JPH0882604A - Method for inspecting surface defect of steel plate - Google Patents
Method for inspecting surface defect of steel plateInfo
- Publication number
- JPH0882604A JPH0882604A JP6217227A JP21722794A JPH0882604A JP H0882604 A JPH0882604 A JP H0882604A JP 6217227 A JP6217227 A JP 6217227A JP 21722794 A JP21722794 A JP 21722794A JP H0882604 A JPH0882604 A JP H0882604A
- Authority
- JP
- Japan
- Prior art keywords
- defect
- steel plate
- intensity
- light
- flaw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Image Processing (AREA)
- Closed-Circuit Television Systems (AREA)
- Image Analysis (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、薄鋼板等の表面欠陥を
高精度で検査する鋼板表面欠陥検査方法に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel plate surface defect inspection method for highly accurately inspecting surface defects of thin steel plates and the like.
【0002】[0002]
【従来の技術】従来、冷間圧延後の薄鋼板の表面欠陥を
有する薄鋼板は、塗装後の表面に塗装むらが生じたりし
て自動車等の外観が重視される製品の外装部材の製造に
は適さない。このため、従来、良品かあるいは不良品か
の弁別が圧延後の出荷前検査時に行われていた。この弁
別は、検査員が薄鋼板の表面に光を当てて、反射光のパ
ターンを直接目視により、又は光学式表面欠陥検査装置
を用いて、表面欠陥の有無を検査することにより行われ
ていた。これらの従来の方法は、無欠陥の表面からの反
射光には均一な光の散乱が生じるのに対して、欠陥表面
からの反射光には不均一な散乱が生じるという光学原理
を利用したものである。しかし、これらの方法では、極
めて微細な表面欠陥を充分感度良く検査することができ
なかった。また、被検材を静止させる必要があるため、
鋼板の走行状態で検査することができなかった。2. Description of the Related Art Conventionally, a thin steel sheet having a surface defect of a cold-rolled thin steel sheet is used for manufacturing an exterior member of a product in which unevenness in the surface of the coated sheet causes unevenness in the appearance of an automobile or the like. Is not suitable. For this reason, conventionally, discrimination between a good product and a defective product has been performed at the time of pre-shipment inspection after rolling. This discrimination was performed by an inspector shining light on the surface of the thin steel sheet and directly inspecting the pattern of the reflected light, or by inspecting for the presence of a surface defect using an optical surface defect inspection device. . These conventional methods utilize the optical principle that light reflected from a defect-free surface causes uniform light scattering, whereas light reflected from a defect surface causes uneven scattering. Is. However, these methods could not inspect extremely fine surface defects with sufficient sensitivity. Also, since it is necessary to keep the test material stationary,
The running condition of the steel sheet could not be inspected.
【0003】そこで、レーザータイプの表面疵検査方法
が提案されている。このレーザータイプの表面疵検査方
法に当たっては、被検材表面に照射したレーザー光の反
射光から、重欠陥、中欠陥、軽欠陥等の欠陥のグレード
判定を行う簡易方法がある。また、特公平6−2986
4号公報に開示されているように、被検材に照射光を照
射し、被照射部をカメラにより撮像し、静止画として捉
え、この静止画に基づき欠陥判定するに当たり、静止画
により捉えられた表面欠陥の表面と、欠陥部の輝度レベ
ルと正常部の輝度レベルの比であるSN比とを検出し、
この検出された面積及びSN比から欠陥グレードを判定
する表面欠陥検査方法が提案されている。Therefore, a laser type surface flaw inspection method has been proposed. In this laser type surface flaw inspection method, there is a simple method of determining the grade of defects such as heavy defects, medium defects, and light defects from the reflected light of the laser beam applied to the surface of the material to be inspected. In addition, Japanese Patent Publication No. 6-2986
As disclosed in Japanese Patent Laid-Open No. 4 (1994), the material to be inspected is irradiated with irradiation light, the irradiated portion is imaged by a camera, captured as a still image, and a defect is determined based on this still image. The surface of the surface defect and the SN ratio, which is the ratio of the brightness level of the defective part to the brightness level of the normal part,
A surface defect inspection method for determining a defect grade from the detected area and SN ratio has been proposed.
【0004】[0004]
【発明が解決しようとする課題】上述した、従来の簡易
方式は、欠陥部の輝度レベルと正常部の輝度レベルの比
に基づく判定であるために、人間の目視による判定と相
違するという問題がある。また、特公平6−29864
号公報の場合は、表面欠陥の面積と欠陥部の輝度レベル
と正常部の輝度レベルの比であるSN比とから疵を推定
しているが、疵の種類にはカキ疵又はスリーバーと呼ば
れる線状疵は極めて有害度の高い疵であるにもかかわら
ず、細い形状を示しているために面積が小さく、このた
め面積により、グレード判定を行うと、誤った判定とな
る場合が多く生ずる。更には、油付着や白色汚れ(冷間
圧延油に起因)による場合には、ある程度の面積を有
し、かつ乱反射の強度が大きく、そのために、面積と輝
度レベルの最大強度によって、有害疵として、過検出す
る場合が多く発生するという問題がある。The above-mentioned conventional simple method has a problem that the judgment is different from the judgment by human eyes because the judgment is based on the ratio of the luminance level of the defective portion and the luminance level of the normal portion. is there. In addition, Japanese Patent Publication 6-29864
In the case of the publication, the flaw is estimated from the area of the surface defect, the SN ratio which is the ratio of the luminance level of the defective portion and the luminance level of the normal portion, and the type of the flaw is a line called oyster flaw or sliver. Although the flaw is a flaw having a very high degree of harmfulness, it has a small area because it has a thin shape. Therefore, if the grade is judged based on the area, an erroneous judgment often occurs. Furthermore, in the case of oil adhesion or white stains (due to cold rolling oil), it has a certain area and the intensity of diffuse reflection is large. Therefore, depending on the maximum intensity of the area and the brightness level, it may cause a harmful flaw. However, there is a problem in that over-detection often occurs.
【0005】[0005]
【課題を解決するための手段】上述したような問題を解
消するため、発明者らは、鋭意研究を重ねた結果、寸法
精度と強度情報に当たる多次元の特徴量を検出すること
により、特に油汚れ等にもかかわらず高精度の表面欠陥
を判定可能とする鋼板表面欠陥検査方法を提供すること
を目的とする。その発明の要旨とするところは、鋼板表
面に照明光を照射し、該鋼板表面をカメラにより撮像
し、静止画として捉え、該静止画に基づき、鋼板表面欠
陥を判定する検査方法において、該静止画により捉えら
れた鋼板表面欠陥幅、欠陥部面積、縦横比及び最大強度
の4次元を主要特徴量として検出し、該検出された主要
特徴量抽出から欠陥を判定することを特徴とする鋼板表
面欠陥検査方法にある。In order to solve the problems as described above, the inventors of the present invention have conducted extensive studies and as a result, by detecting multidimensional feature amounts corresponding to dimensional accuracy and strength information, It is an object of the present invention to provide a steel sheet surface defect inspection method capable of highly accurately determining a surface defect despite dirt and the like. The gist of the invention is to irradiate a steel plate surface with illumination light, capture an image of the steel plate surface with a camera, capture it as a still image, and in the inspection method for determining a steel plate surface defect based on the still image, Steel plate surface characterized by detecting four dimensions of the steel plate surface defect width, defect area, aspect ratio, and maximum strength captured by the image as main feature amounts, and determining defects from the detected main feature amount extraction There is a defect inspection method.
【0006】[0006]
【作用】以下、本発明について図面に従って詳細に説明
する。図1は本発明を実施するための設備を示す概略図
である。図1に示すように、鋼板1が調質圧延機2によ
って調質圧延された後、ブライドルロール3を経て固定
ロール4ないしは、ブライドルロール5に照明光を照射
する光源から成るセンサー部6を設置する。このセンサ
ー部6での鋼板への照射状況をカメラにより撮像し、信
号処理ボード7に送り、解析・チューニング用WS8及
びデータ保存用ビデオ9並びに疵マップ10及び画像表
示11を行って、プロコンに送信する構成から成る。符
号12はコイラーである。The present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic diagram showing equipment for implementing the present invention. As shown in FIG. 1, after the steel plate 1 is temper-rolled by a temper rolling mill 2, a fixed roll 4 or a bridle roll 5 via a bridle roll 3 is provided with a sensor unit 6 including a light source for irradiating illumination light. To do. An image of the irradiation state of the steel plate at the sensor unit 6 is picked up by a camera, sent to the signal processing board 7, the analysis / tuning WS 8 and the data storage video 9, the flaw map 10 and the image display 11 are transmitted, and transmitted to the processing computer. It consists of a configuration. Reference numeral 12 is a coiler.
【0007】図2は本発明に係る疵検査のための信号処
理を示す説明図である。図2に示すように、ハロゲンラ
ンプ等から成る光源13より鋼板1上に照射された光は
正反射及び乱反射として捉え、長手方向の地合変化に追
従して平均化処理、XY方向平均化処理及び幅方向移動
平均化処理を行って、しきい値処理をした後、40種類
にもわたる多次元の特徴量を抽出し、特に寸法情報とし
てのXY方向長さ、面積、縦横比、モーメント、重心
等、強度情報としての最大強度、最小強度及び平均強度
等を抽出した後、疵分類を行い、ピッチ判定、アラーム
及び画像モニターを行い、疵ごとに特徴量の抽出を可能
とし、疵、無疵の分類精度及び疵種分類精度の向上を図
るものである。FIG. 2 is an explanatory diagram showing signal processing for flaw inspection according to the present invention. As shown in FIG. 2, the light emitted from the light source 13 such as a halogen lamp onto the steel plate 1 is regarded as regular reflection and irregular reflection, and the averaging process and the XY direction averaging process are performed following the formation change in the longitudinal direction. And width direction moving averaging processing are performed and threshold processing is performed. Then, 40 kinds of multidimensional feature amounts are extracted, and in particular, XY direction length, area, aspect ratio, moment as dimension information, After extracting the maximum intensity, minimum intensity, average intensity, etc. as intensity information such as the center of gravity, perform defect classification, perform pitch judgment, alarm and image monitoring, and extract feature quantities for each defect. It is intended to improve the classification accuracy of defects and the classification accuracy of defects.
【0008】図3は疵の検出率の評価方法を示す図であ
る。図3に示すように、疵データをオンラインで採取
し、その疵種及び評点ごとの疵信号Sの信号レベルを検
出し、信号の強度Xを算出し、その信号の強度Xについ
ての平均値及び標準偏差σと、しきい値(X1 〜X3 )
を比較し、検出の可能性について評価するものである。
例えば、しきい値X1 =12(線状疵)X2 =23(点
状疵)及びX3 =30(面状疵その他)としてX1 ,X
2 ,X3 <Xとなる確率で検出率を評価する。そしてX
1 〜X3 ≧2.5σでは100%検出可能なことを見出
した。FIG. 3 is a diagram showing an evaluation method of a defect detection rate. As shown in FIG. 3, the flaw data is sampled online, the signal level of the flaw signal S for each flaw type and score is detected, the signal strength X is calculated, and the average value of the signal strength X and Standard deviation σ and threshold value (X 1 to X 3 )
And the possibility of detection is evaluated.
For example, if thresholds X 1 = 12 (linear flaws) X 2 = 23 (dot flaws) and X 3 = 30 (planar flaws) X 1 , X
The detection rate is evaluated with the probability that 2 , X 3 <X. And X
It has been found that 100% detection is possible with 1 to X 3 ≧ 2.5σ.
【0009】図4は本発明に係る疵種分類手法を示す説
明図である。疵種において、分類したい疵の特徴量のう
ち、他の疵と全く違った分布を示しているものが有る場
合には、この特徴量を用いることにより、容易に分類が
可能となる。しかしながら、1つの特徴量のみを用いて
分離可能な疵は稀であり、図4に示すように、分離した
い疵Aの特徴量分布は他の疵Bの分布と重なりをもって
いる。特に疵種Bが無害欠陥の場合、特徴量Aのみの設
定では、見逃し、あるいは過検出となる。この場合、図
に示すように2つの特徴量を用いて層別する必要があ
る。FIG. 4 is an explanatory view showing a flaw type classification method according to the present invention. In the case of a defect type, if there is a feature amount of a defect to be classified that shows a completely different distribution from other defects, it is possible to easily classify by using this feature amount. However, flaws that can be separated using only one feature amount are rare, and as shown in FIG. 4, the feature amount distribution of the flaw A to be separated overlaps the distribution of other flaws B. In particular, when the flaw type B is a harmless defect, if only the feature amount A is set, it is overlooked or overdetected. In this case, as shown in the figure, it is necessary to classify using two feature quantities.
【0010】先ず最初に特徴量Aを用いて条件1で疵種
Bの一部を層別し、更に別の特徴量Bを用い、条件2で
残りの疵種Bを層別することにより疵種Aのみを析出す
るという操作を行う。すなわち、疵種A及び疵種Bがa
1 〜a2 において重なりをもっているとしたとき、疵種
Aを分離したいことから、先ず、条件1によって、特徴
量A>a2 であるか否かによって判断し、特徴量A>a
2 であれば重なりがないので疵種と明確に分離できる。
特徴量A>a2 に該当しない場合は重なりをもっている
ことから、条件2によって、特徴量B>bであるか否か
で判断する。該当すれば疵種B、そうでない場合は疵種
Aとなる。First, by using the feature amount A, a part of the flaw type B is stratified under the condition 1, and then using the other feature amount B, the remaining flaw type B is stratified under the condition 2 by using the feature amount A. The operation of depositing only seed A is performed. That is, the defect type A and the defect type B are a
When it is assumed that there are overlaps in 1 to a 2 , since it is desired to separate the defect species A, it is first judged by the condition 1 whether or not the characteristic amount A> a 2 and the characteristic amount A> a.
If it is 2 , there is no overlap, so it can be clearly separated from the defective species.
When the feature amount A> a 2 is not satisfied, there is an overlap, and therefore it is determined according to the condition 2 whether the feature amount B> b. If applicable, the defect type B, and if not, the defect type A.
【0011】[0011]
【実施例】図1に示す設備ラインにおいて、ハロゲンラ
ンプ光源を用いて鋼板に照射し、検出された疵の疵種分
類を行った。この疵種分類に当たって、油付の特徴とし
ては、ある程度の面積を有すること、乱反射の強度が大
(光る)なる特徴から表1に示すような特徴量を選択
し、範囲設定を行った。また、白色汚れの特徴として
は、ある程度の面積を有すること、乱反射光の強度が増
加すること、乱反射の変化量と比較し、正反射の変化量
が少ないことの特徴から表2に示すような特徴量を選択
し、範囲設定を行った。EXAMPLES In the equipment line shown in FIG. 1, a halogen lamp light source was used to irradiate a steel sheet to classify the detected flaws into flaw types. In the classification of flaw types, as features with oil, a feature amount as shown in Table 1 was selected from the feature that it has a certain area and the intensity of diffuse reflection is large (shining), and the range was set. Table 2 shows the characteristics of white stains, such as having a certain area, increasing the intensity of irregular reflection light, and having a small amount of change in regular reflection compared to the amount of change in irregular reflection. The feature amount was selected and the range was set.
【0012】[0012]
【表1】 [Table 1]
【0013】[0013]
【表2】 [Table 2]
【0014】その上で、検出された疵を第1ステップと
して、疵種毎に特徴量を解析し、疵種毎に分類し、無害
欠陥を除去することにより、過検出を防止可能となっ
た。すなわち、焼鈍汚れ、捲ズレ及び白色汚れに分類す
るため、もし、ステップ1で面状である場合には条件1
による乱反射光強度、形状等により焼鈍汚れか捲ズレか
に分離し、条件2による正反射部面積/乱反射部面積比
と縦横比等により捲ズレか白色汚れに分離し、更に条件
3で正反射光強度、形状等により、捲ズレと焼鈍汚れを
分離する。また、ステップ4において、グレード分類を
行い、捲ズレの大小、汚れの大小に分離することが可能
となった。Further, by using the detected flaw as the first step, the feature amount is analyzed for each flaw type, the flaw type is classified for each flaw type, and the harmless defect is removed, whereby the over-detection can be prevented. . That is, in order to classify into annealing stains, winding deviations, and white stains, if the surface is flat in step 1, the condition 1
Depending on the intensity and shape of diffused reflection light, it is separated into annealing stains or winding deviations, and it is separated into winding deviations or white stains according to the condition 2 specular reflection area / diffuse reflection area area ratio and aspect ratio. The winding deviation and the annealing stain are separated according to the light intensity, the shape and the like. Further, in step 4, grade classification is performed, and it is possible to separate the size of the winding misalignment and the size of the stain.
【0015】[0015]
【発明の効果】以上述べたように、本発明による寸法精
度と強度情報に当たる多次元の特徴量を検出することに
より、特に油汚れ、白色汚れ等にもかかわらず、高精度
の表面欠陥を判定可能となり、精整工程の合理化と高精
度の自動化による人員合理化を図ることができる工業上
極めて優れた効果を奏するものである。As described above, by detecting the multidimensional feature amount corresponding to the dimensional accuracy and strength information according to the present invention, highly accurate surface defects can be determined despite oil stains, white stains and the like. This makes it possible to rationalize the adjusting process and rationalize personnel by automating with high precision, and it has an extremely excellent industrial effect.
【図1】本発明を実施するための設備を示す概略図、FIG. 1 is a schematic view showing equipment for carrying out the present invention,
【図2】本発明に係る疵検査のための信号処理を示す説
明図、FIG. 2 is an explanatory view showing signal processing for flaw inspection according to the present invention,
【図3】疵の検出率の評価方法を示す図、FIG. 3 is a diagram showing an evaluation method of a defect detection rate,
【図4】本発明に係る疵種分類手法を示す説明図であ
る。FIG. 4 is an explanatory diagram showing a flaw type classification method according to the present invention.
【符号の説明】 1 鋼板 2 調質圧延機 3 ブライドルロール 4 固定ロール 5 ブライドルロール 6 センサー部 7 信号処理ボード 8 解析・チューニング用WS 9 データ保存用ビデオ 10 疵マップ 11 画像表示 12 コイラー 13 光源[Explanation of symbols] 1 steel plate 2 temper rolling mill 3 bridle roll 4 fixed roll 5 bridle roll 6 sensor part 7 signal processing board 8 analysis / tuning WS 9 data storage video 10 flaw map 11 image display 12 coiler 13 light source
Claims (1)
をカメラにより撮像し、静止画として捉え、該静止画に
基づき、鋼板表面欠陥を判定する検査方法において、該
静止画により捉えられた鋼板表面欠陥幅、欠陥部面積、
縦横比及び最大強度の4次元を主要特徴量として検出
し、該検出された主要特徴量抽出から欠陥を判定するこ
とを特徴とする鋼板表面欠陥検査方法。1. A steel plate surface is illuminated with illumination light, the steel plate surface is imaged by a camera, and is captured as a still image. In an inspection method for determining a steel plate surface defect based on the still image, the still image is captured. Steel plate surface defect width, defect area,
A steel plate surface defect inspection method, characterized in that four dimensions of aspect ratio and maximum strength are detected as main feature amounts, and defects are determined from the detected main feature amount extraction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6217227A JPH0882604A (en) | 1994-09-12 | 1994-09-12 | Method for inspecting surface defect of steel plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6217227A JPH0882604A (en) | 1994-09-12 | 1994-09-12 | Method for inspecting surface defect of steel plate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0882604A true JPH0882604A (en) | 1996-03-26 |
Family
ID=16700842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6217227A Withdrawn JPH0882604A (en) | 1994-09-12 | 1994-09-12 | Method for inspecting surface defect of steel plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0882604A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007101359A (en) * | 2005-10-04 | 2007-04-19 | Nippon Steel Corp | Flaw detector and flaw detection method |
WO2007062563A1 (en) * | 2005-12-01 | 2007-06-07 | Bohai Shipbuilding Industry Co., Ltd. | On-line automatic inspection method for detecting surface flaws of steel during the pretreatment of the ship steel |
JP2010249685A (en) * | 2009-04-16 | 2010-11-04 | Nippon Steel Corp | Flaw detector, flaw detection method and program |
WO2016158873A1 (en) * | 2015-03-31 | 2016-10-06 | 日新製鋼株式会社 | Device for examining surface defect in hot-dipped steel plate, and method for examining surface defect |
-
1994
- 1994-09-12 JP JP6217227A patent/JPH0882604A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007101359A (en) * | 2005-10-04 | 2007-04-19 | Nippon Steel Corp | Flaw detector and flaw detection method |
WO2007062563A1 (en) * | 2005-12-01 | 2007-06-07 | Bohai Shipbuilding Industry Co., Ltd. | On-line automatic inspection method for detecting surface flaws of steel during the pretreatment of the ship steel |
JP2010249685A (en) * | 2009-04-16 | 2010-11-04 | Nippon Steel Corp | Flaw detector, flaw detection method and program |
WO2016158873A1 (en) * | 2015-03-31 | 2016-10-06 | 日新製鋼株式会社 | Device for examining surface defect in hot-dipped steel plate, and method for examining surface defect |
US10041888B2 (en) | 2015-03-31 | 2018-08-07 | Nisshin Steel Co., Ltd. | Surface defect inspecting device and method for hot-dip coated steel sheets |
EP3279645A4 (en) * | 2015-03-31 | 2018-09-26 | Nisshin Steel Co., Ltd. | Device for examining surface defect in hot-dipped steel plate, and method for examining surface defect |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Deutschl et al. | Defect detection on rail surfaces by a vision based system | |
CA2986537C (en) | Method of inspecting a steel strip | |
US6779159B2 (en) | Defect inspection method and defect inspection apparatus | |
KR101867256B1 (en) | Apparatus for inspecting surface defects of steel sheet and method for inspecting surface defects | |
RU2764644C1 (en) | Method for detecting surface defects, device for detecting surface defects, method for producing steel materials, method for steel material quality control, steel materials production plant, method for generating models for determining surface defects and a model for determining surface defects | |
US20030219153A1 (en) | System and method for process variation monitor | |
Piironen et al. | Automated visual inspection of rolled metal surfaces | |
US6344897B2 (en) | Inspection apparatus for foreign matter and pattern defect | |
US6232617B1 (en) | Apparatus for detecting surface defects on running metal strip | |
JPH08189904A (en) | Surface defect detector | |
JPH07198627A (en) | Metallic surface defect inspection device | |
JPH0882604A (en) | Method for inspecting surface defect of steel plate | |
JP3793668B2 (en) | Foreign object defect inspection method and apparatus | |
JPH07333197A (en) | Automatic surface flaw detector | |
JP3218908B2 (en) | Surface flaw inspection method and apparatus | |
JP3243394B2 (en) | Flaw inspection device | |
JP2010038723A (en) | Flaw inspecting method | |
JPH11211674A (en) | Method and apparatus for inspection of flaw on surface | |
JP3135075B2 (en) | Appearance inspection method and apparatus, magnetic head inspection method and apparatus, and magnetic head manufacturing facility | |
JP4052733B2 (en) | Foreign matter inspection method for patterned wafer | |
JP3917431B2 (en) | Optical member inspection method | |
JPH09105618A (en) | Method and apparatus for inspection of defect on smooth surface of object as well as method and apparatus for measurement of roughness on surface of object | |
EP2463175B1 (en) | Method for locating surface defects | |
JPS6142221B2 (en) | ||
JP2016188768A (en) | Method of detecting defect in surface of metal plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20011120 |