JPH0875431A - Electronic parts inspection device - Google Patents
Electronic parts inspection deviceInfo
- Publication number
- JPH0875431A JPH0875431A JP28495594A JP28495594A JPH0875431A JP H0875431 A JPH0875431 A JP H0875431A JP 28495594 A JP28495594 A JP 28495594A JP 28495594 A JP28495594 A JP 28495594A JP H0875431 A JPH0875431 A JP H0875431A
- Authority
- JP
- Japan
- Prior art keywords
- lens system
- light
- polygon mirror
- scanning
- lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Mechanical Optical Scanning Systems (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、部品を実装した配線基
板(実装基板)、液晶パネル素子または半導体ウエハな
どの表面を光走査して、それらの表面状態、とくに、実
装された部品の位置ずれ、部品の欠落、半田付け不良、
半田付け前部品の浮き上がり等を検査する電子部品検査
装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention optically scans the surface of a wiring board (mounting board) on which components are mounted, a liquid crystal panel element, a semiconductor wafer, or the like, and the surface condition thereof, especially the position of the mounted components. Misalignment, missing parts, poor soldering,
The present invention relates to an electronic component inspection device for inspecting the rising of components before soldering.
【0002】[0002]
【従来の技術】近年、実装基板を検査するのに、レーザ
スキャン方式の検査装置が多く用いられている。この方
式の検査装置は図6に示すように構成されており、半導
体レーザ素子1から放射されたレーザ光は集光レンズ系
2を経てビーム光3となり、ポリゴンミラー4に当たっ
て反射光5となる。反射光5はガルバノミラー6に当た
って実装基板7の表面に入射する。ポリゴンミラー4は
軸4aを中心にして軸転し、ガルバノミラー6は軸4a
に直交した軸6aを中心にして軸転するので、ビーム光
3はポリゴンミラー4によって主偏向作用を受け、ガル
バノミラー6によって副偏向作用を受ける。これによっ
て、実装基板7の表面が光走査され、この光走査によっ
て実装基板7の表面上に生じた散乱反射光8が、ガルバ
ノミラー6およびポリゴンミラー4でそれぞれ反射して
結像用レンズ9を透過し、光検出器10に入射して光電
変換される。2. Description of the Related Art In recent years, a laser scan type inspection apparatus has been widely used for inspecting a mounting substrate. The inspection apparatus of this system is configured as shown in FIG. 6, and the laser light emitted from the semiconductor laser device 1 becomes a beam light 3 through a condenser lens system 2 and a reflected light 5 when it hits a polygon mirror 4. The reflected light 5 strikes the galvanometer mirror 6 and enters the surface of the mounting substrate 7. The polygon mirror 4 rotates about the axis 4a, and the galvanometer mirror 6 rotates about the axis 4a.
Since the light beam 3 is rotated about the axis 6a orthogonal to, the beam light 3 is subjected to the main deflection action by the polygon mirror 4 and the sub-deflection action by the galvano mirror 6. As a result, the surface of the mounting substrate 7 is optically scanned, and the scattered reflected light 8 generated on the surface of the mounting substrate 7 by this optical scanning is reflected by the galvanometer mirror 6 and the polygon mirror 4, respectively, and is reflected by the imaging lens 9. The light is transmitted, enters the photodetector 10, and is photoelectrically converted.
【0003】[0003]
【発明が解決しようとする課題】このように構成された
電子部品検査装置を用いると、実装基板等の表面状態を
光電的に検査できるものの、実装基板の表面に入射して
該面を光走査するビーム光の入射角が、偏向角度の増大
に伴い大きくなる。このため、実装基板の表面に存在す
る部品が該面に入射するビーム光に死角を与える。ま
た、光走査を行うビーム光が実装基板の中央部から周辺
部へ偏向されるのに伴い、像面湾曲によってビームスポ
ットが径大化し、しかも、光走査速度が高くなるので、
高い精度での検査が望めないという課題があった。When the electronic component inspection apparatus configured as described above is used, the surface condition of the mounting board or the like can be photoelectrically inspected, but it is incident on the surface of the mounting board to optically scan the surface. The incident angle of the beam light is increased as the deflection angle is increased. For this reason, the component existing on the surface of the mounting board gives a blind spot to the light beam incident on the surface. Further, as the beam light for optical scanning is deflected from the central part to the peripheral part of the mounting substrate, the beam spot becomes larger due to the field curvature, and moreover, the optical scanning speed becomes high,
There was a problem that inspection with high accuracy could not be expected.
【0004】また、受光径路が長くなるので、実装基板
上に生じた散乱反射光のうち、結像用レンズを透過して
光検出器に到達する光量はごくわずかとなる。そのう
え、両ミラーによる光損失もあるので、光検出器からみ
た受光効率が低いという課題があった。Further, since the light receiving path is long, the amount of scattered reflected light generated on the mounting substrate that reaches the photodetector after passing through the imaging lens is extremely small. In addition, there is also a light loss due to both mirrors, so that there is a problem that the light receiving efficiency seen from the photodetector is low.
【0005】したがって本発明の目的は、被検査物の表
面を全域にわたり死角を生じることなく均一に光走査で
き、しかも、光検出器の受光効率を高め得る電子部品検
査装置を提供することにある。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an electronic component inspection apparatus capable of uniformly scanning the surface of an object to be inspected uniformly without causing a blind spot and further improving the light receiving efficiency of the photodetector. .
【0006】[0006]
【課題を解決するための手段】本発明によると、上述し
た目的を達成するために、レーザ光を放射するレーザ素
子と、軸に並行な多面に鏡面を有して鏡面に入射したレ
ーザ光を反射させる軸転可能な主偏向走査用ポリゴンミ
ラーと、ポリゴンミラーの鏡面で反射したレーザ光を被
検査物の表面に直角に入射させる光走査用fθレンズ系
と、光走査によって被検査物の表面に生じた散乱反射光
を検出し光電変換するために、fθレンズ系を避けた位
置に光軸を傾斜して設けられた光検出手段とを備えてな
ることを特徴とする電子部品検査装置が提供される。According to the present invention, in order to achieve the above-mentioned object, a laser element that emits a laser beam and a laser beam that has a mirror surface on multiple surfaces parallel to an axis and is incident on the mirror surface are provided. An axis-rotatable main-deflection scanning polygon mirror for reflecting, an optical scanning fθ lens system for making laser light reflected by the mirror surface of the polygon mirror incident on the surface of the inspection object at a right angle, and a surface of the inspection object by optical scanning. In order to detect and photoelectrically convert the scattered reflected light generated in the above, the electronic component inspection device is provided with a light detection means provided with the optical axis inclined at a position avoiding the fθ lens system. Provided.
【0007】光検出手段が乱反射光を集束する集束レン
ズ系および光検出器からなり、集束レンズ系は光軸に沿
って配設された2個の円柱面レンズからなり、被検査物
側に位置する円柱面レンズの母線が光走査の方向に平行
に置かれ、他方の円柱面レンズの母線が光走査の方向に
直交して置かれている構成となすことができる。また、
副偏向走査のためにレーザ素子、fθレンズ系および光
検出手段が、ポリゴンミラーに対して該ミラーの軸方向
に移動可能に構成できる。The light detecting means is composed of a focusing lens system for focusing diffusely reflected light and a photodetector, and the focusing lens system is composed of two cylindrical lenses arranged along the optical axis and positioned on the side of the object to be inspected. The generatrix of the cylindrical lens is placed parallel to the optical scanning direction, and the generatrix of the other cylindrical lens is placed perpendicular to the optical scanning direction. Also,
For the sub-deflection scanning, the laser element, the fθ lens system, and the light detection means can be configured to be movable in the axial direction of the polygon mirror with respect to the polygon mirror.
【0008】[0008]
【作用】本発明においては、ポリゴンミラーで偏向作用
を受けたレーザ光が、fθレンズ系を経て被検査物の表
面に直角に入射するので、つまり、前記表面に対するレ
ーザ光の入射角が偏向角度の大小に関係なくほぼ零とな
るので、被検査物の表面上に存在する部品が入射ビーム
光に死角を生じさせることがなくなる。また、像面湾曲
が生じないので、入射ビーム光のスポット径や走査速度
が偏向角度の大小に関係なく均一化する。そのうえ、光
検出手段は被検査物の表面上に生じた散乱反射光をミラ
ーを経ることなく、しかも、被検査物の表面に近い位置
で効率よく受光して光電変換するので、被検査物の表面
状態を高い精度で検査することができる。In the present invention, since the laser light deflected by the polygon mirror enters the surface of the object to be inspected at a right angle through the fθ lens system, that is, the incident angle of the laser light with respect to the surface is the deflection angle. Is almost zero regardless of the magnitude of the above, it is possible to prevent a component existing on the surface of the object to be inspected from causing a blind spot in the incident beam light. Further, since no curvature of field occurs, the spot diameter of the incident light beam and the scanning speed are made uniform regardless of the size of the deflection angle. Moreover, the light detecting means efficiently receives and photoelectrically converts the scattered and reflected light generated on the surface of the inspection object without passing through the mirror and at a position close to the surface of the inspection object. The surface condition can be inspected with high accuracy.
【0009】光検出手段の集束レンズ系に2個の円柱面
レンズを用い、被検査物側に位置する円柱面レンズの母
線が光走査の方向に平行に置かれ、他方の円柱面レンズ
の母線が光走査の方向に直交して置かれる構成となすと
きは、光走査の方向におけるレンズ倍率に比べて大きい
レンズ倍率でもって、被検査面の表面の凹凸状態を精度
よく検査することができる。Two cylindrical lenses are used for the focusing lens system of the light detecting means, the generatrix of the cylindrical lens located on the side of the object to be inspected is placed parallel to the optical scanning direction, and the generatrix of the other cylindrical lens. In the configuration in which is placed orthogonal to the optical scanning direction, the unevenness of the surface of the surface to be inspected can be accurately inspected with a lens magnification larger than the lens magnification in the optical scanning direction.
【0010】また、副偏向走査のためにレーザ素子、f
θレンズ系および光検出手段を、ポリゴンミラーに対し
て該ミラーの軸方向に移動可能に構成することによって
は、ガルバノミラーを用いることなく被検査物の全表面
を光走査できるので、ミラーによる光損失量を軽減させ
ることができる。A laser element, f
By configuring the θ lens system and the light detection means to be movable in the axial direction of the polygon mirror with respect to the polygon mirror, the entire surface of the object to be inspected can be optically scanned without using a galvanometer mirror. The amount of loss can be reduced.
【0011】[0011]
【実施例】つぎに、本発明の一実施例を図面を参照しな
がら説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.
【0012】図1に示すように、半導体レーザ素子11
から放射されたレーザ光はコリメータレンズ12を経て
ビーム光13となり、ポリゴンミラー14の鏡面に当た
って反射光15となる。ポリゴンミラー14は軸転する
ので、反射光15は一方向へ偏向され、ポリゴンミラー
14と被検査物たる実装基板16との間に配設された光
走査用fθレンズ系17に入射する。As shown in FIG. 1, the semiconductor laser device 11
The laser light radiated from the laser beam passes through the collimator lens 12 to become the beam light 13, and hits the mirror surface of the polygon mirror 14 to become the reflected light 15. Since the polygon mirror 14 rotates about its axis, the reflected light 15 is deflected in one direction and is incident on the optical scanning fθ lens system 17 arranged between the polygon mirror 14 and the mounting substrate 16 as the inspection object.
【0013】fθレンズ系17は同軸配置された複数の
レンズからなり、図2に示すような集束レンズ作用を反
射光15に与えるので、反射光15は実装基板16の表
面に常に直角に入射し、該表面を光走査する。このた
め、実装基板16の表面に部品が存在するにもかかわら
ず、入射光に死角を生じさせることがない。また、像面
湾曲が生じないので、ビーム光は均一のスポット径を有
して実装基板16の表面を等速で光走査をする。光走査
の方向を矢印18で示す。The fθ lens system 17 is composed of a plurality of coaxially arranged lenses and exerts a focusing lens action as shown in FIG. 2 on the reflected light 15, so that the reflected light 15 is always incident on the surface of the mounting substrate 16 at a right angle. , Optically scan the surface. For this reason, no blind spot is generated in the incident light even though there are components on the surface of the mounting substrate 16. Further, since no curvature of field occurs, the light beam has a uniform spot diameter and optically scans the surface of the mounting substrate 16 at a constant speed. The direction of optical scanning is indicated by arrow 18.
【0014】この光走査によって実装基板16の表面上
に生じた散乱反射光19は、第1および第2の光検出器
20、21にそれぞれの集束レンズ22、23を経て入
射し結像する。集束レンズ22と第1の光検出器20と
からなる第1の光検出手段および集束レンズ23と第2
の光検出器21とからなる第2の光検出手段は、とも
に、fθレンズ系17を避けた位置にそれぞれの光軸を
傾斜させて設けられており、両光検出器20、21から
光電変換信号が時系列的に出力される。The scattered reflected light 19 generated on the surface of the mounting substrate 16 by this optical scanning enters the first and second photodetectors 20 and 21 through the respective focusing lenses 22 and 23 and forms an image. A first photo-detecting means including a focusing lens 22 and a first photo-detector 20, and a focusing lens 23 and a second photo-detecting means.
The second photo-detecting means including the photo-detector 21 is provided at a position avoiding the fθ lens system 17 with the respective optical axes inclined, and photoelectric conversion is performed from both photo-detectors 20 and 21. The signals are output in time series.
【0015】両結像用レンズ22、23の各視野角は、
実装基板16の全表面を対象に設定されているので、第
1および第2の光検出手段を二者択一的に使用できる。
第1の光検出手段はY軸上に位置し、第2の光検出手段
はX軸上に位置しているので、両光検出手段を同時に使
用すると、散乱反射光をより確実に検出することができ
る。光走査と受光との関係を図3に示す。The respective viewing angles of both imaging lenses 22 and 23 are
Since the entire surface of the mounting board 16 is set as the target, the first and second photodetecting means can be used alternatively.
Since the first light detecting means is located on the Y axis and the second light detecting means is located on the X axis, when both light detecting means are used at the same time, the scattered reflected light can be detected more reliably. You can The relationship between optical scanning and light reception is shown in FIG.
【0016】駆動機構24は、レーザ素子11、fθレ
ンズ系17ならびに第1および第2の光検出手段からな
る光学系を、ポリゴンミラー14の軸方向に駆動させ
る。つまり、主偏向走査はX軸方向であるのに対し、前
記光学系をY軸方向に駆動させて副偏向走査をするの
で、実装基板16の表面が全域にわたり光走査される。
駆動機構24は、リニアモータや等速カム等を用いて構
成することができる。The drive mechanism 24 drives the optical system including the laser element 11, the fθ lens system 17, and the first and second light detecting means in the axial direction of the polygon mirror 14. That is, while the main deflection scanning is in the X-axis direction, the optical system is driven in the Y-axis direction to perform the sub-deflection scanning, so that the entire surface of the mounting substrate 16 is optically scanned.
The drive mechanism 24 can be configured by using a linear motor, a constant speed cam, or the like.
【0017】第1および第2の光検出手段のいずれか一
方から時系列的にとり出した光電変換出力を、標準とな
る電気信号と比較することによって、実装基板16の表
面状態を光電的に検査することができる。両光検出器2
0、21の各光電変換出力から、実装基板16の表面に
存在する凹凸の高さを求めることができるので、それを
数値化するための補正回路は必要としない。ポリゴンミ
ラー14の各鏡面は、副偏向走査のために比較的大きい
軸方向寸法を有していなければならない。The surface state of the mounting board 16 is photoelectrically inspected by comparing the photoelectric conversion output time-sequentially extracted from either one of the first and second photo-detecting means with a standard electric signal. can do. Both photodetectors 2
Since the height of the unevenness existing on the surface of the mounting substrate 16 can be obtained from each photoelectric conversion output of 0 and 21, a correction circuit for digitizing the unevenness is not required. Each mirror surface of polygon mirror 14 must have a relatively large axial dimension for sub-deflection scanning.
【0018】本発明の他の実施例を図4に示す。図4に
示す構成が図1に示した構成と異なるところは、実装基
板16の表面上に生じた散乱反射光19を第1の光検出
器20に結像させる集束レンズ系が、当該光軸に沿って
配設された2個のシリンドリカルレンズ(円柱面レン
ズ)25、26からなる点と、散乱光19を第2の光検
出器21に結像させる集束レンズ系が、当該光軸に沿っ
て配設された2個の円柱面レンズ27、28からなる点
とである。Another embodiment of the present invention is shown in FIG. The configuration shown in FIG. 4 is different from the configuration shown in FIG. 1 in that the focusing lens system for focusing the scattered reflected light 19 generated on the surface of the mounting substrate 16 on the first photodetector 20 has the optical axis concerned. A point made up of two cylindrical lenses (cylindrical surface lenses) 25 and 26 arranged along the optical axis and a focusing lens system for focusing the scattered light 19 on the second photodetector 21 are arranged along the optical axis. And the two cylindrical lenses 27 and 28 are arranged.
【0019】実装基板16側に位置する円柱面レンズ2
6は図5の(a)、(b)に示すように、その母線26
aを光走査の方向18に平行に置いている。そして、光
検出器20側に位置する円柱面レンズ25はその母線2
5aを、光走査の方向18に直交させている。29は光
軸を示す。Cylindrical lens 2 located on the mounting substrate 16 side
As shown in FIGS. 5 (a) and 5 (b), 6 is a bus bar 26
a is placed parallel to the optical scanning direction 18. The cylindrical lens 25 located on the side of the photodetector 20 has the bus 2
5a is orthogonal to the optical scanning direction 18. 29 indicates an optical axis.
【0020】両円柱面レンズ25、26はそれぞれ、当
該母線25aまたは26aの方向に対してはレンズ作用
をもたないので、光走査の方向18におけるレンズ作用
は図5の(a)に示すものとなる。つまり、実装基板1
6から円柱面レンズ25に至る距離をa、円柱面レンズ
25から光検出器20に至る距離をbとするときの倍率
mは、m=b/aで表される。一方、光走査の方向18
と直交する方向におけるレンズ作用は図5の(b)に示
すものとなり、実装基板16から円柱面レンズ26に至
る距離をc、円柱面レンズ26から光検出器20に至る
距離をdとするときの倍率m’は、m’=d/cで表さ
れ、m’>mとなる。このため、実装基板16の表面状
態を検出するのに、光走査の方向長を光検出器20上に
比較的短く結像させつつ、実装基板16の表面上の高さ
の変化成分を比較的大きいレンズ倍率で確実かつ正確に
検出することができる。Since the two cylindrical lenses 25 and 26 have no lens action in the direction of the generatrix 25a or 26a, the lens action in the optical scanning direction 18 is as shown in FIG. Becomes That is, the mounting board 1
When the distance from 6 to the cylindrical lens 25 is a and the distance from the cylindrical lens 25 to the photodetector 20 is b, the magnification m is represented by m = b / a. On the other hand, the optical scanning direction 18
The lens action in the direction orthogonal to is as shown in FIG. 5B, where c is the distance from the mounting substrate 16 to the cylindrical lens 26 and d is the distance from the cylindrical lens 26 to the photodetector 20. The magnification m ′ of is represented by m ′ = d / c, and m ′> m. Therefore, in order to detect the surface state of the mounting board 16, the height change component on the surface of the mounting board 16 is comparatively formed while forming a relatively short image on the photodetector 20 in the optical scanning direction. It is possible to detect reliably and accurately with a large lens magnification.
【0021】第2の光検出手段も、上述した第1の光検
出手段と同様に構成できるが、図示した実施例では、実
装基板16側に位置する円柱面レンズ28の母線を副偏
向走査の方向に平行に置き、光検出器21側に位置する
円柱面レンズ27の母線を副偏向走査の方向に直交させ
ている。The second photo-detecting means can also be constructed in the same manner as the above-mentioned first photo-detecting means, but in the illustrated embodiment, the generatrix of the cylindrical lens 28 located on the mounting substrate 16 side is subjected to sub-deflection scanning. It is placed parallel to the direction, and the generatrix of the cylindrical lens 27 located on the photodetector 21 side is orthogonal to the sub-deflection scanning direction.
【0022】上述した実施例での被検査物は実装基板で
あったが、本発明の電子部品検査装置は、部品を実装す
る前の回路基板や、液晶パネルや、半導体ウエハ等の表
面検査にも適用できる。Although the object to be inspected in the above-described embodiment is the mounting substrate, the electronic component inspection apparatus of the present invention is used for surface inspection of a circuit board, a liquid crystal panel, a semiconductor wafer, etc. before mounting components. Can also be applied.
【0023】[0023]
【発明の効果】以上のように本発明によると、レーザ光
を被検査物の表面に直角に入射させて等速で光走査をす
ることができるので、死角を生じることなく常に均一な
ビームスポットで被検査物の表面状態を精度よく検査す
ることができる。As described above, according to the present invention, the laser beam can be incident on the surface of the object to be inspected at a right angle to perform optical scanning at a constant speed, so that a uniform beam spot is always generated without causing a blind spot. Thus, the surface condition of the object to be inspected can be accurately inspected.
【0024】また、光検出器は被検査物の表面上に生じ
た反射散乱光を、被検査物に近い位置でミラーを介さず
に受けるので、受光効率を改善できる。Further, since the photodetector receives the reflected and scattered light generated on the surface of the object to be inspected at a position close to the object to be inspected without passing through the mirror, the light receiving efficiency can be improved.
【図1】本発明の一実施例の電子部品検査装置の斜視
図。FIG. 1 is a perspective view of an electronic component inspection device according to an embodiment of the present invention.
【図2】本発明の一実施例におけるfθレンズ系の動作
説明図。FIG. 2 is an operation explanatory diagram of an fθ lens system according to an embodiment of the present invention.
【図3】本発明の一実施例における光走査と受光との関
係を示す斜視図。FIG. 3 is a perspective view showing the relationship between optical scanning and light reception in an embodiment of the present invention.
【図4】本発明の他の実施例の電子部品検査装置の斜視
図。FIG. 4 is a perspective view of an electronic component inspection apparatus according to another embodiment of the present invention.
【図5】本発明の他の実施例における光検出手段の集束
レンズ系の動作説明図。FIG. 5 is an operation explanatory view of the focusing lens system of the light detecting means in another embodiment of the present invention.
【図6】従来のレーザスキャン方式検査装置の斜視図。FIG. 6 is a perspective view of a conventional laser scanning type inspection apparatus.
11 半導体レーザ素子 14 ポリゴンミラー 16 実装基板 17 fθレンズ系 20、21 光検出器 24 駆動機構 25〜28 円柱面レンズ 11 semiconductor laser element 14 polygon mirror 16 mounting substrate 17 fθ lens system 20, 21 photodetector 24 drive mechanism 25-28 cylindrical lens
Claims (3)
を反射させる軸転可能な主偏向走査用ポリゴンミラー
と、 ポリゴンミラーの鏡面で反射したレーザ光を被検査物の
表面に直角に入射させる光走査用fθレンズ系と、 光走査によって被検査物の表面に生じた散乱反射光を検
出し光電変換するために、fθレンズ系を避けた位置に
光軸を傾斜して設けられた光検出手段とを備えてなるこ
とを特徴とする電子部品検査装置。1. A laser element for emitting a laser beam, a polygon mirror for main deflection scanning, which has a multi-sided mirror surface parallel to an axis and which reflects the laser beam incident on the mirror surface, and a mirror surface of the polygon mirror. Fθ lens system for scanning the laser light reflected by the surface of the object to be inspected at a right angle, and an fθ lens system for detecting and photoelectrically converting scattered reflected light generated on the surface of the object by the optical scanning. An electronic component inspection device, comprising: a light detection unit provided with an optical axis inclined at a position avoiding the above.
ンズ系および光検出器からなり、集束レンズ系は光軸に
沿って配設された2個の円柱面レンズからなり、被検査
物側に位置する円柱面レンズの母線が光走査の方向に平
行に置かれ、他方の円柱面レンズの母線が光走査の方向
に直交して置かれている請求項1記載の電子部品検査装
置。2. The light detecting means comprises a focusing lens system for focusing diffusely reflected light and a photodetector, and the focusing lens system comprises two cylindrical surface lenses arranged along the optical axis, and the object side to be inspected. 2. The electronic component inspection apparatus according to claim 1, wherein the generatrix of the cylindrical surface lens located at is parallel to the optical scanning direction, and the generatrix of the other cylindrical surface lens is orthogonal to the optical scanning direction.
ンズ系および光検出手段が、ポリゴンミラーに対して該
ミラーの軸方向に移動可能である請求項1または2記載
の電子部品検査装置。3. The electronic component inspection apparatus according to claim 1, wherein the laser element, the fθ lens system, and the light detection means for the sub-deflection scanning are movable in the axial direction of the polygon mirror.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28495594A JPH0875431A (en) | 1994-07-08 | 1994-11-18 | Electronic parts inspection device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6-157530 | 1994-07-08 | ||
JP15753094 | 1994-07-08 | ||
JP28495594A JPH0875431A (en) | 1994-07-08 | 1994-11-18 | Electronic parts inspection device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0875431A true JPH0875431A (en) | 1996-03-22 |
Family
ID=26484945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28495594A Pending JPH0875431A (en) | 1994-07-08 | 1994-11-18 | Electronic parts inspection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0875431A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7884949B2 (en) | 2003-02-06 | 2011-02-08 | Koh Young Technology Inc. | Three-dimensional image measuring apparatus |
-
1994
- 1994-11-18 JP JP28495594A patent/JPH0875431A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7884949B2 (en) | 2003-02-06 | 2011-02-08 | Koh Young Technology Inc. | Three-dimensional image measuring apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3866038A (en) | Apparatus for measuring surface flatness | |
JP5268061B2 (en) | Board inspection equipment | |
JP3264634B2 (en) | Surface inspection device and method | |
JP2842310B2 (en) | Optical module optical axis adjusting apparatus and method | |
JPH0875431A (en) | Electronic parts inspection device | |
JP3203851B2 (en) | Inspection device for mounted printed circuit boards | |
JPH0534128A (en) | Detecting apparatus of extraneous substance | |
US5706081A (en) | Apparatus for inspecting surface defects with regularly reflected light and peripherally scattered light | |
JPH10148514A (en) | Electronic component inspection apparatus | |
JP3507262B2 (en) | Surface inspection equipment | |
JP2003097924A (en) | Shape measuring system and method using the same | |
KR920010908B1 (en) | Mirror detection head | |
JP2950004B2 (en) | Confocal laser microscope | |
KR20140126774A (en) | Inspection device and image capture element | |
JPH0372248A (en) | Dust detector | |
JPH0743123A (en) | Surface inspection device | |
JPH0634557A (en) | Laser otical system and method of reading state of surface to be inspected by use of laser beam | |
JP3399468B2 (en) | Inspection device for mounted printed circuit boards | |
JP2005077158A (en) | Surface inspection device and method | |
JPH10281721A (en) | Displacement measuring device | |
JPH11173823A (en) | Optical inspection equipment | |
JPH10132528A (en) | Surface inspection device | |
JPH10239014A (en) | Focal point detecting device and inspecting device | |
JPH06265811A (en) | Beam deflecting device and defect inspection device | |
JPH02136814A (en) | Optical beam detector |