[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0874516A - Method for controlling feeding water and method for controlling gas for exhaust gas after burning-type combined cycle - Google Patents

Method for controlling feeding water and method for controlling gas for exhaust gas after burning-type combined cycle

Info

Publication number
JPH0874516A
JPH0874516A JP20633994A JP20633994A JPH0874516A JP H0874516 A JPH0874516 A JP H0874516A JP 20633994 A JP20633994 A JP 20633994A JP 20633994 A JP20633994 A JP 20633994A JP H0874516 A JPH0874516 A JP H0874516A
Authority
JP
Japan
Prior art keywords
gas
feed water
exhaust gas
turbine exhaust
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20633994A
Other languages
Japanese (ja)
Inventor
孝明 ▲桑▼原
Takaaki Kuwabara
Akihiro Kawauchi
章弘 川内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20633994A priority Critical patent/JPH0874516A/en
Publication of JPH0874516A publication Critical patent/JPH0874516A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE: To prevent boiler efficiency and plant efficiency from being deteriorated caused by performance deviation of a gas turbine exhaust gas cooler by controlling the high-pressure feed water superheater feed water flow rate or the high-pressure gas feed water heater feed water flow rate, so that the gas turbine exhaust gas cooler outlet gas temperature may become the set value or less. CONSTITUTION: Condensed water is boosted by a boiler feed water pump 9, heated by extracted steam of a steam turbine 4 by a high-pressure feed water heater 8, further heated by a high-pressure feed water heater 13 provided in parallel with the high- pressure feed water heater 8, and fed to a boiler 3. The feed water distribution to a high-pressure feed water heater inlet feed water flow rate adjusting valve 41 and a high-pressure gas feed water heater inlet feed water flow rate adjusting valve 42 is controlled by a flow rate controller 35, so that the gas temperature to be measured by a gas turbine exhaust gas cooler outlet gas thermometer 31 may be made into the constant value. Thereby the boiler inlet gas temperature is made constant without being affected by performance deviation of a gas turbine exhaust gas cooler 12, and boiler efficiency and plant efficiency are also stabilized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排気再燃型コンバイン
ドサイクルの給水制御方法及びガス制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water supply control method and a gas control method for an exhaust gas reburn type combined cycle.

【0002】[0002]

【従来の技術】排気再燃型コンバインドサイクルの方式
の1つに、ボイラ入口部の耐熱温度が高温のガスタービ
ン排ガス温度より低い場合、ガスタービン排ガスクーラ
によりガスタービン排ガスをボイラ入口耐熱温度以下に
まで下げて、ガスタービン排ガスをボイラ燃焼用空気と
して利用する排気再燃型コンバインドサイクル給水加熱
器方式がある。排気再燃型コンバインドサイクル給水加
熱器方式における給水系統は、ガスタ−ビン排ガスを冷
却し、ボイラへ送水する給水を加熱するガスタービン排
ガスクーラ及びボイラ排ガスを冷却し、給水を加熱する
高圧ガス給水加熱器からなるガス側給水系統と,ガス側
給水系統と並列に設けられた蒸気タービン抽気により給
水を加熱する高圧給水加熱器からなる抽気側給水系統が
ある。
2. Description of the Related Art As one of the methods of an exhaust gas re-combustion combined cycle, when the heat resistant temperature of the boiler inlet is lower than the temperature of the high temperature gas turbine exhaust gas, the gas turbine exhaust gas cooler reduces the gas turbine exhaust gas to the temperature lower than the boiler inlet heat resistant temperature. There is an exhaust gas re-combustion combined cycle feed water heater system that lowers and uses the gas turbine exhaust gas as boiler combustion air. Exhaust gas refueling type combined cycle feed water heater system is a gas turbine exhaust gas cooler that cools the gas turbine exhaust gas and heats the feed water that is sent to the boiler, and a high pressure gas feed water heater that heats the feed water. There is a gas side water supply system consisting of the above, and an extraction side water supply system consisting of a high pressure water supply heater that heats the water supply by steam turbine extraction air that is installed in parallel with the gas side water supply system.

【0003】従来の排気再燃コンバインドサイクルで
は、ガス側給水系統と抽気側給水系統との給水流量配分
は、高圧給水加熱器出口給水温度とガスタービン排ガス
クーラ出口給水温度を等しくし、合流してボイラへ給水
するよう制御している。
In the conventional exhaust gas re-combustion combined cycle, the feed water flow rate distribution between the gas side feed water system and the extraction side feed water system is such that the high pressure feed water heater outlet feed water temperature and the gas turbine exhaust gas cooler outlet feed water temperature are equalized and joined. It is controlled to supply water to.

【0004】[0004]

【発明が解決しようとする課題】従来の排気再燃コンバ
インドサイクルにおける給水系の制御方法ではガスター
ビン排ガスクーラの性能偏差によりボイラ入口ガス温度
が変化し、ボイラ効率やプラント効率に影響を与える。
ガスタービン排ガスクーラの性能が良い場合は、ガスタ
ービン排ガスクーラ出口ガス温度(ボイラ入口ガス温
度)が下がり、ボイラ効率やプラント効率が低下すると
いう問題がある。本発明は、ガスタービン排ガスクーラ
の性能偏差によりボイラ効率やプラント効率が低下する
のを防止する給水制御方法及びガス制御方法を提供する
ことにある。
In the conventional method of controlling the water supply system in the exhaust gas re-combustion combined cycle, the boiler inlet gas temperature changes due to the performance deviation of the gas turbine exhaust gas cooler, which affects the boiler efficiency and the plant efficiency.
When the performance of the gas turbine exhaust gas cooler is good, there is a problem that the gas temperature of the gas turbine exhaust gas cooler outlet (boiler inlet gas temperature) decreases, and the boiler efficiency and plant efficiency decrease. An object of the present invention is to provide a water supply control method and a gas control method that prevent a decrease in boiler efficiency and plant efficiency due to performance deviation of a gas turbine exhaust gas cooler.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決するために、ガスタービン排ガスクーラ出口側にガス
温度を測定するガスタービン排ガスクーラ出口ガス温度
計を設置し、ガスタービン排ガスクーラ出口ガス温度計
により測定された温度が設定値となるよう高圧給水加熱
器給水流量または、高圧ガス給水加熱器給水流量を制御
し、ガスタービン排ガスクーラ回収熱量が計画より増加
しないよう考慮している。給水流量分配のためには、高
圧給水加熱器給水流量を制御する高圧給水加熱器給水流
量調節弁または、高圧ガス給水加熱器給水流量を制御す
る高圧ガス給水加熱器給水流量調節弁あるいは、その両
方が設置される場合もある。
In order to solve the above-mentioned problems, the present invention provides a gas turbine exhaust gas cooler outlet gas thermometer for measuring a gas temperature on the gas turbine exhaust gas cooler outlet side, and a gas turbine exhaust gas cooler outlet is provided. The high-pressure feed water heater feed flow rate or the high-pressure gas feed water heater feed water flow rate is controlled so that the temperature measured by the gas thermometer becomes a set value, and it is considered that the heat recovery amount of the gas turbine exhaust gas cooler does not increase from the plan. For distribution of feed water flow rate, high pressure feed water heater feed water flow rate control valve for controlling feed water flow rate, high pressure gas feed water heater feed water flow rate control valve for controlling feed water flow rate, or both May be installed.

【0006】本発明のもうひとつの方法では、上記課題
を解決するために、ガスタービン排ガスクーラ出口側に
給水温度を測定するガスタービン排ガスクーラ出口給水
温度計と,高圧給水加熱器出口側でガスタービン排ガス
クーラ出口給水との合流前に給水温度を測定する高圧給
水加熱器出口給水温度計を設置し、ガスタービン排ガス
クーラ出口給水温度計により測定された給水温度と高圧
給水加熱器出口給水温度計により測定された給水温度と
の給水温度差が、設定された温度差以内となるよう制御
し、ガスタービン排ガスクーラ出口給水温度を高圧給水
加熱器出口給水温度以上とすることで、ガスタービン排
ガスクーラ回収熱量が計画より増加しないよう考慮して
いる。給水流量分配のためには、高圧給水加熱器給水流
量を制御する高圧給水加熱器給水流量調節弁または、高
圧ガス給水加熱器給水流量を制御する高圧ガス給水加熱
器給水流量調節弁あるいは、その両方が設置される場合
もある。
In another method of the present invention, in order to solve the above-mentioned problems, a gas turbine exhaust gas cooler outlet feed water thermometer for measuring the feed water temperature at the gas turbine exhaust gas cooler outlet side and a gas at the high pressure feed water heater outlet side are provided. Install a high-pressure feed water heater outlet feed water temperature meter that measures the feed water temperature before joining with the turbine exhaust gas cooler outlet feed water, and supply water temperature measured by the gas turbine exhaust gas cooler outlet feed water temperature meter and high-pressure water heater outlet feed water temperature meter The temperature of the water supplied to the gas turbine exhaust gas cooler is controlled to be within the set temperature difference, and the temperature of the gas turbine exhaust gas cooler outlet is higher than or equal to the outlet pressure of the high pressure water heater. Consideration is given so that the amount of recovered heat does not exceed the plan. For distribution of feed water flow rate, high pressure feed water heater feed water flow rate control valve for controlling feed water flow rate, high pressure gas feed water heater feed water flow rate control valve for controlling feed water flow rate, or both May be installed.

【0007】また本発明の他の方法では、上記課題を解
決するために、前記ガスタービン排ガスクーラ出口ガス
温度計と,複数個ある高圧給水加熱器間の給水配管また
は、高圧給水加熱器出口側の給水配管あるいは、ガスタ
ービン排ガスクーラ出口給水管と高圧ガス給水加熱器出
口側の給水配管とを結ぶガスタービン排ガスクーラ給水
バイパス管を設置し、ガスタービン排ガスクーラ出口ガ
ス温度計により測定されたガス温度が設定値となるよう
ガスタービン排ガスクーラバイパス給水流量または、ガ
スタービン排ガスクーラ給水流量を制御することで、ガ
スタービン排ガスクーラ回収熱量が計画より増加しない
よう考慮している。給水流量分配のためには、ガスター
ビン排ガスクーラバイパス給水流量を制御するガスター
ビン排ガスクーラバイパス給水流量調節弁または、ガス
タービン排ガスクーラ給水流量を制御するガスタービン
排ガスクーラ給水流量調節弁あるいは、その両方が設置
される場合がある。
In another method of the present invention, in order to solve the above-mentioned problems, the gas turbine exhaust gas cooler outlet gas thermometer and a feed pipe between a plurality of high pressure feed water heaters or a high pressure feed water heater outlet side. Installed in the gas turbine exhaust gas cooler outlet water supply pipe or the gas turbine exhaust gas cooler outlet water bypass pipe that connects the gas turbine exhaust gas cooler outlet water supply pipe to the high pressure gas feed water heater outlet side water supply pipe. By controlling the gas turbine exhaust gas cooler bypass feed water flow rate or the gas turbine exhaust gas cooler feed water flow rate so that the temperature becomes the set value, it is considered that the heat recovery amount of the gas turbine exhaust gas cooler does not increase from the plan. For distribution of the feed water flow rate, a gas turbine exhaust gas cooler bypass feed water flow rate control valve that controls the gas turbine exhaust gas cooler bypass feed water flow rate, a gas turbine exhaust gas cooler feed water flow rate control valve that controls the gas turbine exhaust gas cooler feed water flow rate, or both May be installed.

【0008】さらに本発明の他の方法では、上記課題を
解決するために、ガスタービン排ガスクーラをガスバイ
パスさせるガスタービン排ガスクーラガスバイパス系統
と,ガスタービン排ガスクーラをガスバイパスしたガス
がガスタービン排ガスクーラを通過したガスと合流した
後のガス温度を測定するボイラ入口ガス温度計を設置
し、ガス温度計により測定されたガス温度が設定された
温度となるようにバイパス分配を制御し、ガスタービン
排ガスクーラ回収熱量が計画より増加しないように考慮
している。
In another method of the present invention, in order to solve the above-mentioned problems, a gas turbine exhaust gas cooler gas bypass system for bypassing the gas turbine exhaust gas cooler and a gas turbine exhaust gas for gas bypassing the gas turbine exhaust gas cooler are used. A boiler inlet gas thermometer that measures the gas temperature after joining the gas that has passed through the cooler is installed, and the bypass distribution is controlled so that the gas temperature measured by the gas thermometer reaches the set temperature, and the gas turbine The amount of heat recovered from the exhaust gas cooler is taken into consideration so as not to exceed the planned amount.

【0009】[0009]

【作用】上記手段により、ボイラ入口ガス温度をボイラ
入口耐熱温度以下で高く維持することにより、ガスター
ビン排ガスクーラの性能偏差によりボイラ効率やプラン
ト効率が低下するのを防止することが可能となる。
With the above means, it is possible to prevent the boiler efficiency and the plant efficiency from decreasing due to the performance deviation of the gas turbine exhaust gas cooler by keeping the boiler inlet gas temperature high below the boiler inlet heat resistant temperature.

【0010】[0010]

【実施例】以下、本発明の実施例を図を参照して説明す
る。
Embodiments of the present invention will now be described with reference to the drawings.

【0011】図1は本発明の第1実施例である。ガスタ
ービン1の回転エネルギーは発電機2で電気出力とな
り、ガスタービン1の排ガスはガスタービン排ガスクー
ラ12に入り冷却されボイラ3の燃焼用空気として利用
する。ボイラ3で発生した蒸気により蒸気タービン4が
駆動し、発電機5で電気出力となる。蒸気タービン4で
仕事をした蒸気は復水器6で復水され、蒸気タービン4
の抽気により低圧給水加熱器11により復水を加熱し、
低圧給水加熱器11と並列に設けられた低圧ガス給水加
熱器14でボイラ排ガスにより復水を加熱し、脱気器1
0で復水を脱気し、ボイラ給水ポンプ9で復水を昇圧し
て、タービンの抽気により復水を加熱する高圧給水加熱
器8で復水をさらに加熱し、高圧給水加熱器8と並列に
設けられた高圧ガス給水加熱器13で復水をさらに加熱
し、ボイラへ送水される。ここで、ガスタービン排ガス
クーラ出口ガス温度計31で測定されるガス温度が一定
となるように流量制御装置35により、高圧給水加熱器
入口給水流量調節弁41と高圧ガス給水加熱器入口給水
流量調節弁42の給水分配を制御することにより、ガス
タービン排ガスクーラ12の性能偏差によらずボイラ入
口ガス温度が一定となり、ボイラ効率、またプラント効
率も安定する。
FIG. 1 shows a first embodiment of the present invention. The rotational energy of the gas turbine 1 becomes an electric output in the generator 2, and the exhaust gas of the gas turbine 1 enters the gas turbine exhaust gas cooler 12 and is cooled and used as combustion air for the boiler 3. The steam turbine 4 is driven by the steam generated in the boiler 3, and the generator 5 produces an electric output. The steam that has worked in the steam turbine 4 is condensed in the condenser 6 and the steam turbine 4
Condensate is heated by the low-pressure feed water heater 11 by the extraction of
The low pressure gas feed water heater 14 provided in parallel with the low pressure feed water heater 11 heats the condensate with the boiler exhaust gas, and the deaerator 1
At 0, the condensate is degassed, the pressure of the condensate is boosted by the boiler feedwater pump 9, and the condensate is further heated by the high-pressure feedwater heater 8 that heats the condensate by the extraction of the turbine, and the condensate is paralleled The condensate is further heated by the high-pressure gas feed water heater 13 provided in, and is sent to the boiler. Here, the high-pressure feed water heater inlet feed water flow rate control valve 41 and the high-pressure gas feed water inlet feed water flow rate are adjusted by the flow rate control device 35 so that the gas temperature measured by the gas turbine exhaust gas cooler outlet gas thermometer 31 becomes constant. By controlling the water supply distribution of the valve 42, the boiler inlet gas temperature becomes constant regardless of the performance deviation of the gas turbine exhaust gas cooler 12, and the boiler efficiency and plant efficiency are also stabilized.

【0012】図2は本発明の第2実施例である。水及び
ガスの系統は第1実施例と同様であるが、復水のガス側
系統と抽気側系統への分配制御は、ガスタービン排ガス
クーラ出口給水温度計32で計測される給水温度と,高
圧給水加熱器出口給水温度計33で計測される給水温度
の温度差が設定された温度差、ガスタービン排ガスクー
ラ出口給水温度が約0℃から50℃以下程度の範囲で高
くなるように、流量制御装置36により、高圧給水加熱
器入口給水流量調節弁41と、前記高圧ガス給水加熱器
入口給水流量調節弁42の給水分配を制御することによ
り、ガス側給水系統への通水量が減りボイラ入口ガス温
度を高くすることができ、ボイラ効率,プラント効率を
高くすることができる。
FIG. 2 shows a second embodiment of the present invention. The water and gas system is the same as that of the first embodiment, but the distribution control of the condensate to the gas side system and the extraction side system is performed by the feed water temperature measured by the gas turbine exhaust gas cooler outlet feed water temperature meter 32 and the high pressure. Flow rate control such that the temperature difference of the feed water temperature measured by the feed water heater outlet feed water temperature meter 33 is set, and the gas turbine exhaust gas cooler outlet feed water temperature rises in the range of about 0 ° C to 50 ° C or less. By controlling the water supply distribution of the high-pressure feed water heater inlet feed water flow rate control valve 41 and the high-pressure gas feed water heater inlet feed water flow rate control valve 42 by the device 36, the water flow rate to the gas side water supply system is reduced and the boiler inlet gas The temperature can be raised, and the boiler efficiency and plant efficiency can be raised.

【0013】図3は本発明の第3実施例である。水及び
ガスの系統は第1実施例に加え、高圧ガス給水加熱器出
口と高圧給水加熱器とを結ぶガスタービン排ガスクーラ
給水バイパス管21を設ける。高圧給水加熱器入口給水
流量調節弁41と、前記高圧ガス給水加熱器入口給水流
量調節弁42の給水分配はバルブ一定開度とし、ガスタ
ービン排ガスクーラ出口ガス温度計31で測定されるガ
ス温度が一定となるよう、流量制御装置37により、給
水バイパス調節弁44とガスタービン排ガスクーラ給水
流量調節弁43の給水分配を制御することにより、ガス
タービン排ガスクーラ12の性能偏差によらずボイラ入
口ガス温度が一定となり、ボイラ効率、またプラント効
率も安定する。
FIG. 3 shows a third embodiment of the present invention. In addition to the first embodiment, the water and gas system is provided with a gas turbine exhaust gas cooler feed water bypass pipe 21 that connects the outlet of the high pressure gas feed water heater and the high pressure feed water heater. The feed water distribution of the high pressure feed water heater inlet feed water flow rate control valve 41 and the high pressure gas feed water heater inlet feed water flow rate control valve 42 is a constant valve opening, and the gas temperature measured by the gas turbine exhaust gas cooler outlet gas thermometer 31 is By controlling the feed water distribution of the feed water bypass control valve 44 and the gas turbine exhaust gas cooler feed water flow control valve 43 by the flow control device 37 so as to be constant, the boiler inlet gas temperature does not depend on the performance deviation of the gas turbine exhaust gas cooler 12. Is constant, and boiler efficiency and plant efficiency are stable.

【0014】図4は本発明の第4実施例である。水及び
ガスの系統は第1実施例に加え、ガスタービン排ガスク
ーラ12をガスバイパスさせるガスタービン排ガスクー
ラガスバイパス系統22を設け、高圧給水加熱器入口給
水流量調節弁41と、前記高圧ガス給水加熱器入口給水
流量調節弁42の給水分配はバルブ一定開度とし、ボイ
ラ入口ガス温度計34で測定されるガス温度が一定とな
るよう、流量制御装置38により、ガスダンパ45を制
御し、ガスバイパス量を制御することにより、ガスター
ビン排ガスクーラ12の性能偏差によらずボイラ入口ガ
ス温度が一定となり、ボイラ効率、またプラント効率も
安定する。
FIG. 4 shows a fourth embodiment of the present invention. In addition to the water and gas system of the first embodiment, a gas turbine exhaust gas cooler gas bypass system 22 for bypassing the gas turbine exhaust gas cooler 12 is provided, a high pressure feed water heater inlet feed water flow rate control valve 41 and the high pressure gas feed water heating. The water supply distribution of the equipment inlet water supply flow rate control valve 42 is made to be a constant valve opening degree, and the gas damper 45 is controlled by the flow rate control device 38 so that the gas temperature measured by the boiler inlet gas thermometer 34 becomes constant, and the gas bypass amount. By controlling the above, the boiler inlet gas temperature becomes constant regardless of the performance deviation of the gas turbine exhaust gas cooler 12, and the boiler efficiency and the plant efficiency are stabilized.

【0015】[0015]

【発明の効果】本発明によれば、ボイラ入口ガス温度を
ボイラ入口耐熱温度以下で高く維持することにより、ガ
スタービン排ガスクーラの性能偏差によりボイラ効率や
プラント効率が低下するのを防止することが可能とな
る。
According to the present invention, by keeping the boiler inlet gas temperature high below the boiler inlet heat resistant temperature, it is possible to prevent the boiler efficiency and the plant efficiency from being lowered due to the performance deviation of the gas turbine exhaust gas cooler. It will be possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例における概略系統構成図で
ある。
FIG. 1 is a schematic system configuration diagram in a first embodiment of the present invention.

【図2】本発明の第2実施例における概略系統構成図で
ある。
FIG. 2 is a schematic system configuration diagram in a second embodiment of the present invention.

【図3】本発明の第3実施例における概略系統構成図で
ある。
FIG. 3 is a schematic system configuration diagram in a third embodiment of the present invention.

【図4】本発明の第4実施例における概略系統構成図で
ある。
FIG. 4 is a schematic system configuration diagram in a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…ガスタービン、2,5…発電機、3…ボイラ、4…
蒸気タービン、6…復水器、7…煙突、8…高圧給水加
熱器、9…ボイラ給水ポンプ、10…脱気器、11…低
圧給水加熱器、12…ガスタービン排ガスクーラ、13
…高圧ガス給水加熱器、14…低圧ガス給水加熱器、2
1…ガスタービン排ガスクーラ給水バイパス管、22…
ガスタービン排ガスクーラガスバイパス系統。
1 ... Gas turbine, 2, 5 ... Generator, 3 ... Boiler, 4 ...
Steam turbine, 6 ... Condenser, 7 ... Chimney, 8 ... High pressure feed water heater, 9 ... Boiler feed pump, 10 ... Deaerator, 11 ... Low pressure feed water heater, 12 ... Gas turbine exhaust gas cooler, 13
… High-pressure gas feed water heater, 14… Low-pressure gas feed water heater, 2
1 ... Gas turbine exhaust gas cooler feed water bypass pipe, 22 ...
Gas turbine exhaust gas cooler gas bypass system.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ガスタービンと,ガスタービンの排ガスを
冷却し、ボイラへ送水する給水を加熱するガスタービン
排ガスクーラと,ガスタービン排ガスクーラにより冷却
されたガスタービン排ガスを燃焼用空気として利用し蒸
気を発生するボイラと,ボイラで発生された蒸気により
駆動する蒸気タービンと,蒸気タービンで仕事をした蒸
気を凝縮させる復水器と,蒸気タービンの抽気により復
水を加熱する低圧給水加熱器と,低圧給水加熱器と並列
に設けられたボイラ排ガスにより復水を加熱する低圧ガ
ス給水加熱器と,蒸気タービンの抽気により復水を加熱
する高圧給水加熱器と,高圧給水加熱器と並列に設けら
れたボイラ排ガスにより復水を加熱する高圧ガス給水加
熱器から構成される排気再燃型コンバインドサイクル発
電プラントにおいて、 ガスタービン排ガスクーラ出口側にガス温度を測定する
ガスタービン排ガスクーラ出口ガス温度計を設置し、該
ガスタービン排ガスクーラ出口ガス温度計により測定さ
れた温度が設定値以下となるように、高圧給水加熱器給
水流量または高圧ガス給水加熱器給水流量を制御するこ
とを特徴とする排気再燃型コンバインドサイクルの給水
制御方法。
1. A gas turbine, a gas turbine exhaust gas cooler that cools the exhaust gas of the gas turbine and heats the feed water that is sent to the boiler, and a steam that uses the gas turbine exhaust gas cooled by the gas turbine exhaust gas cooler as combustion air. , A steam turbine driven by steam generated in the boiler, a condenser for condensing the steam working in the steam turbine, a low-pressure feed water heater for heating the condensate by steam turbine extraction, It is installed in parallel with the low-pressure feed water heater, which heats the condensate with boiler exhaust gas, which is installed in parallel with the low-pressure feed water heater, the high-pressure feed water heater which heats the condensate water by the steam turbine bleed air, and the high-pressure feed water heater. In an exhaust gas re-combustion combined cycle power plant consisting of a high pressure gas feed water heater that heats the condensate with the boiler exhaust gas A gas turbine exhaust gas cooler outlet gas thermometer for measuring the gas temperature is installed on the gas turbine exhaust gas cooler outlet side so that the temperature measured by the gas turbine exhaust gas cooler outlet gas thermometer is below a set value. A feed water control method for an exhaust gas re-combustion combined cycle, comprising controlling a feed water flow rate of a heater or a high pressure gas feed water.
【請求項2】請求項1における排気再燃型コンバインド
サイクル発電プラントにおいて、ガスタービン排ガスク
ーラ出口側に給水温度を測定するガスタービン排ガスク
ーラ出口給水温度計と,高圧給水加熱器出口側でガスタ
ービン排ガスクーラ出口給水との合流前に給水温度を測
定する高圧給水加熱器出口給水温度計を設置し、ガスタ
ービン排ガスクーラ出口給水温度計により測定された給
水温度と高圧給水加熱器出口給水温度計により測定され
た給水温度との給水温度差が、設定された温度差以内と
なるよう制御することを特徴とする排気再燃型コンバイ
ンドサイクルの給水制御方法。
2. The exhaust gas re-combustion combined cycle power plant according to claim 1, wherein the gas turbine exhaust gas cooler outlet feed water thermometer for measuring the feed water temperature at the gas turbine exhaust gas cooler outlet side and the gas turbine exhaust gas at the high pressure feed water heater outlet side. Install a high-pressure feed water heater outlet feed water temperature meter to measure the feed water temperature before joining with the cooler outlet feed water, and measure it with the feed water temperature measured by the gas turbine exhaust gas cooler outlet feed water temperature meter and the high pressure feed water heater outlet water temperature thermometer. A method for controlling water supply in an exhaust gas re-combustion combined cycle, characterized in that the difference between the supplied water temperature and the supplied water temperature is controlled to be within a set temperature difference.
【請求項3】請求項1における排気再燃型コンバインド
サイクル発電プラントにおいて、前記ガスタービン排ガ
スクーラ出口ガス温度計と,複数個ある高圧給水加熱器
間の給水配管または、高圧給水加熱器出口側の給水配管
あるいは、ガスタービン排ガスクーラ出口給水配管と高
圧ガス給水加熱器出口側の給水配管とを結ぶガスタービ
ン排ガスクーラ給水バイパス管を設置し、ガスタービン
排ガスクーラ出口ガス温度計により測定されたガス温度
が設定値となるよう、ガスタービン排ガスクーラバイパ
ス給水流量または、ガスタービン排ガスクーラ給水流量
を制御することを特徴とする排気再燃型コンバインドサ
イクルの給水制御方法。
3. The exhaust gas re-combustion combined cycle power plant according to claim 1, wherein the gas turbine exhaust gas cooler outlet gas thermometer and a plurality of high-pressure feed water heaters have a water supply pipe or a high-pressure water supply heater outlet side water supply. Install a gas turbine exhaust gas cooler outlet water supply bypass pipe connecting the gas turbine exhaust gas cooler outlet water supply pipe and the high pressure gas feed water heater outlet side water supply pipe, and check the gas temperature measured by the gas turbine exhaust gas cooler outlet gas thermometer. A feed water control method for an exhaust gas re-combustion combined cycle, comprising controlling a gas turbine exhaust gas cooler bypass feed water flow amount or a gas turbine exhaust gas cooler feed water flow amount so as to attain a set value.
【請求項4】請求項1における排気再燃型コンバインド
サイクル発電プラントにおいて、ガスタービン排ガスク
ーラをガスバイパスさせるガスタービン排ガスクーラガ
スバイパス系統と,ガスタービン排ガスクーラをガスバ
イパスしたガスがガスタービン排ガスクーラを通過した
ガスと合流した後のガス温度を測定するボイラ入口ガス
温度計を設置し、該ボイラ入口ガス温度計により測定さ
れたガス温度が設定された温度となるようにバイパス分
配を制御することを特徴とする排気再燃型コンバインド
サイクルのガス制御方法。
4. The exhaust gas re-combustion combined cycle power plant according to claim 1, wherein a gas turbine exhaust gas cooler gas bypass system for bypassing the gas turbine exhaust gas cooler and a gas bypassing the gas turbine exhaust gas cooler form a gas turbine exhaust gas cooler. A boiler inlet gas thermometer for measuring the gas temperature after joining with the passing gas is installed, and bypass distribution is controlled so that the gas temperature measured by the boiler inlet gas thermometer becomes a set temperature. A gas control method for an exhaust gas re-combustion combined cycle, which is characterized.
JP20633994A 1994-08-31 1994-08-31 Method for controlling feeding water and method for controlling gas for exhaust gas after burning-type combined cycle Pending JPH0874516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20633994A JPH0874516A (en) 1994-08-31 1994-08-31 Method for controlling feeding water and method for controlling gas for exhaust gas after burning-type combined cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20633994A JPH0874516A (en) 1994-08-31 1994-08-31 Method for controlling feeding water and method for controlling gas for exhaust gas after burning-type combined cycle

Publications (1)

Publication Number Publication Date
JPH0874516A true JPH0874516A (en) 1996-03-19

Family

ID=16521667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20633994A Pending JPH0874516A (en) 1994-08-31 1994-08-31 Method for controlling feeding water and method for controlling gas for exhaust gas after burning-type combined cycle

Country Status (1)

Country Link
JP (1) JPH0874516A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105642A (en) * 2012-11-28 2014-06-09 Ube Ind Ltd Power generating system
CN104061027A (en) * 2014-07-11 2014-09-24 中国电力工程顾问集团华东电力设计院 High-temperature extracted steam cooling system of double-reheat turbine thermodynamic system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105642A (en) * 2012-11-28 2014-06-09 Ube Ind Ltd Power generating system
CN104061027A (en) * 2014-07-11 2014-09-24 中国电力工程顾问集团华东电力设计院 High-temperature extracted steam cooling system of double-reheat turbine thermodynamic system

Similar Documents

Publication Publication Date Title
JP3883627B2 (en) Waste heat recovery steam generator and method for operating a gas turbocharger combined with a steam consumer
CN104763485B (en) A kind of concurrent heating type ultrahigh pressure/subcritical back pressure thermal power plant unit thermodynamic system
RU2062332C1 (en) Combined-cycle plant
JP2003161164A (en) Combined-cycle power generation plant
CN105464731B (en) Combustion and steam association system and its progress control method
CN105464808A (en) Gas-steam combined system and operation control method thereof
CN105370332A (en) Stage-adjustable ten-stage regeneration system of 1000 MW unit
JP5822487B2 (en) Gas turbine plant and control method thereof
CN105484816B (en) Combustion and steam association system and its progress control method
JPH0874516A (en) Method for controlling feeding water and method for controlling gas for exhaust gas after burning-type combined cycle
EP3473820A1 (en) Method and installation of cogenertion in heat plants, especially those equipped with water-tube boilers
JPH01318802A (en) Steam temperature control system for re-heating type combined plant
JP2683178B2 (en) Exhaust Reburning Combined Plant Operating Method and Exhaust Reburning Combined Plant
JPH10131716A (en) Method and device for controlling steam cooling system of gas turbine
JP3500710B2 (en) Fuel heating gas turbine plant
JPS61108814A (en) Gas-steam turbine composite facility
JP2001214758A (en) Gas turbine combined power generation plant facility
RU2238414C1 (en) Method for regulating electric power of combined-cycle heating unit incorporating exhaust-heat boiler
CN1232533A (en) Method for operating boiler with forced circulation and boiler for its implementation
JPS5820914A (en) Power generating plant using blast furnace gas as fuel
CN104929707B (en) Power station exhaust steam latent heat and exhaust smoke waste heat combined generating system and optimizing running method
US2303159A (en) Extraction and noncondensing turbine arrangement
JPH08312905A (en) Combined cycle power generating facility
JPH074605A (en) Composite power-generating plant
JPS61118508A (en) Control device for recirculating flow of feed pump