[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0878028A - Solid polymer electrolyte fuel cell and its manufacture - Google Patents

Solid polymer electrolyte fuel cell and its manufacture

Info

Publication number
JPH0878028A
JPH0878028A JP6229038A JP22903894A JPH0878028A JP H0878028 A JPH0878028 A JP H0878028A JP 6229038 A JP6229038 A JP 6229038A JP 22903894 A JP22903894 A JP 22903894A JP H0878028 A JPH0878028 A JP H0878028A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
gas diffusion
gas
separator
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6229038A
Other languages
Japanese (ja)
Inventor
Hitoshi Dogoshi
仁 堂腰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP6229038A priority Critical patent/JPH0878028A/en
Publication of JPH0878028A publication Critical patent/JPH0878028A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE: To satisfy both of gas seal between unit cells and reduction of current collecting resistance by filling a gap between a separator and an electrolyte film with a thermosetting resin molding in the surrounding of a gas diffusion electrode. CONSTITUTION: A groove-formed separator 10 and a gas diffusion layer 13 faced through resin paste are baked in a nitrogen atmosphere for integrally bonding them. A gas reaction layer 14 is formed on the side opposite to the separator 10 of the gas diffusion layer 13 to obtain a electrode chamber structure 15. A sealing agent molding made of phenol resin is arranged in the periphery of a gas diffusion electrode comprising the gas diffusion layer 13 and the gas reaction layer 14. A solid polymer electrolyte film 17 is interposed between the electrodes of the electrode chamber structure 15, and an optional number of unit cells are stacked and they are set in a pressing fixture. The pressing fixture is put in a heating furnace to heat and fasten the unit cell assembly. The sealing agent molding is softened in pasty state and a gap between the gas diffusion electrode and the polymer electrolyte film 17 is completely filled. The temperature of the heating furnace is lowered, and phenol resin is cured to obtain a solid polymer electrolyte fuel cell.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体高分子電解質燃料
電池およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid polymer electrolyte fuel cell and a method for producing the same.

【0002】[0002]

【従来の技術】固体高分子電解質燃料電池は小型かつ高
電流密度が得られるため、各種分野において小型電源と
しての有効利用が期待されている。
2. Description of the Related Art A solid polymer electrolyte fuel cell is small in size and has a high current density, so that it is expected to be effectively used as a small power source in various fields.

【0003】固体高分子電解質燃料電池は、一般に、高
出力を得るために、単セルを直列に積層した燃料電池積
層体として提供されるが、燃料電池積層体の設計におい
ては、(1)各単セル内のセパレータおよび電解質膜間
に生じる隙間をガスシールすること、および(2)各単
セル内における構成部材間の密着性を向上させて集電抵
抗を低減するために、適切な外部圧を加えること、が考
慮されなければならない。
A solid polymer electrolyte fuel cell is generally provided as a fuel cell stack in which single cells are stacked in series in order to obtain a high output. In designing the fuel cell stack, (1) The gap between the separator and the electrolyte membrane in the unit cell is gas-sealed, and (2) an appropriate external pressure is applied to improve the adhesion between the constituent members in each unit cell to reduce the current collecting resistance. Must be taken into account.

【0004】前者は、セパレータと電解質膜の間の隙間
を通って反応ガスが外部に漏洩すると、燃料電池の効率
低下を来すのみならず、燃料ガスである水素と酸化ガス
である酸素との爆発的反応を誘発する恐れがあり、この
ような問題を未然に回避するために要請される。このた
めに用いられるシール材には緻密性かつ弾力性が必要と
されるため、従来よりフッ素系樹脂が該シール材として
一般に用いられている(たとえば特開平5−28309
3号公報参照)。
In the former case, when the reaction gas leaks to the outside through the gap between the separator and the electrolyte membrane, not only the efficiency of the fuel cell is lowered, but also hydrogen as a fuel gas and oxygen as an oxidizing gas are separated. It may induce an explosive reaction and is required to avoid such problems. Since the sealing material used for this purpose is required to be dense and elastic, a fluorocarbon resin has been generally used as the sealing material from the past (for example, JP-A-5-28309).
(See Japanese Patent Publication No. 3).

【0005】また、後者の要請を満たすために、従来
は、積層体の上下を締付板で挟み、さらに締付板を貫通
する4本のタイロッドを各々ナットで締め付ける方法が
提案されている(特開昭62−136776号公報第1
図参照)。
In order to satisfy the latter requirement, conventionally, a method has been proposed in which the upper and lower sides of the laminated body are sandwiched by fastening plates, and four tie rods penetrating the fastening plates are each fastened with nuts ( Japanese Unexamined Patent Publication No. 62-136776
See figure).

【0006】[0006]

【発明が解決しようとする課題】ところが、従来のシー
ル材として用いられているフッ素系樹脂は、その厚さ選
定が容易であるという利点を有する反面、わずかな隙間
を完全にガスシールすることが困難であった。ガスシー
ル性をさらに向上させるために、ホットプレスによりシ
ール材を圧縮変形させる方法が提案されているが、フッ
素系樹脂を変形させるためには300℃以上もの高温を
加えなければならず、シール材と高分子電解質膜とを同
時に加熱すると電解質膜が熱劣化を起こす恐れがある。
However, the fluorine-based resin used as the conventional sealing material has the advantage that its thickness can be easily selected, but on the other hand, it is possible to completely seal a small gap with a gas. It was difficult. In order to further improve the gas sealing property, a method of compressing and deforming the sealing material by hot pressing has been proposed, but in order to deform the fluororesin, a high temperature of 300 ° C. or higher must be applied. If the polymer electrolyte membrane and the polymer electrolyte membrane are heated at the same time, the electrolyte membrane may be thermally deteriorated.

【0007】また、外部圧を加えるために締付板、タイ
ロッド、ナット等の治具を用いることは、積層体全体重
量を増大させるだけでなく、各締付部の締付圧を均一に
することが困難であって、各単セルの部位間での接触ム
ラに起因して発電効率を低下させるという問題がある。
Further, the use of a jig such as a tightening plate, a tie rod, a nut or the like for applying an external pressure not only increases the total weight of the laminate, but also makes the tightening pressure of each tightening portion uniform. However, there is a problem in that the power generation efficiency is reduced due to the uneven contact between the parts of each unit cell.

【0008】[0008]

【課題を解決するための手段】そこで本発明は、上記の
ような従来技術の問題点に鑑み、各単セル内における確
実なガスシールおよび適切な外部圧による集電抵抗の低
減の双方を満足させ、かつ、治具による締付を不要化す
ることのできる新規な構成の固体高分子電解質燃料電池
の積層体を提供することを目的とする。
In view of the above-mentioned problems of the prior art, the present invention satisfies both reliable gas sealing in each unit cell and reduction of current collecting resistance by appropriate external pressure. It is also an object of the present invention to provide a solid polymer electrolyte fuel cell laminate having a novel structure that can eliminate the need for tightening with a jig.

【0009】この目的を達成するため、本発明による固
体高分子電解質燃料電池は、ガス拡散電極間に高分子電
解質膜が挟持されてなる単セルと、前記ガス拡散電極の
一方に燃料ガスを他方に酸化剤ガスを供給する溝付きセ
パレータとが交互に積層されてなるものにおいて、前記
単セルは、前記ガス拡散電極が前記高分子電解質膜の膜
面の中央部に接合され、かつ、前記高分子電解質膜の膜
面の周縁部には前記ガス拡散電極を囲繞しつつ前記セパ
レータと前記高分子電解質膜との間を充填してガスシー
ルする熱硬化性樹脂シール剤が設けられてなることを特
徴とする。
In order to achieve this object, a solid polymer electrolyte fuel cell according to the present invention comprises a single cell in which a polymer electrolyte membrane is sandwiched between gas diffusion electrodes, and a fuel gas is supplied to one of the gas diffusion electrodes on the other side. In the one in which grooved separators for supplying an oxidant gas are alternately laminated, the single cell has the gas diffusion electrode bonded to the central portion of the membrane surface of the polymer electrolyte membrane, and A thermosetting resin sealant, which surrounds the gas diffusion electrode and fills a space between the separator and the polymer electrolyte membrane to seal the gas, is provided at the peripheral portion of the membrane surface of the molecular electrolyte membrane. Characterize.

【0010】上記構成を有する本発明の固体高分子電解
質燃料電池は、以下のような製造工程により製造され
る。
The solid polymer electrolyte fuel cell of the present invention having the above structure is manufactured by the following manufacturing process.

【0011】まず、緻密カーボン製の溝付きセパレータ
と該セパレータに接触するガス拡散層とを接着剤を介し
て窒素雰囲気中で焼成し、炭化することによって一体化
させる。炭化することにより、電極とセパレータ間に良
好な電導性が得られると共に、これらが強固に接合され
る。接着剤としては、熱硬化性樹脂(フェノール樹脂、
エポキシ樹脂、フラン樹脂等)にアルコール系の溶剤を
加えて常温下で混練しペースト状にした樹脂ペーストが
好適に用いられる。
First, a dense carbon grooved separator and a gas diffusion layer in contact with the separator are fired through an adhesive in a nitrogen atmosphere and carbonized to be integrated. By carbonizing, good electrical conductivity is obtained between the electrode and the separator, and these are firmly bonded. As the adhesive, a thermosetting resin (phenol resin,
A resin paste prepared by adding an alcoholic solvent to an epoxy resin, furan resin, etc.) and kneading the mixture at room temperature is preferably used.

【0012】なお、燃料電池積層体の最上部および最下
部の単セルにおいてはセパレータの片面にガス拡散層を
接合し、中間部の単セルにおいてはセパレータの両面に
ガス拡散層を接合する。
In the uppermost and lowermost unit cells of the fuel cell stack, the gas diffusion layers are joined to one surface of the separator, and in the middle unit cells, the gas diffusion layers are joined to both surfaces of the separator.

【0013】このようにしてセパレータの片面または両
面に接合されたガス拡散層の上に、反応層成分のディス
パージョンをスクリーン印刷することによりガス反応層
を形成し、セパレータおよびガス拡散電極(ガス拡散層
+ガス反応層)からなる極室構造体を得る。
A gas reaction layer is formed by screen-printing a dispersion of reaction layer components on the gas diffusion layer bonded to one or both sides of the separator in this way, and the separator and the gas diffusion electrode (gas diffusion electrode A polar chamber structure consisting of (layer + gas reaction layer) is obtained.

【0014】ガス反応層の厚さは40〜50μm程度が
好適である。ガス反応層成分のディスパージョンは、触
媒付カーボンに固体高分子電解質の成分であるイオン交
換樹脂を混合して調製することができる。触媒としては
白金が適しているが、メタノール等の炭化水素ガスより
改質反応によって得られる水素リッチな改質ガスを電極
に導入する場合、改質ガス中に微量の一酸化炭素の導入
が避けられず、これによる白金が被毒されることを防止
するため、白金とルテニウムあるいは白金とスズ等の合
金として用いることが好ましい。
The thickness of the gas reaction layer is preferably about 40 to 50 μm. The dispersion of the gas reaction layer component can be prepared by mixing carbon with catalyst with an ion exchange resin which is a component of the solid polymer electrolyte. Platinum is suitable as a catalyst, but when introducing a hydrogen-rich reformed gas obtained by a reforming reaction from a hydrocarbon gas such as methanol to the electrode, avoid introducing a trace amount of carbon monoxide into the reformed gas. Therefore, it is preferable to use platinum and ruthenium or platinum and tin as an alloy in order to prevent the platinum from being poisoned.

【0015】上記工程により、燃料電池積層体において
積層すべき単セルの固体数に対応する数の極室構造体を
予め作成しておく。
By the above steps, the number of polar chamber structures corresponding to the number of solids of the single cells to be stacked in the fuel cell stack is prepared in advance.

【0016】併せて、前記樹脂ペーストを中央部が開口
された口の字形の金型に塗布して加熱圧締することによ
り、口の字形のシール剤成形体(熱硬化性樹脂シート)
を予め作成しておく。シール剤成形体の中央開口は、後
述するように、極室構造体のガス拡散電極を収容配置す
るためのものであるから、該電極面積とほぼ同じ面積を
有するように切り欠かれている。また、シール剤成形体
の厚さは、ガス拡散電極の厚さよりもわずかに厚く成形
するが、これは、後述するように、積層体加圧時に再び
加熱するときにシール剤成形体がペースト状となって広
がり、空間を確実に密封することができるようにするた
めである。
At the same time, the resin paste is applied to a V-shaped mold having an opening in the center and heat-pressed to form a V-shaped sealing agent molding (thermosetting resin sheet).
Is created in advance. As will be described later, the central opening of the sealant molded body is for accommodating and arranging the gas diffusion electrode of the polar chamber structure, and is therefore cut out so as to have an area substantially the same as the electrode area. Also, the thickness of the sealing agent molded body is slightly thicker than the thickness of the gas diffusion electrode. This is because the sealing agent molded body is paste-like when heated again when the laminated body is pressed, as will be described later. This is to ensure that the space can be sealed and the space can be reliably sealed.

【0017】そして、シール剤成形体の両面に前記樹脂
ペーストを塗布したものを高分子電解質膜の膜面周縁部
に配置すると共に、膜面中央に前記極室構造体のガス拡
散電極を配置して、該熱硬化性シートの中央開口内にガ
ス拡散電極が収容されるようにして、単セルが形成され
る。
Then, the sealant molded body coated with the resin paste on both sides is arranged at the periphery of the membrane surface of the polymer electrolyte membrane, and the gas diffusion electrode of the polar chamber structure is arranged at the center of the membrane surface. Then, the unit cell is formed so that the gas diffusion electrode is housed in the central opening of the thermosetting sheet.

【0018】なお、口の字形に成形した熱硬化性樹脂シ
ートを用いることなく、熱硬化性樹脂にアルコール系溶
剤を添加して所定の粘性を有するものとして調製したペ
ーストをガス拡散電極の周囲、セパレータと高分子電解
質膜との間に、好ましくはガス拡散電極以上の厚さに塗
布するようにしてもよい。
It should be noted that a paste prepared by adding an alcohol solvent to the thermosetting resin so as to have a predetermined viscosity without using the thermosetting resin sheet formed in the shape of a square-shape is provided around the gas diffusion electrode. It may be applied between the separator and the polymer electrolyte membrane, preferably to a thickness not less than that of the gas diffusion electrode.

【0019】高分子電解質膜としては、ナフィオン(商
品名,米国デュポン社)が特に好適であるが、このほ
か、たとえばPSSA−PVA(ポリスチレンスルホン
酸−ポリビニルアルコール共重合体)ヤPSSA−EV
OH(ポリスチレンスルホン酸−エチレンビニルアルコ
ール共重合体)等を用いることも可能である。
As the polymer electrolyte membrane, Nafion (trade name, manufactured by DuPont, USA) is particularly suitable, but in addition to this, for example, PSSA-PVA (polystyrene sulfonate-polyvinyl alcohol copolymer) PSSA-EV.
It is also possible to use OH (polystyrene sulfonic acid-ethylene vinyl alcohol copolymer) or the like.

【0020】上記のようにして得られる単セルを集電板
を介して積層していくことにより、燃料電池積層体が得
られる。
A fuel cell stack is obtained by stacking the single cells obtained as described above through a current collector plate.

【0021】この積層体を熱硬化性樹脂シートの軟化温
度(100〜150℃)以上に加熱した炉内において圧
接することにより、該熱硬化性樹脂シート自体およびそ
の上に塗布した樹脂ペーストが軟化して流動状態とな
り、ガス拡散電極の周側部に密接し、セパレータと電解
質膜との間に充填される。加熱終了後、放冷するに伴っ
て、樹脂ペーストが硬化して、熱硬化性樹脂成形体とな
る。
The thermosetting resin sheet itself and the resin paste applied thereon are softened by pressing the laminated body under pressure in a furnace heated above the softening temperature (100 to 150 ° C.) of the thermosetting resin sheet. Then, the gas diffusion electrode is brought into a fluidized state, is brought into close contact with the peripheral side portion of the gas diffusion electrode, and is filled between the separator and the electrolyte membrane. After the heating is finished, the resin paste is cured as it is left to cool, and becomes a thermosetting resin molded body.

【0022】[0022]

【作用】本発明の固体高分子電解質燃料電池の積層体に
おいては、各単セル中のガス拡散電極側面が熱硬化性樹
脂成形体によって完全にガスシールされている。また、
セパレータとガス拡散層とが一体化されていることから
集電抵抗が低減され、さらにガス電極間の樹脂ペースト
による接着によって単セル同士が強固に接合されるた
め、従来積層体を締め付けるために用いられていたボル
ト、ナット等の治具が不要となる。
In the laminated body of the solid polymer electrolyte fuel cell of the present invention, the side surface of the gas diffusion electrode in each unit cell is completely gas-sealed by the thermosetting resin molding. Also,
Since the separator and the gas diffusion layer are integrated, the current collecting resistance is reduced, and since the unit cells are firmly joined by the resin paste between the gas electrodes, it has been used to tighten the conventional laminate. No need for jigs such as bolts and nuts.

【0023】[0023]

【実施例】本発明の固体高分子電解質燃料電池を次の製
造工程により製造した。
EXAMPLE A solid polymer electrolyte fuel cell of the present invention was manufactured by the following manufacturing process.

【0024】ガス不透過性グラファイト板(緻密カーボ
ンシート)の両面に、それぞれ直交する方向に延長する
ガス流路溝11、12を加工して、溝付きセパレータ1
0を形成した。
Gas channel grooves 11 and 12 extending in directions orthogonal to each other are formed on both surfaces of a gas impermeable graphite plate (dense carbon sheet) to form a grooved separator 1.
Formed 0.

【0025】多孔質カーボンシートの市販品(厚さ0.
8〜1mm,大きさ100mm×100mm)を7.5
重量%程度のPTFE水溶液に約2分間浸漬した後、不
活性ガス雰囲気で乾燥させることによって撥水化処理し
て、ガス拡散層13を形成した。
A commercially available porous carbon sheet (thickness: 0.
8 to 1 mm, size 100 mm x 100 mm) 7.5
After immersing in a PTFE aqueous solution of about wt% for about 2 minutes, it was made water-repellent by drying in an inert gas atmosphere to form a gas diffusion layer 13.

【0026】次いで、市販品フェノール樹脂(商品名:
ベルパール(カネボウ株式会社製))の粉末2gに20
ccのメタノールあるいはエタノールを常温下で加えて
均一なペーストを調製し、この樹脂ペーストをガス拡散
層13のセパレータ接合面に塗布してセパレータ10を
貼着した後、窒素雰囲気中600℃以上の温度条件で焼
成した。この結果、樹脂ペーストをなすフェノール樹脂
が炭化され、セパレータ10とガス拡散層13とが強固
に接合一体化された(図1)。接合後のガス拡散層の厚
みは500〜800μmであった。
Next, a commercially available phenol resin (trade name:
20 per 2g of powder of Bell Pearl (manufactured by Kanebo Ltd.)
After adding cc of methanol or ethanol at room temperature to prepare a uniform paste, the resin paste is applied to the separator bonding surface of the gas diffusion layer 13 and the separator 10 is attached, and then the temperature is set to 600 ° C. or higher in a nitrogen atmosphere. It was fired under the conditions. As a result, the phenol resin forming the resin paste was carbonized, and the separator 10 and the gas diffusion layer 13 were firmly bonded and integrated (FIG. 1). The thickness of the gas diffusion layer after joining was 500 to 800 μm.

【0027】さらに、触媒付カーボンに固体高分子電解
質の成分であるイオン交換樹脂を混合して得た混合体
を、ガス拡散層13のセパレータ10と反対側の面にス
クリーン印刷することにより、厚さ40〜50μmのガ
ス反応層14を形成した。これにより、セパレータ10
とガス拡散電極(ガス拡散層13+ガス反応層14)と
からなる極室構造体15を得た(図2)。
Further, a mixture obtained by mixing carbon with catalyst with an ion exchange resin which is a component of the solid polymer electrolyte is screen-printed on the surface of the gas diffusion layer 13 opposite to the separator 10 to obtain a thick film. A gas reaction layer 14 having a thickness of 40 to 50 μm was formed. Thereby, the separator 10
A polar chamber structure 15 including a gas diffusion electrode (gas diffusion layer 13 + gas reaction layer 14) was obtained (FIG. 2).

【0028】一方、前記フェノール樹脂ペーストを、外
枠120mm×120mm、内枠100mm×100m
mの口の字形の金型に塗布し、約150℃で乾燥するこ
とにより、厚さ1.0mm前後のシート状に成形して、
フェノール樹脂によるシール剤成形体16を作成した。
On the other hand, the phenol resin paste is applied to an outer frame of 120 mm × 120 mm and an inner frame of 100 mm × 100 m.
It is applied to a m-shaped die and dried at about 150 ° C to form a sheet with a thickness of about 1.0 mm,
A sealant molding 16 made of phenol resin was prepared.

【0029】このシール剤成形体16の両面に、上記フ
ェノール樹脂ペーストを接着剤として塗布し、室温放置
による予備乾燥後、ガス拡散電極の周縁に配置すると共
に、このようにして得られる極室構造体15の電極間に
固体高分子電解質膜17を挟持して任意数の単セルを積
層し、加圧治具にセットした(図3および図4)。高分
子電解質膜としては、厚さ0.1〜0.2mm、大きさ
120mm×120mmのナフィオンを用いた。
The above-mentioned phenol resin paste is applied as an adhesive on both sides of this sealant molded body 16, preliminarily dried by leaving it at room temperature, and then placed on the periphery of the gas diffusion electrode, and the polar chamber structure thus obtained is obtained. The solid polymer electrolyte membrane 17 was sandwiched between the electrodes of the body 15, and an arbitrary number of single cells were laminated and set on a pressing jig (FIGS. 3 and 4). As the polymer electrolyte membrane, Nafion having a thickness of 0.1 to 0.2 mm and a size of 120 mm × 120 mm was used.

【0030】積層体をセットした加圧治具を加熱炉に配
置し、約150℃、2.5kg/cmの印加荷重圧下
で1時間加熱圧締した。シール剤成形体をなすフェノー
ル樹脂の軟化温度はほぼ150℃であるため、この加熱
圧締工程において該シール剤成形体が軟化してペースト
状となり、ガス拡散電極と高分子電解質膜との間の隙間
を完全に充填することができた。
The pressure jig having the laminated body set therein was placed in a heating furnace, and heated and pressed for 1 hour under an applied load pressure of about 150 ° C. and 2.5 kg / cm 2 . Since the softening temperature of the phenol resin forming the sealant molded body is about 150 ° C., the sealant molded body softens into a paste in this heating and pressing step, and the paste between the gas diffusion electrode and the polymer electrolyte membrane is formed. The gap could be completely filled.

【0031】加熱炉の温度を降温して、ガス拡散電極と
高分子電解質膜との間に充填されたペースト状のフェノ
ール樹脂を硬化させて成形体とした後、積層体内の各単
セルのガスリークチェックを行った後、加圧治具を外し
た。
After the temperature of the heating furnace is lowered and the paste-like phenol resin filled between the gas diffusion electrode and the polymer electrolyte membrane is cured to form a molded body, gas leak of each single cell in the laminated body. After checking, the pressure jig was removed.

【0032】以上により製造された燃料電池積層体の構
成が図5に示される。すなわち、この燃料電池積層体2
0は、ガス拡散層13とガス反応層14とからなるガス
拡散電極15間に高分子電解質膜17が挟持されてなる
単セル18と、溝付きセパレータ17とが交互に積層さ
れてなる。各単セルにおいては、ガス拡散電極15が高
分子電解質膜17の膜面の中央部に接合され、高分子電
解質膜17の膜面の周縁部にはガス拡散電極15を囲繞
しつつセパレータ10と高分子電解質膜17との間を充
填してガスシールする樹脂シール剤19が設けられてい
る。
The structure of the fuel cell stack manufactured as described above is shown in FIG. That is, this fuel cell stack 2
In No. 0, a single cell 18 in which a polymer electrolyte membrane 17 is sandwiched between gas diffusion electrodes 15 composed of a gas diffusion layer 13 and a gas reaction layer 14, and grooved separators 17 are alternately laminated. In each unit cell, the gas diffusion electrode 15 is joined to the central portion of the membrane surface of the polymer electrolyte membrane 17, and the periphery of the membrane surface of the polymer electrolyte membrane 17 surrounds the gas diffusion electrode 15 and forms the separator 10. A resin sealant 19 is provided to fill the space between the polymer electrolyte membrane 17 and seal the gas.

【0033】本実施例では、積層体の加熱圧締時の印加
荷重圧を2.5kg/cmとしたが、このような低い
加圧条件であっても、セパレータとガス拡散電極間の接
触抵抗は0.1〜0.2Ω・cmであった。これに対
し、セパレータとガス拡散電極とを単純にプレスのみに
よって接合させる従来技術の場合には、10kg/cm
の加圧を行っても0.3Ω・cm程度にしか接触抵
抗を低減させることができない(図6)。これにより、
セパレータとガス拡散層とを接着剤の炭化を介して一体
化させる本発明においては、小さな印加圧であっても集
電抵抗を十分に低減させることができることが実証され
た。
In this embodiment, the applied load pressure at the time of heating and pressing the laminate was set to 2.5 kg / cm 2 , but even under such a low pressurizing condition, the contact between the separator and the gas diffusion electrode was made. The resistance was 0.1 to 0.2 Ω · cm 2 . On the other hand, in the case of the prior art in which the separator and the gas diffusion electrode are simply joined only by pressing, 10 kg / cm
Even if the pressure of 2 is applied, the contact resistance can be reduced only to about 0.3 Ω · cm 2 (FIG. 6). This allows
In the present invention in which the separator and the gas diffusion layer are integrated through carbonization of the adhesive, it has been proved that the current collecting resistance can be sufficiently reduced even with a small applied pressure.

【0034】[0034]

【発明の効果】本発明による固体高分子電解質燃料電池
においては、ガス拡散電極の周囲においてセパレータと
高分子電解質膜との間に充填配置される熱硬化性樹脂成
形体によって完全にガスシールされているので、ガスリ
ークによる発電効率の低下をもたらすことがなく、ま
た、水素と酸素との爆発的反応を未然に回避することが
できる。
In the solid polymer electrolyte fuel cell according to the present invention, the gas diffusion electrode is completely gas-sealed by the thermosetting resin molding which is disposed between the separator and the polymer electrolyte membrane around the gas diffusion electrode. Therefore, the power generation efficiency is not reduced due to the gas leak, and the explosive reaction between hydrogen and oxygen can be avoided.

【0035】さらに、単セルとセパレータとを接合して
積層体を得るために従来技術のような締付治具を用いる
必要がなく、積層体の小型軽量化が達成されると共に、
締付圧の不均衡による電池性能むらが解消される。
Further, it is not necessary to use a tightening jig as in the prior art for joining the single cell and the separator to obtain the laminated body, and the laminated body can be made smaller and lighter in weight.
Uneven battery performance due to imbalance of tightening pressure is eliminated.

【0036】また、接着剤となる樹脂ペーストを炭化さ
せることによりガス拡散層とセパレータとが一体化され
ているため、これらの間の接触抵抗が大幅に低減される
と共に、積層の際の印加圧を下げることができるので、
ガス拡散層の多孔性が損なわれず、反応ガス輸送効率を
低下させることがない。
Further, since the gas diffusion layer and the separator are integrated by carbonizing the resin paste serving as the adhesive, the contact resistance between them is significantly reduced, and the applied pressure at the time of stacking is reduced. Can be lowered,
The porosity of the gas diffusion layer is not impaired and the reaction gas transport efficiency is not reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の固体高分子電解質燃料電池の製造にお
ける一工程を概略的に示す斜視図である。
FIG. 1 is a perspective view schematically showing one step in the production of a solid polymer electrolyte fuel cell of the present invention.

【図2】図1の工程に引き続いて行われる製造工程を概
略的に示す斜視図である。
FIG. 2 is a perspective view schematically showing a manufacturing process performed subsequent to the process of FIG.

【図3】図2の工程に引き続いて行われる製造工程を概
略的に示す斜視図である。
3 is a perspective view schematically showing a manufacturing process performed subsequent to the process of FIG.

【図4】図3の工程に引き続いて行われる製造工程であ
って燃料電池積層体を得る工程を概略的に示す斜視図で
ある。
FIG. 4 is a perspective view schematically showing a manufacturing step subsequent to the step of FIG. 3, which is a step of obtaining a fuel cell stack.

【図5】図1ないし図4の工程を経て製造される燃料電
池積層体の構成を示す断面図である。
FIG. 5 is a cross-sectional view showing the structure of a fuel cell stack manufactured through the steps of FIGS. 1 to 4.

【図6】本発明および従来技術による燃料電池積層体に
おける単セル積層時の印加圧とセパレータ/電極間の接
触抵抗との関係を比較して示すグラフである。
FIG. 6 is a graph showing a comparison of the relationship between the applied pressure and the contact resistance between the separator and the electrode when the single cells are stacked in the fuel cell stack according to the present invention and the prior art.

【符号の説明】[Explanation of symbols]

10 溝付きセパレータ 13 ガス拡散層 14 ガス反応層 15 極室構造体 16 シール剤成形体 17 固体高分子電解質膜 18 単セル 19 熱硬化性樹脂シール剤 20 燃料電池積層体 10 Grooved Separator 13 Gas Diffusion Layer 14 Gas Reaction Layer 15 Polar Chamber Structure 16 Sealant Molded Body 17 Solid Polymer Electrolyte Membrane 18 Single Cell 19 Thermosetting Resin Sealant 20 Fuel Cell Laminate

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ガス拡散電極間に高分子電解質膜が挟
持されてなる単セルと、前記ガス拡散電極の一方に燃料
ガスを他方に酸化剤ガスを供給する溝付きセパレータと
が交互に積層されてなる固体高分子電解質燃料電池にお
いて、前記単セルは、前記ガス拡散電極が前記高分子電
解質膜の膜面の中央部に接合され、かつ、前記高分子電
解質膜の膜面の周縁部には前記ガス拡散電極を囲繞しつ
つ前記セパレータと前記高分子電解質膜との間を充填し
てガスシールする熱硬化性樹脂シール剤が設けられてな
ることを特徴とする固体高分子電解質燃料電池。
1. A single cell in which a polymer electrolyte membrane is sandwiched between gas diffusion electrodes and a grooved separator for supplying a fuel gas to one of the gas diffusion electrodes and an oxidant gas to the other are alternately laminated. In the solid polymer electrolyte fuel cell consisting of the single cell, the gas diffusion electrode is joined to the central portion of the membrane surface of the polymer electrolyte membrane, and the periphery of the membrane surface of the polymer electrolyte membrane is A solid polymer electrolyte fuel cell, comprising: a thermosetting resin sealant that surrounds the gas diffusion electrode and fills a space between the separator and the polymer electrolyte membrane to seal the gas.
【請求項2】 前記ガス拡散電極が、前記燃料ガスお
よび前記酸化剤ガスを拡散させる空孔を有する多孔質基
材からなるガス拡散層と、前記ガス拡散層に隣接して前
記燃料ガスおよび前記酸化剤ガスを電池反応させるため
に前記高分子電解質膜に接して設けられるガス反応層と
からなり、前記ガス拡散層が接着剤の炭化により前記溝
付きセパレータに接合一体化されて極室構造体を形成し
ていることを特徴とする請求項1の固体高分子電解質燃
料電池。
2. The gas diffusion electrode, wherein the gas diffusion electrode is made of a porous base material having pores for diffusing the fuel gas and the oxidant gas, and the fuel gas and the gas diffusion layer adjacent to the gas diffusion layer. A polar chamber structure comprising a gas reaction layer provided in contact with the polymer electrolyte membrane to cause a cell reaction of an oxidant gas, and the gas diffusion layer is bonded and integrated to the grooved separator by carbonization of an adhesive. 2. The solid polymer electrolyte fuel cell according to claim 1, wherein
【請求項3】 溝付きセパレータとガス拡散層とを接
着剤を介して窒素雰囲気中で焼成して前記接着剤を炭化
することによってこれら溝付きセパレータとガス拡散層
とを接合一体化し、前記ガス拡散層上にガス反応層を形
成してガス拡散電極とし、このようにして前記セパレー
タと前記ガス拡散電極とからなる極室構造体を複数作成
し、高分子電解質膜の膜面中央に前記ガス拡散電極を配
置すると共に前記高分子電解質膜の膜面周縁部に前記ガ
ス拡散電極を囲繞するように熱硬化性樹脂を配置して、
前記高分子電解質膜を二つの前記極室構造体の間に挟ん
で積層し、得られた積層体を前記熱硬化性樹脂の軟化温
度以上に加熱した炉内において圧接することにより、該
熱硬化性樹脂を前記ガス拡散電極の周側部に密接させ、
かつ、前記セパレータと前記高分子電解質膜との間に充
填させ、その後放冷することによって前記熱硬化性樹脂
を硬化させることを特徴とする固体高分子電解質燃料電
池の製造方法。
3. The grooved separator and the gas diffusion layer are bonded and integrated with each other by firing the separator with a groove and the gas diffusion layer in an atmosphere of nitrogen through an adhesive to carbonize the adhesive. A gas reaction layer is formed on the diffusion layer to form a gas diffusion electrode, and a plurality of polar chamber structures composed of the separator and the gas diffusion electrode are thus created, and the gas is provided at the center of the membrane surface of the polymer electrolyte membrane. A thermosetting resin is arranged so as to surround the gas diffusion electrode at the periphery of the membrane surface of the polymer electrolyte membrane together with the diffusion electrode.
The polymer electrolyte membrane is laminated by sandwiching it between the two polar chamber structures, and the resulting laminate is pressure-welded in a furnace heated to a temperature not lower than the softening temperature of the thermosetting resin, thereby thermosetting the thermosetting resin. The resin close to the peripheral side of the gas diffusion electrode,
Moreover, the method for producing a solid polymer electrolyte fuel cell is characterized in that the thermosetting resin is cured by filling it between the separator and the polymer electrolyte membrane and then allowing it to cool.
【請求項4】 前記熱硬化性樹脂から口の字形のシー
ル剤成形体を作成し、このシール剤成形体を前記高分子
電解質膜の膜面周縁部に配置することを特徴とする請求
項3の固体高分子電解質燃料電池の製造方法。
4. A mouth-shaped sealant molded body is prepared from the thermosetting resin, and the sealant molded body is arranged at the peripheral edge of the membrane surface of the polymer electrolyte membrane. Of the method for producing a solid polymer electrolyte fuel cell.
【請求項5】 前記熱硬化性樹脂を前記ガス拡散電極
以上の厚さとして前記高分子電解質膜の膜面周縁部に配
置し、前記積層体の加熱圧接時に軟化してペースト状と
された前記熱硬化性樹脂を前記セパレータと前記高分子
電解質膜との間に流動させて充填させることを特徴とす
る請求項3または4の固体高分子電解質燃料電池の製造
方法。
5. The thermosetting resin having a thickness equal to or larger than that of the gas diffusion electrode is arranged at a peripheral portion of a membrane surface of the polymer electrolyte membrane, and is softened to form a paste when the laminate is heated and pressed. The method for producing a solid polymer electrolyte fuel cell according to claim 3 or 4, wherein a thermosetting resin is caused to flow and fill between the separator and the polymer electrolyte membrane.
JP6229038A 1994-08-31 1994-08-31 Solid polymer electrolyte fuel cell and its manufacture Pending JPH0878028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6229038A JPH0878028A (en) 1994-08-31 1994-08-31 Solid polymer electrolyte fuel cell and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6229038A JPH0878028A (en) 1994-08-31 1994-08-31 Solid polymer electrolyte fuel cell and its manufacture

Publications (1)

Publication Number Publication Date
JPH0878028A true JPH0878028A (en) 1996-03-22

Family

ID=16885778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6229038A Pending JPH0878028A (en) 1994-08-31 1994-08-31 Solid polymer electrolyte fuel cell and its manufacture

Country Status (1)

Country Link
JP (1) JPH0878028A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0951086A2 (en) * 1998-04-17 1999-10-20 Matsushita Electric Industrial Co., Ltd. Solid polymer electrolyte fuel cell and method for producing the same
EP0966770A1 (en) 1997-01-29 1999-12-29 Magnet-Motor Gesellschaft für magnetmotorische Technik mbH Membrane-electrode unit with an integrated wear ring, and production process
JP2002124276A (en) * 2000-10-18 2002-04-26 Honda Motor Co Ltd Fuel cell seal mounting method and fuel cell
WO2005074061A1 (en) * 2004-01-28 2005-08-11 Nissan Motor Co., Ltd. Solid polymer membrane fuel cell manufacturing method
JP2005310804A (en) * 2005-07-21 2005-11-04 Hitachi Ltd Separator for solid polymer fuel cell, solid polymer fuel cell using the same, and power generation system
JP2006302741A (en) * 2005-04-22 2006-11-02 Toyota Motor Corp Method and device for manufacturing fuel cell
WO2007043587A1 (en) * 2005-10-14 2007-04-19 Japan Gore-Tex Inc. Membrane electrode joint product and solid polymer electrolyte fuel battery
JP2010021135A (en) * 2008-07-09 2010-01-28 Samsung Electro Mech Co Ltd Stack and fuel cell electric power generation system including same
JP2010062024A (en) * 2008-09-04 2010-03-18 Panasonic Corp Membrane electrode assembly, membrane electrode-frame assembly, and polymer electrolyte fuel cell
JP2010192238A (en) * 2009-02-18 2010-09-02 Honda Motor Co Ltd Method for manufacturing membrane-electrode assembly
US7838172B2 (en) 2003-05-12 2010-11-23 Mitsubishi Materials Corporation Composite porous body, gas diffusion layer member, cell member, and manufacturing method thereof

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0966770A1 (en) 1997-01-29 1999-12-29 Magnet-Motor Gesellschaft für magnetmotorische Technik mbH Membrane-electrode unit with an integrated wear ring, and production process
EP0966770B2 (en) 1997-01-29 2009-09-02 Proton Motor Fuel Cell GmbH Membrane-electrode unit with an integrated wear ring, and production process
EP1484813A3 (en) * 1998-04-17 2008-10-08 Matsushita Electric Industrial Co., Ltd. Solid polymer electrolyte fuel cell and method for producing the same
EP0951086A3 (en) * 1998-04-17 2001-10-17 Matsushita Electric Industrial Co., Ltd. Solid polymer electrolyte fuel cell and method for producing the same
KR100322927B1 (en) * 1998-04-17 2002-02-02 마츠시타 덴끼 산교 가부시키가이샤 Solid polymer electrolyte fuel cell and method for producing the same
US6372373B1 (en) 1998-04-17 2002-04-16 Matsushita Electric Industrial Co., Ltd. Solid polymer electrolyte fuel cell and method for producing the same
EP2270912A3 (en) * 1998-04-17 2011-03-02 Panasonic Corporation Solid polymer electrolyte fuel cell and method for producing the same
EP0951086A2 (en) * 1998-04-17 1999-10-20 Matsushita Electric Industrial Co., Ltd. Solid polymer electrolyte fuel cell and method for producing the same
JP2002124276A (en) * 2000-10-18 2002-04-26 Honda Motor Co Ltd Fuel cell seal mounting method and fuel cell
US7005208B2 (en) * 2000-10-18 2006-02-28 Honda Giken Kogyo Kabushiki Kaisha Method for mounting seals for fuel cell and fuel cell
US7838172B2 (en) 2003-05-12 2010-11-23 Mitsubishi Materials Corporation Composite porous body, gas diffusion layer member, cell member, and manufacturing method thereof
WO2005074061A1 (en) * 2004-01-28 2005-08-11 Nissan Motor Co., Ltd. Solid polymer membrane fuel cell manufacturing method
JP2006302741A (en) * 2005-04-22 2006-11-02 Toyota Motor Corp Method and device for manufacturing fuel cell
JP4647421B2 (en) * 2005-07-21 2011-03-09 株式会社日立製作所 Separator for polymer electrolyte fuel cell, seal member thereof, polymer electrolyte fuel cell using the same, and power generation system
JP2005310804A (en) * 2005-07-21 2005-11-04 Hitachi Ltd Separator for solid polymer fuel cell, solid polymer fuel cell using the same, and power generation system
WO2007043587A1 (en) * 2005-10-14 2007-04-19 Japan Gore-Tex Inc. Membrane electrode joint product and solid polymer electrolyte fuel battery
JP2007109576A (en) * 2005-10-14 2007-04-26 Japan Gore Tex Inc Membrane electrode assembly and solid polymer fuel cell
JP2010021135A (en) * 2008-07-09 2010-01-28 Samsung Electro Mech Co Ltd Stack and fuel cell electric power generation system including same
JP2010062024A (en) * 2008-09-04 2010-03-18 Panasonic Corp Membrane electrode assembly, membrane electrode-frame assembly, and polymer electrolyte fuel cell
JP2010192238A (en) * 2009-02-18 2010-09-02 Honda Motor Co Ltd Method for manufacturing membrane-electrode assembly

Similar Documents

Publication Publication Date Title
JP3489181B2 (en) Unit cell of fuel cell and method of manufacturing the same
US6783883B1 (en) Gas-proof assembly composed of a bipolar plate and a membrane-electrode unit of polymer electrolyte membrane fuel cells
EP0122150B1 (en) Integral gas seal for fuel cell gas distribution assemblies and method of fabrication
US7425383B2 (en) Electrode for polymer electrolyte fuel cell, separator therefore, and polymer electrolyte fuel cell, and generating system using them
US8394551B2 (en) Membrane electrode assembly for use in electrochemical devices
KR100980927B1 (en) End plate for fuel cell stack and method for manufacturing the same
US4732637A (en) Method of fabricating an integral gas seal for fuel cell gas distribution assemblies
WO2002043173A1 (en) Electrochemical polymer electrolyte membrane cell stacks
JPH05242897A (en) Solid high polymer electrolyte type fuel cell
JP2000012048A (en) Gas separator for fuel cell, fuel cell using the gas separator for the fuel cell, and manufacture of the gas separator for the fuel cell
JP2002110189A (en) Separator for fuel cell and its manufacturing method and solid polymer fuel cell using the separator
WO2008017251A9 (en) Sealing structure of fuel cell and methode for manufacturing the same
JPH0878028A (en) Solid polymer electrolyte fuel cell and its manufacture
JP2008525986A (en) Field molding fastening for fuel cell assemblies
JP4585310B2 (en) Membrane electrochemical cell stack
JP5165947B2 (en) Membrane / electrode assembly and manufacturing method thereof
US7597983B2 (en) Edge stress relief in diffusion media
JP3530339B2 (en) Polymer electrolyte fuel cell and method of manufacturing the same
JP3398013B2 (en) Method for manufacturing cell for polymer electrolyte fuel cell
JPH06295733A (en) Separator plate formed by layering fluorine resin
JP2019139993A (en) Fuel cell module and manufacturing method thereof
JP3428079B2 (en) Energy conversion device, fuel cell, and method of manufacturing fuel cell
KR101898738B1 (en) Method for oxide catalyst collector of sofc stack having metal support cell
JP2007173240A (en) Catalyst coated diffusion medium
JP2004214001A (en) Jointing method and jointing device for electrode and solid polyelectrolyte membrane