷予測手段の動作について この時間熱負荷予測手段17は、日熱負荷予測手段15
および時間熱負荷パタ−ン予測手段16によって得られ
た日熱負荷予測値および時間熱負荷パタ−ンと、熱消費
記可動スケジュ−ル演算手段9から出力される変動負荷
量に基づいて、下式により時間熱負荷予測値を演算す
る。
P s (k, i): Time heat load pattern on the kth day (i = 23 hours to 22:00) q s (k, i): Time heat load on the kth day i (i = 23 hours
22:00) [cal / h] D Operation of time heat load predicting means This time heat load predicting means 17 is the day heat load predicting means 15
Based on the daily heat load predicted value and time heat load pattern obtained by the time heat load pattern prediction means 16 and the variable load amount output from the heat consumption record movable schedule calculation means 9, The time heat load prediction value is calculated by an equation.

【0046】[0046]

【数10】 [Equation 10]

【0047】そして、時間熱負荷予測手段17により求
めた時間熱負荷予測値は、デ−タ出力手段18を介して
熱源機器制御手段2に送出され、ここで時間熱負荷予測
値に基づいて当日の対象熱源設備3を制御する。
Then, the time heat load prediction value obtained by the time heat load prediction means 17 is sent to the heat source device control means 2 via the data output means 18, where the current day based on the time heat load prediction value. The target heat source equipment 3 is controlled.

【0048】従って、以上のような実施例の構成によれ
ば、熱消費機器において翌日に消費される熱負荷をニュ
−ロモデルに基づいて予測するとともに、このニュ−ロ
モデルにおける重みは過去の熱負荷実績と気象データお
よび曜日モ−ドに基づいてバックプロパゲション法によ
り学習するので、常に精度の高い熱負荷予測が可能とな
る。
Therefore, according to the configuration of the above embodiment, the heat load consumed on the next day in the heat consuming equipment is predicted based on the neuro model, and the weight in this neuro model is the past heat load. Since the backpropagation method is used for learning based on the actual results, the meteorological data, and the day of the week mode, it is possible to always predict the heat load with high accuracy.

【0049】また、消費される熱負荷を変動させる要因
デ−タとしては、翌日の気象予報値を採用し、これらデ
ータは天気予報等で容易に入手することができる。併せ
て熱負荷実績とそれに影響を及ぼす要因実績により、負
荷デ−タの分類を行うことにより、曜日の違いなど大き
く変わる熱負荷に対して、誤差の少ない熱負荷予測を行
うことができる。さらに、熱消費機器稼働スケジュ−ル
により変動する熱負荷を考慮しつつ熱負荷予測を行うこ
とができる。
As the factor data for varying the consumed heat load, the weather forecast value of the next day is adopted, and these data can be easily obtained by a weather forecast or the like. In addition, by classifying the load data according to the actual heat load and the actual result of the factors that affect the heat load, it is possible to predict the heat load with a small error for the heat load that largely changes such as the day of the week. Further, the heat load can be predicted while considering the heat load that fluctuates due to the heat consuming equipment operation schedule.

【0050】なお、上記実施例は、気象データとして最
高気温,最低気温を用いたが、その他に熱負荷モデルに
合せて,天気,湿度等のデ−タを用いたり、それらを組
み合わせてもよい。これと同様に、熱負荷に影響を及ぼ
す要因として、曜日を用いたが、他に季節,天気等の気
象条件を用いたり、それらを組み合わせてもよい。
In the above embodiment, the maximum temperature and the minimum temperature are used as the meteorological data, but in addition, data such as weather and humidity may be used or combined in accordance with the heat load model. . Similarly, the day of the week is used as a factor that affects the heat load, but other weather conditions such as season and weather may be used, or a combination thereof may be used.

【0051】また、本実施例においては、曜日モ−ド毎
にデ−タ分類を行って予測を行っているが、曜日モ−ド
による分類を行わずに予測モデルの入力情報に取り込む
ようにしていもよい。
In the present embodiment, data is classified for each day of the week mode to make a prediction. However, the classification according to the day of the week mode is not performed, and the prediction information is incorporated in the input information of the prediction model. You can

【0052】さらに、日熱負荷の予測では、1日を例え
ば夜(22時〜8時)と昼(8時〜22時)に分け、各
々の予測を行ってもよい。さらに、時間熱負荷予測にお
ける特徴量の取り方は、他の時間帯を用いてもよい。し
かも、特徴量は午前・午後の2つに限らず、1つまたは
3つ以上にしてもよい。
Further, in the prediction of the daily heat load, one day may be divided into night (22:00 to 8:00) and daytime (8:00 to 22:00) and the respective predictions may be made. Furthermore, other time zones may be used as the method of obtaining the feature amount in the temporal heat load prediction. Moreover, the feature amount is not limited to two in the morning and afternoon, and may be one or three or more.

【0053】[0053]

【発明の効果】以上説明したように本発明によれば、曜
日,気象等の熱負荷変動要因と熱負荷との間の非線形関
係を定式化することにより、人手によらずに翌日の熱負
荷予測値を予測できる。
As described above, according to the present invention, the non-linear relationship between the heat load fluctuation factors such as the day of the week and the weather and the heat load is formulated so that the heat load of the next day can be obtained without human intervention. Can predict the predicted value.

【0054】また、学習機能をもった予測モデルに従っ
て熱消費機器で消費される翌日の熱負荷予測値を求める
ので熱負荷予測値を高精度に予測でき、しかも当該モデ
ルのパラメ−タは消費される熱負荷を変動される要因デ
−タをもとに推定されるので、常に精度の高い熱負荷予
測を行うことができる。従って、従来のように熱消費機
器に供給する熱量が不足したり、過剰となることはな
く、適切に熱エネルギ−を供給できる。
Further, since the predicted heat load value of the next day consumed by the heat consuming device is obtained according to the predictive model having the learning function, the predicted heat load value can be predicted with high accuracy, and the parameters of the model are consumed. Since the heat load to be estimated is estimated based on the factor data for changing the heat load, the heat load can be predicted with high accuracy at all times. Therefore, unlike the conventional case, the amount of heat supplied to the heat consuming device does not become insufficient or excessive, and the heat energy can be appropriately supplied.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる熱負荷予測装置の一実施例を示
す構成図。
FIG. 1 is a configuration diagram showing an embodiment of a heat load prediction device according to the present invention.

【図2】ニュ−ラルネットワ−クを用いた日熱負荷予測
モデルの説明図。
FIG. 2 is an explanatory diagram of a solar heat load prediction model using a neural network.

【図3】ニュ−ラルネットワ−クを用いた時間熱負荷パ
タ−ン予測モデルの説明図。
FIG. 3 is an explanatory diagram of a time heat load pattern prediction model using a neural network.

【図4】時間熱負荷パタ−ンの予測を行うための手順を
説明する図。
FIG. 4 is a diagram illustrating a procedure for predicting a temporal heat load pattern.

【符号の説明】[Explanation of symbols]

1…熱負荷予測装置本体部、3…対象熱源設備、5…熱
消費機器、7…気象実績値入力手段、8…気象予報値入
力手段、9…熱消費機器稼働スケジュ−ル演算手段、1
1…デ−タ記憶手段、12…カレンダ−デ−タ発生手
段、13…予測モデル学習手段、14…予測モデル記憶
手段、15…日熱負荷予測手段、16…時間熱負荷パタ
−ン予測手段、17…時間熱負荷予測手段。
DESCRIPTION OF SYMBOLS 1 ... Heat load prediction apparatus main body, 3 ... Target heat source equipment, 5 ... Heat consuming equipment, 7 ... Meteorological actual value input means, 8 ... Meteorological forecast value input means, 9 ... Heat consuming equipment operating schedule calculation means, 1
DESCRIPTION OF SYMBOLS 1 ... Data storage means, 12 ... Calendar data generation means, 13 ... Prediction model learning means, 14 ... Prediction model storage means, 15 ... Sun heat load prediction means, 16 ... Hour heat load pattern prediction means , 17 ... Time heat load predicting means.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G05B 13/04 9131−3H (72)発明者 山田 幸弘 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 (72)発明者 藤田 信人 東京都府中市東芝町1番地 株式会社東芝 府中工場内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location G05B 13/04 9131-3H (72) Inventor Yukihiro Yamada 1-1-1 Shibaura, Minato-ku, Tokyo (72) Inventor Nobuto Fujita, No. 1 Toshiba-cho, Fuchu-shi, Tokyo Inside Toshiba Fuchu factory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 対象熱源設備で製造される冷熱・温熱を
建物の空調機等の熱消費機器に輸送するに際し、当該熱
消費機器で翌日に消費される熱負荷を予測する熱負荷予
測装置において、 前記熱消費機器で消費される熱負荷を検出する熱負荷検
出手段と、 気温等の気象実績値および気象予報値を入力する気象デ
−タ入力手段と、 前記熱負荷,前記気象実績値および前記気象予報値を記
憶するデ−タ記憶手段と、 曜日デ−タを発生するカレンダ−デ−タ発生手段と、 前記気象実績値、前記気象予報値、前記熱負荷、前記曜
日デ−タ、時間熱負荷の実績値から得られる午前・午後
の熱負荷特徴量デ−タを選択的に用いて、日熱負荷予測
モデルおよび時間熱負荷パタ−ン予測モデルの重み係数
を学習する学習手段と、 この学習手段で学習された予測モデルの重み係数を記憶
する予測モデル記憶手段と、 前記予測モデル記憶手段に記憶された重み係数と前記予
測モデルとに基づいて時間熱負荷パタ−ンを予測する時
間熱負荷パタ−ン予測手段と、 前記予測手段で予測された時間熱負荷パタ−ンを前記対
象熱源設備を制御する熱源設備制御手段に送出するデ−
タ出力手段と、 を備えたことを特徴とする熱負荷予測装置。
1. A heat load predicting device for predicting a heat load consumed on the next day in a heat consuming device such as an air conditioner of a building when transporting cold and hot heat produced by a target heat source facility to the heat consuming device. A heat load detecting means for detecting a heat load consumed by the heat consuming device; a meteorological data input means for inputting a meteorological result value such as an air temperature and a weather forecast value; the heat load, the meteorological result value and Data storage means for storing the weather forecast value, calendar data generating means for generating day of the week data, the meteorological performance value, the meteorological forecast value, the heat load, the day of the week data, A learning means for learning the weighting factors of the daily heat load prediction model and the hourly heat load pattern prediction model by selectively using the morning and afternoon heat load feature amount data obtained from the actual values of the hourly heat load. , Predictions learned by this learning method Prediction model storage means for storing the weighting coefficient of the model, and time heat load pattern prediction means for predicting the time heat load pattern based on the weighting coefficient stored in the prediction model storage means and the prediction model. A data for sending the time heat load pattern predicted by the predicting means to the heat source equipment controlling means for controlling the target heat source equipment.
A heat load predicting device comprising:
【請求項2】 対象熱源設備で製造される冷熱・温熱を
建物の空調機等の熱消費機器に輸送するに際し、当該熱
消費機器で翌日に消費される熱負荷を予測する熱負荷予
測装置において、 前記熱消費機器で消費される熱負荷を検出する熱負荷検
出手段と、 気温等の気象実績値および気象予報値を入力する気象デ
−タ入力手段と、 前記熱負荷,前記気象実績値および前記気象予報値を記
憶するデ−タ記憶手段と、 曜日デ−タを発生するカレンダ−デ−タ発生手段と、 前記気象実績値、前記気象予報値、前記熱負荷、前記曜
日デ−タ、時間熱負荷の実績値から得られる午前・午後
の熱負荷特徴量デ−タを選択的に用いて、日熱負荷予測
モデルおよび時間熱負荷パタ−ン予測モデルの重み係数
を学習する学習手段と、 この学習手段で学習された予測モデルの重み係数を記憶
する予測モデル記憶手段と、 この予測モデル記憶手段に記憶された重み係数と前記予
測モデルとに基づいて日熱負荷を予測する日熱負荷予測
手段と、 前記予測モデル記憶手段に記憶された重み係数と前記予
測モデルとに基づいて時間熱負荷パタ−ンを予測する時
間熱負荷パタ−ン予測手段と、 前記熱消費機器の熱消費による変動負荷量を求める熱消
費機器変動負荷量演算手段と、 前記予測手段で予測された日熱負荷、時間熱負荷パタ−
ンおよび熱消費機器の変動負荷量から時間単位の熱負荷
予測値を求める時間熱負荷予測手段と、 を備え、この時間単位の熱負荷予測値を前記対象熱源設
備を制御する熱源設備制御手段に送出することを特徴と
する熱負荷予測装置。
2. A heat load predicting device for predicting a heat load consumed on the next day in a heat consuming device such as an air conditioner of a building when transporting cold and hot heat produced by a target heat source facility to the heat consuming device. A heat load detecting means for detecting a heat load consumed by the heat consuming device; a meteorological data input means for inputting a meteorological result value such as an air temperature and a weather forecast value; the heat load, the meteorological result value and Data storage means for storing the weather forecast value, calendar data generating means for generating day of the week data, the meteorological performance value, the meteorological forecast value, the heat load, the day of the week data, A learning means for learning the weighting factors of the daily heat load prediction model and the hourly heat load pattern prediction model by selectively using the morning and afternoon heat load feature amount data obtained from the actual values of the hourly heat load. , Predictions learned by this learning method Prediction model storage means for storing model weighting factors, solar heat load prediction means for predicting solar heat load based on the weighting factors stored in the prediction model storage means and the prediction model, and the prediction model storage means Time heat load pattern predicting means for predicting a time heat load pattern based on the weighting coefficient stored in the above and the prediction model, and heat consumption equipment fluctuation for obtaining a fluctuation load amount due to heat consumption of the heat consumption equipment Load amount calculation means, day heat load, time heat load pattern predicted by the prediction means
And a heat load predicting means for obtaining a heat load predictive value for each hour from the fluctuating load amount of the heat consuming equipment, and A heat load predicting device characterized by sending out.
【請求項3】 予測モデル学習手段および日熱負荷予測
手段は、ニュ−ラルネットワ−クを構成し、このニュ−
ラルネットワ−クの入力層に気象実績値、気象予報値お
よび1日の熱負荷を入力し、各層のニュ−ロン間の重み
係数をバックプロパゲ−ション法により修正し、この修
正によって得られる重み係数を前記予測モデル記憶手段
に記憶し、前記カレンダ−デ−タ発生手段から発生する
カレンダ−デ−タに基づいて前記予測モデル記憶手段か
ら前記ニュ−ラルネットワ−クの重み係数を選択し、こ
の選択された重み係数と前記気象予報値とを用いて予測
日1日分の熱負荷を予測することを特徴とする請求項1
または2記載の熱負荷予測装置。
3. The predictive model learning means and the solar heat load predicting means constitute a neural network, and
The actual weather value, the weather forecast value and the daily heat load are input to the input layer of the Lar network and the weighting coefficient between the neurons of each layer is corrected by the backpropagation method. The weighting coefficient obtained by this correction is calculated. The weighting coefficient of the neural network is selected from the prediction model storage means based on the calendar data generated by the calendar data generation means and stored in the prediction model storage means. The heat load for one forecast day is predicted using the weighting coefficient and the weather forecast value.
Alternatively, the heat load prediction device described in 2.
【請求項4】 予測モデル学習手段および時間熱負荷パ
タ−ン予測手段は、ニュ−ラルネットワ−クを構成し、
このニュ−ラルネットワ−クの入力層に気象実績値、気
象予報値および時間単位の熱負荷を入力し、各層のニュ
−ロン間の重み係数をバックプロパゲ−ション法により
修正し、この修正によって得られる重み係数を前記予測
モデル記憶手段に記憶し、前記カレンダ−デ−タ発生手
段から発生するカレンダ−デ−タに基づいて前記予測モ
デル記憶手段から前記ニュ−ラルネットワ−クの重み係
数を選択し、この選択された重み係数と前記気象予報値
とを用いて予測日の時間熱負荷パタ−ンを予測し、この
予測日の時間熱負荷パタ−ンを前記日熱負荷予測手段で
得られる当日の日熱負荷予測量で按分することにより、
時間単位の熱負荷予測値を予測することを特徴とする請
求項1または2記載の熱負荷予測装置。
4. The prediction model learning means and the time heat load pattern prediction means constitute a neural network,
The actual weather value, the weather forecast value, and the heat load in units of time are input to the input layer of this neural network, and the weighting coefficient between the neurons of each layer is corrected by the backpropagation method. A weighting coefficient is stored in the prediction model storage means, and a weighting coefficient of the neural network is selected from the prediction model storage means based on calendar data generated from the calendar data generation means, Using the selected weighting factor and the weather forecast value, the time heat load pattern of the forecast day is predicted, and the time heat load pattern of this forecast day is obtained on the day of the day obtained by the day heat load forecasting means. By apportioning by the predicted amount of heat load,
The heat load prediction device according to claim 1 or 2, which predicts a heat load prediction value in units of hours.
JP6220098A 1994-09-14 1994-09-14 Predicting equipment of thermal load Pending JPH0886490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6220098A JPH0886490A (en) 1994-09-14 1994-09-14 Predicting equipment of thermal load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6220098A JPH0886490A (en) 1994-09-14 1994-09-14 Predicting equipment of thermal load

Publications (1)

Publication Number Publication Date
JPH0886490A true JPH0886490A (en) 1996-04-02

Family

ID=16745895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6220098A Pending JPH0886490A (en) 1994-09-14 1994-09-14 Predicting equipment of thermal load

Country Status (1)

Country Link
JP (1) JPH0886490A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074943A (en) * 2001-09-03 2003-03-12 Daikin Ind Ltd Method and system for controlling air conditioning
KR101347998B1 (en) * 2011-03-31 2014-01-07 아즈빌주식회사 System for managing air condition
WO2017086022A1 (en) * 2015-11-17 2017-05-26 ソニー株式会社 Information processing device, information processing method, and program
WO2018201996A1 (en) * 2017-05-02 2018-11-08 青岛海尔空调器有限总公司 Air conditioner power consumption estimation method and device
CN108870668A (en) * 2018-08-10 2018-11-23 北京华誉能源技术股份有限公司 A kind of wisdom energy management system and management method based on reference day mode
CN110806693A (en) * 2019-10-31 2020-02-18 南京航空航天大学 A grey wolf predictive control method for plate heat exchanger time delay
JP2020183817A (en) * 2019-04-26 2020-11-12 ダイキン工業株式会社 Device for controlling number of heat source machines, method for controlling number of heat source machines, and program for controlling number of heat source machines
CN112268350A (en) * 2020-10-22 2021-01-26 天津大学 Air conditioner side load prediction method based on system delay
JPWO2021117234A1 (en) * 2019-12-13 2021-06-17

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074943A (en) * 2001-09-03 2003-03-12 Daikin Ind Ltd Method and system for controlling air conditioning
KR101347998B1 (en) * 2011-03-31 2014-01-07 아즈빌주식회사 System for managing air condition
US10755168B2 (en) 2015-11-17 2020-08-25 Sony Corporation Information processing device and information processing method
WO2017086022A1 (en) * 2015-11-17 2017-05-26 ソニー株式会社 Information processing device, information processing method, and program
WO2018201996A1 (en) * 2017-05-02 2018-11-08 青岛海尔空调器有限总公司 Air conditioner power consumption estimation method and device
CN108870668A (en) * 2018-08-10 2018-11-23 北京华誉能源技术股份有限公司 A kind of wisdom energy management system and management method based on reference day mode
JP2020183817A (en) * 2019-04-26 2020-11-12 ダイキン工業株式会社 Device for controlling number of heat source machines, method for controlling number of heat source machines, and program for controlling number of heat source machines
CN110806693A (en) * 2019-10-31 2020-02-18 南京航空航天大学 A grey wolf predictive control method for plate heat exchanger time delay
JPWO2021117234A1 (en) * 2019-12-13 2021-06-17
WO2021117234A1 (en) * 2019-12-13 2021-06-17 三菱電機株式会社 Model sharing system, model management apparatus, and control apparatus for air conditioning apparatus
CN114761732A (en) * 2019-12-13 2022-07-15 三菱电机株式会社 Model sharing system, model management device, and control device for air conditioning device
CN114761732B (en) * 2019-12-13 2024-03-19 三菱电机株式会社 Model sharing system, model management device, and control device for air conditioner
CN112268350A (en) * 2020-10-22 2021-01-26 天津大学 Air conditioner side load prediction method based on system delay

Similar Documents

Publication Publication Date Title
Ben-Nakhi et al. Energy conservation in buildings through efficient A/C control using neural networks
Schachter et al. A short-term load forecasting model for demand response applications
JP2006304402A (en) Control device for dispersed energy system, control method, program, and recording medium
JP4410046B2 (en) Apparatus and method for predicting heat load of air conditioning heat source facility
CN115249094A (en) Building energy efficiency management and optimization method based on big data
JPH09273795A (en) Thermal load estimating device
Zhang et al. Two-stage reinforcement learning policy search for grid-interactive building control
JPH0886490A (en) Predicting equipment of thermal load
CN101482941A (en) Urban gas daily load prediction method
Smith Combination of forecasts in electricity demand prediction
Dash et al. A real-time short-term peak and average load forecasting system using a self-organising fuzzy neural network
JP2001216001A (en) Method and apparatus for operating energy equipment
CN113237135A (en) SD-LSTMs-based apartment independent heating system heat demand prediction and energy-saving control method
JPH08240335A (en) Air-conditioning heat load estimating device for building
Park et al. A comparison of neural network-based methods for load forecasting with selected input candidates
JPH06147598A (en) Air conditioning load prediction method
CN118856407B (en) A smart city heating system and heating control method
CN109858668B (en) Coordination prediction method for power load region in thunder and lightning climate
JP3160693B2 (en) Heat load prediction device
JP3650304B2 (en) Demand forecasting device
JPH0415441A (en) Thermal load estimation system
Fernandes et al. Electric load analysis and forecasting using artificial neural networks
JPH07151369A (en) Heat load predicting apparatus and plant heat load predicting apparatus
JPH07123589A (en) Demand estimation system
Senjyu, Hirokazu Sakihara, Yoshinori Tamaki, Katsumi Uezato Next-day load curve forecasting using neural network based on similarity