[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0878009A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH0878009A
JPH0878009A JP6213492A JP21349294A JPH0878009A JP H0878009 A JPH0878009 A JP H0878009A JP 6213492 A JP6213492 A JP 6213492A JP 21349294 A JP21349294 A JP 21349294A JP H0878009 A JPH0878009 A JP H0878009A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
secondary battery
lithium secondary
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6213492A
Other languages
Japanese (ja)
Inventor
Tokuo Inamasu
徳雄 稲益
Kazuya Kuriyama
和哉 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP6213492A priority Critical patent/JPH0878009A/en
Publication of JPH0878009A publication Critical patent/JPH0878009A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To provide a lithium secondary battery with high energy density, allowable to deep charge/discharge, and with long life by constituting a positive electrode active material with a specified composite oxide. CONSTITUTION: A positive electrode active material is made of a composite oxide (example: Li1.03 Ni0.89 Mn0.10 B0.01 O2 ) having layer structure represented by a formula of Lia Nib Mc <1> Md <2> O2 (M<1> is Mn, and M<2> is at least one selected from B, Si, P, Ga, Ge, Sb, Tl, Pb, and Bi.). For example, the active material is mixed with acetylene black and polytetrafluoroethylene powder, the mixture is molded to form a positive electrode 1, the positive electrode 1 is pressed into a positive can 4 with a positive current collector 6, and a negative electrode (example: lithium foil) 2 is pressed in a negative can 5 through a negative current collector 7, then an electrolyte (example: LiPF6 -EC/DEC solution) and a separator 3 are combined to obtain a lithium secondary battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリチウム二次電池に関す
るもので、さらに詳しくはその正極活物質に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to a positive electrode active material thereof.

【0002】[0002]

【従来の技術】近年、高エネルギー密度化のために作動
電圧が4V前後を示す活物質や長寿命化のために負極に
炭素材料を用いる電池などが注目を集めている。長寿命
化のため負極に炭素材料を用いる場合であっても、正極
の作動電圧が高いものでなければ高エネルギー密度電池
が得られにくいということからLiCoO2 やLiNi
2 等の、LiMO2 で示される層状構造を有する化合
物またはLiMn2 4 等の、LiM2 4 で示される
スピネル構造を有する化合物が提案され、すでに一部実
用化されている。
2. Description of the Related Art In recent years, an active material having an operating voltage of about 4 V for high energy density, a battery using a carbon material for a negative electrode for a long life, and the like have been attracting attention. Even when a carbon material is used for the negative electrode to prolong the life, it is difficult to obtain a high energy density battery unless the positive electrode has a high operating voltage. Therefore, LiCoO 2 or LiNi
Such as O 2, such as a compound or LiMn 2 O 4 having a layered structure represented by LiMO 2, a compound having a spinel structure represented by LiM 2 O 4 have been proposed and already partially commercialized.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、LiC
oO2 はコバルトが資源的に少なく価格が高いこと、及
び容量が小さく不十分であること、また資源的に安定な
ニッケルを用いたLiNiO2 は、LiCoO2 に比べ
て容量が大きい反面サイクルに伴う容量の劣化が大きい
こと、及びLiCoO2 に比べて量産規模での安定化し
た合成が難しいことにより実用化するには問題があっ
た。
However, LiC
oO 2 has a small amount of cobalt and is expensive, and has a small capacity and is insufficient. LiNiO 2 using nickel, which is resource-stable, has a larger capacity than LiCoO 2 , but is accompanied by a cycle. There is a problem in practical use due to the large capacity deterioration and the difficulty in stable synthesis on a mass production scale as compared with LiCoO 2 .

【0004】これらの問題を解決するために、LiNi
2 のNiの一部を置換し複合化する研究開発も盛んに
行われている。例えば、特開昭62−264560、特
開昭63−114063、特開昭63−211565、
特開昭63−299056、特開平1−120765、
特開平2−40861、特開平5−325966ではL
iNix Co1-x 2 で示される複合酸化物を正極に用
いることが提案されているが、LiNiO2 に比べ初期
容量が低下している。
In order to solve these problems, LiNi
Research and development for substituting a part of Ni in O 2 to form a composite are also actively conducted. For example, JP-A-62-264560, JP-A-63-114063, JP-A-63-121565,
JP-A-63-299056, JP-A-1-120765,
In JP-A-2-40861 and JP-A-5-325966, L
Although the composite oxide represented by iNi x Co 1-x O 2 to be used for the positive electrode has been proposed, the initial capacity is lower than in LiNiO 2.

【0005】また、特開昭62−256371、特開平
5−101827、特開平5−198301、特開平5
−283076、特開平5−299092、特開平6−
96768等では、LiNiO2 中のNiの一部をC
o,V,Cr,Fe,Cu,Mg,Ti,Mn等の各種
遷移金属で置換することが提案されているが、サイクル
特性の改善が不十分である。
Further, JP-A-62-256371, JP-A-5-101827, JP-A-5-198301, and JP-A-5-301827.
-283076, JP-A-5-299092, JP-A-6-
In 96768 etc., a part of Ni in LiNiO 2 is converted to C
Substitution with various transition metals such as o, V, Cr, Fe, Cu, Mg, Ti, and Mn has been proposed, but improvement in cycle characteristics is insufficient.

【0006】一方、特開平4−253162ではLiC
oO2 のCoの一部をPb,Bi,Bで置換する事が提
案され、さらに特開平5−54889では、一般式Li
x y z 2 の、Ni等の遷移金属元素Mに、周期律
表IIIB、IVB、及びVB族の非金属元素及び半金
属元素、アルカリ土類金属元素及びZn,Cu,Ti等
の金属元素の中から選ばれた1種または2種以上の元素
Lで置換する事が提案されている。
On the other hand, in JP-A-4-253162, LiC is used.
It has been proposed to replace a part of Co of oO 2 with Pb, Bi, B. Further, in Japanese Patent Laid-Open No. 5-54889, the general formula Li
In x M y L z O 2 , a transition metal element M such as Ni is added to non-metal elements and metalloid elements of Group IIIB, IVB and VB of the periodic table, alkaline earth metal elements and Zn, Cu, Ti and the like. Substitution with one or more elements L selected from metal elements is proposed.

【0007】しかし、LiCoO2 ではCoの一部を元
素Lでの置換が容易であったのに対し、LiNiO2
Niの一部を元素Lで置換した活物質の合成は困難であ
り、元素Lが構造中に取り込まれず、活物質中に不純物
として残存し充放電効率の低下や自己放電の増大といっ
た電池性能に悪影響を与えることが分かった。理由は断
定できないが、LiNiO2 の場合LiCoO2 に比べ
層状構造をとり難く、元素Lは結晶成長段階でC軸方向
への成長を阻害させ、元素Lの置換が起こり難く、不純
物として残存したと考えられる。
However, in LiCoO 2 , it was easy to replace a part of Co with the element L, whereas it is difficult to synthesize an active material in which a part of Ni of LiNiO 2 is replaced with the element L. It was found that L was not incorporated into the structure and remained as an impurity in the active material, which adversely affects the battery performance such as a decrease in charge / discharge efficiency and an increase in self-discharge. Although the reason cannot be determined, in the case of LiNiO 2 , it is more difficult to form a layered structure than in LiCoO 2 , and the element L hinders the growth in the C-axis direction at the crystal growth stage, the substitution of the element L is difficult to occur, and it remains as an impurity. Conceivable.

【0008】本発明は上記問題点に鑑みてなされたもの
であって、その目的とするところは、エネルギー密度の
大きい長寿命リチウム二次電池を提供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a long-life lithium secondary battery having a large energy density.

【0009】[0009]

【課題を解決するための手段】上記課題について鋭意検
討した結果、LiNiO2 においてはNiの一部をB,
Si,P,Ga,Ge,Sb,Tl,Pb,Biの元素
で置換する場合、Mnを加えることにより非常に容易に
なることが分かった。この理由は断定できないが、Mn
はNiと同じLiMO2 型の層状構造をとり易く、Mn
を加えることでC軸方向への成長を阻害する事なく置換
される。さらにLiCoO2 中では、B,Si,P,G
a,Ge,Sb,Tl,Pb,Biの元素とMnが容易
に置換し層状構造をとる事ができる。したがって、Li
NiO2 中のNiは、Mnと同時にB,Si,P,G
a,Ge,Sb,Tl,Pb,Biの元素を加えること
によりはじめてC軸方向への成長を阻害する事なく均一
に置換することができたものと考えられる。
As a result of diligent study on the above problems, in NiNiO 2 , a part of Ni was
It has been found that when substituting with elements of Si, P, Ga, Ge, Sb, Tl, Pb and Bi, it becomes very easy by adding Mn. The reason cannot be determined, but Mn
Is likely to have the same LiMO 2 type layered structure as Ni,
Is added, it is replaced without inhibiting growth in the C-axis direction. Furthermore, in LiCoO 2 , B, Si, P, G
The elements of a, Ge, Sb, Tl, Pb, and Bi can be easily replaced with Mn to form a layered structure. Therefore, Li
Ni in NiO 2 is B, Si, P, G at the same time as Mn.
It is considered that the addition of the elements a, Ge, Sb, Tl, Pb, and Bi allowed the uniform substitution without inhibiting growth in the C-axis direction.

【0010】また、LiNiO2 中のNiの一部をB,
Si,P,Ga,Ge,Sb,Tl,Pb,Biの元素
で置換することを選択した理由を以下に示す。
Further, a part of Ni in LiNiO 2 is
The reason why the substitution with the elements of Si, P, Ga, Ge, Sb, Tl, Pb and Bi is selected is shown below.

【0011】B,P,Ga,Sb,Tl,Biは3価
を、Si,Ge,Pbは4価をとる事が知られている
が、このような元素は電池反応に寄与しない。
It is known that B, P, Ga, Sb, Tl and Bi have trivalence and Si, Ge and Pb have tetravalence, but such elements do not contribute to the battery reaction.

【0012】3価の元素B,P,Ga,Sb,Tl,B
iで置換された部分では、リチウムが固定された形で存
在する。この部分がLi層の柱的な役割を果たし、充電
末状態で酸素層間の反発を抑え、結晶構造の変化を抑制
する。さらに検討したところ、これらの元素B,P,G
a,Sb,Tl,BiがMnの存在により一様に結晶内
に存在し、その効果を発揮する事が分かった。その結果
酸素層間に残存するリチウムも一様に分散し、その効果
を高めている。
Trivalent elements B, P, Ga, Sb, Tl, B
In the portion substituted with i, lithium is present in a fixed form. This portion plays a pillar role of the Li layer, and suppresses repulsion between oxygen layers in a charged state and suppresses a change in crystal structure. Further examination revealed that these elements B, P, G
It was found that a, Sb, Tl, and Bi were uniformly present in the crystal due to the presence of Mn, and exhibited their effect. As a result, the lithium remaining between the oxygen layers is evenly dispersed, enhancing its effect.

【0013】また、4価の元素Si,Ge,Pbで置換
された部分は、酸素と強く結合しているために、充電末
状態で酸素層間の反発を抑え、結晶構造の変化を抑制す
る。さらに検討したところ、これらの元素Si,Ge,
PbがMnの存在により一様に結晶内に存在し、その効
果を発揮することが分かった。その結果、酸素層間で全
体的に反発が抑制され、その効果を高めている。
Further, since the portion substituted with the tetravalent element Si, Ge, Pb is strongly bonded to oxygen, the repulsion between oxygen layers is suppressed and the change in crystal structure is suppressed in the charged state. Further examination revealed that these elements Si, Ge,
It was found that Pb was uniformly present in the crystal due to the presence of Mn and exhibited its effect. As a result, the repulsion is suppressed between the oxygen layers as a whole, which enhances the effect.

【0014】よって、以上の効果により本発明の活物質
は、従来のLiNiO2 に比べより深い充放電が可能で
あるので、容量が増大し、サイクル経過後の容量低下が
小さいものと思われる。
Therefore, the active material of the present invention can be charged and discharged deeper than the conventional LiNiO 2 by the above effects, so that the capacity is increased, and it is considered that the capacity decrease after the lapse of cycles is small.

【0015】[0015]

【作用】LiNiO2 にMnの存在下、B,Si,P,
Ga,Ge,Sb,Tl,Pb,Bi等の元素で置換す
ると容量の増加及びサイクル特性が向上する理由は以下
のように考える。
[Function] In the presence of Mn in LiNiO 2 , B, Si, P,
The reason why the capacity and the cycle characteristics are improved by substituting with elements such as Ga, Ge, Sb, Tl, Pb and Bi is considered as follows.

【0016】一般的に、LiNiO2 を深い深度で充電
すると、結晶構造の変化を起こし、さらには結晶構造の
崩壊を起こす。層状構造中のLiが抜けることにより、
酸素層間の反発が起こりより安定な結晶構造に変化した
り、反発に耐えきれず結晶が崩壊する。
Generally, when LiNiO 2 is charged at a deep depth, the crystal structure changes, and further the crystal structure collapses. By removing Li in the layered structure,
Repulsion between the oxygen layers occurs and changes to a more stable crystal structure, or the crystal cannot collapse due to the inability to withstand the repulsion.

【0017】これに対し、LiNiO2 中のNiの一部
をMnの存在下、B,Si,P,Ga,Ge,Sb,T
l,Pb,Biの様な元素で置換することにより、層状
構造中にLiの動かない部分を作ることや酸素間の反発
力を抑えることができるので、結晶構造の変化や崩壊を
防ぐことができる。よって、従来のLiNiO2 に比
べ、深い充放電を行っても優れたサイクル安定性を示す
ものと思われる。
On the other hand, a part of Ni in LiNiO 2 is added to B, Si, P, Ga, Ge, Sb, T in the presence of Mn.
By substituting with elements such as l, Pb, and Bi, it is possible to form a non-moving part of Li in the layered structure and suppress the repulsive force between oxygen, so that the change or collapse of the crystal structure can be prevented. it can. Therefore, as compared with the conventional LiNiO 2 , it seems that even if deep charge / discharge is performed, excellent cycle stability is exhibited.

【0018】[0018]

【実施例】以下、本発明の実施例について以下に説明す
る。
EXAMPLES Examples of the present invention will be described below.

【0019】(実施例1)層状構造を有するリチウム複
合酸化物の調製にあたっては、LiOH・H2 0、Ni
2 CO3 、MnO2 、B2 3 を用い、Li:Ni:M
n:Bのモル比が1.03:0.89:0.10:0.
01となるように秤量、混合し、酸素中、750℃で2
0時間焼成した。焼成後乾燥空気中で冷却し、乾燥雰囲
気で粉砕した物を正極活物質とした。
[0019] In the preparation of (Example 1) lithium composite oxide having a layered structure, LiOH · H 2 0, Ni
2 CO 3 , MnO 2 , B 2 O 3 are used, and Li: Ni: M is used.
The molar ratio of n: B is 1.03: 0.89: 0.10: 0.
Weigh and mix so that it becomes 01, and 2 in oxygen at 750 ° C.
It was baked for 0 hours. After firing, the product was cooled in dry air and ground in a dry atmosphere to obtain a positive electrode active material.

【0020】得られた正極活物質のX線回折パターンよ
り、結晶が単一相で得られていることが分かった。
From the X-ray diffraction pattern of the obtained positive electrode active material, it was found that crystals were obtained in a single phase.

【0021】この活物質を用いて次のようにして図1の
コイン型リチウム二次電池を試作した。活物質とアセチ
レンブラック及びポリテトラフルオロエチレン粉末とを
重量比85:10:5で混合し、トルエンを加えて十分
混練した。これをローラープレスにより厚み0.8mm
のシート状に成形した。次にこれを直径16mmの円形
に打ち抜き減圧下200℃で15時間熱処理し正極1を
得た。正極1は正極集電体6の付いた正極缶4に圧着し
て用いた。負極2は、厚み0.3mmのリチウム箔を直
径15mmの円形に打ち抜き、負極集電体7を介して負
極缶5に圧着して用いた。エチレンカーボネートとジエ
チルカーボネートとの体積比1:1の混合溶剤にLiP
6 を1mol/l溶解した電解液を用い、セパレータ
3にはポリプロピレン製微多孔膜を用いた。上記正極、
負極、電解液及びセパレータを用いて直径20mm厚さ
1.6mmのコイン型リチウム電池を作製した。この電
池をA1とする。なお、図1において、8は絶縁パッキ
ングである。
Using this active material, a coin-type lithium secondary battery shown in FIG. 1 was manufactured as follows. The active material was mixed with acetylene black and polytetrafluoroethylene powder at a weight ratio of 85: 10: 5, toluene was added, and the mixture was sufficiently kneaded. This is 0.8mm thick by roller press
Was formed into a sheet shape. Next, this was punched into a circle having a diameter of 16 mm and heat-treated at 200 ° C. for 15 hours under reduced pressure to obtain a positive electrode 1. The positive electrode 1 was used by pressure bonding to a positive electrode can 4 having a positive electrode current collector 6. For the negative electrode 2, a 0.3 mm-thick lithium foil was punched into a circular shape having a diameter of 15 mm, and the negative electrode can 5 was pressure bonded to the negative electrode can 5 via the negative electrode current collector 7. LiP was added to a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1.
An electrolytic solution in which F 6 was dissolved at 1 mol / l was used, and a polypropylene microporous film was used as the separator 3. The positive electrode,
A coin-type lithium battery having a diameter of 20 mm and a thickness of 1.6 mm was produced using the negative electrode, the electrolytic solution and the separator. This battery is designated as A1. In FIG. 1, 8 is an insulating packing.

【0022】(実施例2)B2 3 の代わりにPbO2
を用い、Li:Ni:Mn:Pbのモル比が1.03:
0.89:0.10:0.01となるように秤量するこ
と以外は上記実施例1と同様にして電池を作製した。得
られた正極活物質のX線回折パターンより、結晶が単一
相で得られていることが分かった。この電池をA2とす
る。
(Example 2) PbO 2 instead of B 2 O 3
And the molar ratio of Li: Ni: Mn: Pb is 1.03:
A battery was made in the same manner as in Example 1 except that the weight was adjusted to 0.89: 0.10: 0.01. From the X-ray diffraction pattern of the obtained positive electrode active material, it was found that crystals were obtained in a single phase. This battery is designated as A2.

【0023】(実施例3)B2 3 の代わりにGa(N
3 3 ・H2 Oを用い、Li:Ni:Mn:Gaのモ
ル比が1.03:0.89:0.10:0.01となる
ように秤量すること以外は上記実施例1と同様にして電
池を作製した。得られた正極活物質のX線回折パターン
より、結晶が単一相で得られていることが分かった。こ
の電池をA3とする。
Example 3 Instead of B 2 O 3 , Ga (N
Example 3 above except that O 3 ) 3 .H 2 O was used and weighed so that the molar ratio of Li: Ni: Mn: Ga was 1.03: 0.89: 0.10: 0.01. A battery was prepared in the same manner as in. From the X-ray diffraction pattern of the obtained positive electrode active material, it was found that crystals were obtained in a single phase. This battery is designated as A3.

【0024】(比較例1)LiOH・H2 O、NiCO
3 を用い、Li:Niのモル比が1.03:1.00と
なるように秤量することの他は上記実施例1と同様にし
て電池を作製した。得られた正極活物質のX線回折パタ
ーンより、結晶が単一相で得られていることが分かっ
た。この電池をB1とする。
(Comparative Example 1) LiOH.H 2 O, NiCO
A battery was produced in the same manner as in Example 1 except that 3 was used and weighed so that the molar ratio of Li: Ni was 1.03: 1.00. From the X-ray diffraction pattern of the obtained positive electrode active material, it was found that crystals were obtained in a single phase. This battery is designated as B1.

【0025】(比較例2)LiOH・H2 0、NiCO
3 、Mn02 を用い、Li:Ni:Mnのモル比が1.
03:0.90:0.10となるように秤量することの
他は上記実施例1と同様にして電池を作製した。得られ
た正極活物質のX線回折パターンから、結晶が単一相で
得られていることが分かった。この電池をB2とする。
[0025] (Comparative Example 2) LiOH · H 2 0, NiCO
3, with Mn0 2, Li: Ni: molar ratio of Mn 1.
A battery was produced in the same manner as in Example 1 except that the weight was adjusted to 03: 0.90: 0.10. From the X-ray diffraction pattern of the obtained positive electrode active material, it was found that crystals were obtained in a single phase. This battery is designated as B2.

【0026】(比較例3)LiOH・H2 0、NiCO
3 、B2 3 を用い、Li:Ni:Bのモル比が1.0
3:0.90:0.10となるように秤量することの他
は上記実施例1と同様にして電池を作製した。得られた
正極活物質のX線回折パターンから、LiNiO2 の層
状結晶成長が悪く、十分に特定できない化合物の混合物
であることが確認された。さらに、得られた正極活物質
の化学分析を行なったところ、2価のNiが残存してお
り、Niの十分な酸化が起こらなかったことが推察され
る。この電池をB3とする。
[0026] (Comparative Example 3) LiOH · H 2 0, NiCO
3 , B 2 O 3, and the molar ratio of Li: Ni: B is 1.0.
A battery was produced in the same manner as in Example 1 except that the weight was adjusted to 3: 0.90: 0.10. From the X-ray diffraction pattern of the obtained positive electrode active material, it was confirmed that the layered crystal growth of LiNiO 2 was poor and the mixture was a compound that could not be sufficiently specified. Furthermore, when the obtained positive electrode active material was chemically analyzed, it was inferred that divalent Ni remained and that sufficient oxidation of Ni did not occur. This battery is designated as B3.

【0027】このようにして作製した電池A1,A2,
A3,B1,B2,B3を用いて充放電サイクル試験を
行った。試験条件は、充電電流3mA、充電終止電圧
4.2V、放電電流3mA、放電終止電圧3.0Vとし
た。
Batteries A1, A2 thus produced
A charge / discharge cycle test was performed using A3, B1, B2 and B3. The test conditions were a charge current of 3 mA, a charge end voltage of 4.2 V, a discharge current of 3 mA, and a discharge end voltage of 3.0 V.

【0028】これら作製した電池の充放電試験の結果を
表1に示す。
Table 1 shows the results of the charge / discharge test of the batteries thus manufactured.

【0029】[0029]

【表1】 [Table 1]

【0030】表1から分かるように本発明による電池A
1,A2,A3は比較電池B1、B2,B3に比べて初
期充放電容量が大きく、さらに10サイクル後の減少が
小さかった。
As can be seen from Table 1, Battery A according to the invention
1, A2 and A3 had a larger initial charge / discharge capacity than the comparative batteries B1, B2 and B3, and the decrease after 10 cycles was small.

【0031】実施例においては、Lia Nib 1 c
2 d 2 のM2 が、B,Pb,Geについて挙げたが、
同様の効果がP,Ga,Tl,Bi,Sb,Siについ
ても確認された。
In the examples, Li a Ni b M 1 c M
Although M 2 of 2 d O 2 was mentioned for B, Pb, and Ge,
Similar effects were confirmed for P, Ga, Tl, Bi, Sb, and Si.

【0032】このようにしてLiNiO2 のNiをMn
とB,Si,P,Ga,Ge,Sb,Tl,Pb,Bi
の共存下置換することにより初めて容量の増大とサイク
ルの安定性が実現できる。
In this way, Ni of LiNiO 2 is changed to Mn.
And B, Si, P, Ga, Ge, Sb, Tl, Pb, Bi
The capacity increase and the cycle stability can be realized only when the replacement is performed under the coexistence of.

【0033】なお、本発明は上記実施例に記載された活
物質の出発原料、製造方法、正極、負極、電解質、セパ
レータ及び電池形状などに限定されるものではない。ま
た、負極に炭素材料を用いるものや、電解質、セパレー
タの代わりに固体電解質を用いるものなどにも適用可能
である。
The present invention is not limited to the starting materials, manufacturing methods, positive electrodes, negative electrodes, electrolytes, separators and battery shapes of the active materials described in the above examples. Further, it is also applicable to those using a carbon material for the negative electrode, those using a solid electrolyte instead of the electrolyte or separator, and the like.

【0034】[0034]

【発明の効果】本発明は上述の如く構成されているの
で、放電容量の大きい可逆性に優れた長寿命のリチウム
二次電池を提供できる。
As described above, the present invention can provide a long-life lithium secondary battery having a large discharge capacity and excellent reversibility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1に係るコイン型リチウム二次
電池の断面図である。
FIG. 1 is a sectional view of a coin-type lithium secondary battery according to a first embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質がLia Nib 1 c 2 d
2 で示される層状構造を有する複合酸化物からなり、
1 はMnであり、M2 は少なくともB,Si,P,G
a,Ge,Sb,Tl,Pb,Biから選ばれた1種以
上の元素を含むことを特徴とするリチウム二次電池。
1. The positive electrode active material is Li a Ni b M 1 c M 2 d.
Consisting of a composite oxide having a layered structure represented by O 2 .
M 1 is Mn and M 2 is at least B, Si, P, G
A lithium secondary battery comprising one or more elements selected from a, Ge, Sb, Tl, Pb and Bi.
JP6213492A 1994-09-07 1994-09-07 Lithium secondary battery Pending JPH0878009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6213492A JPH0878009A (en) 1994-09-07 1994-09-07 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6213492A JPH0878009A (en) 1994-09-07 1994-09-07 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH0878009A true JPH0878009A (en) 1996-03-22

Family

ID=16640102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6213492A Pending JPH0878009A (en) 1994-09-07 1994-09-07 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH0878009A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125392A (en) * 1979-09-10 1989-05-17 Ciba Geigy Ag Ammonium methyl methanephosphonate and its production
JPH08213052A (en) * 1994-08-04 1996-08-20 Seiko Instr Inc Nonaqueous electrolyte secondary battery
WO2000023380A1 (en) * 1998-10-16 2000-04-27 Pacific Lithium Limited Lithium manganese oxide and methods of manufacture
WO2003041193A1 (en) * 2001-11-09 2003-05-15 Sony Corporation Positive plate material and cell comprising it
JP2005050582A (en) * 2003-07-30 2005-02-24 Mitsubishi Chemicals Corp Positive pole for lithium secondary battery and lithium secondary battery using it
JP2005150093A (en) * 2003-10-10 2005-06-09 Saft (Soc Accumulateurs Fixes Traction) Sa Electrochemical active material for positive electrodes of electrochemical lithium storage battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125392A (en) * 1979-09-10 1989-05-17 Ciba Geigy Ag Ammonium methyl methanephosphonate and its production
JPH08213052A (en) * 1994-08-04 1996-08-20 Seiko Instr Inc Nonaqueous electrolyte secondary battery
WO2000023380A1 (en) * 1998-10-16 2000-04-27 Pacific Lithium Limited Lithium manganese oxide and methods of manufacture
WO2003041193A1 (en) * 2001-11-09 2003-05-15 Sony Corporation Positive plate material and cell comprising it
JP2003151548A (en) * 2001-11-09 2003-05-23 Sony Corp Positive electrode material and battery using it
US9054378B2 (en) 2001-11-09 2015-06-09 Sony Corporation Positive plate material and cell comprising it
JP2005050582A (en) * 2003-07-30 2005-02-24 Mitsubishi Chemicals Corp Positive pole for lithium secondary battery and lithium secondary battery using it
JP2005150093A (en) * 2003-10-10 2005-06-09 Saft (Soc Accumulateurs Fixes Traction) Sa Electrochemical active material for positive electrodes of electrochemical lithium storage battery

Similar Documents

Publication Publication Date Title
JP2000277116A (en) Lithium secondary battery
JP2002145623A (en) Lithium-containing transition metal multiple oxide and manufacturing method thereof
JP3611190B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4813450B2 (en) Lithium-containing composite oxide and non-aqueous secondary battery using the same
JPH04267053A (en) Lithium secondary battery
TW200401467A (en) Method for preparing positive electrode active material for non-aqueous secondary battery
JP2000294242A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacture therefor and nonaqueous electrolyte secondary battery
JPH0878006A (en) Lithium secondary battery
JP3536947B2 (en) Lithium secondary battery
JP2967051B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2001023617A (en) Manufacture of lithium secondary battery
JP2000100434A (en) Lithium secondary battery
JP3422440B2 (en) Lithium secondary battery
JP2006236830A (en) Lithium secondary battery
JPH1173958A (en) Manufacture of positive electrode active material
JP2003017049A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and manufacturing method thereof
JPH06283174A (en) Positive electrode for lithium secondary battery and manufacture thereof
JPH0878009A (en) Lithium secondary battery
US20120258364A1 (en) C2/M-Structured Cathode Material for Lithium-Ion Battery
JP2000268822A (en) Lithium secondary battery
JP2512239B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP3429328B2 (en) Lithium secondary battery and method of manufacturing the same
JP3219352B2 (en) Non-aqueous electrolyte secondary battery
KR101602419B1 (en) Cathode active material cathode comprising the same and lithium battery using the cathode
JP3422441B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080622

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090622

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120622

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11