JPH0873988A - Bearing steel excellent in heat treatment productivity as well as in property of retarding microstructural change due to repeated stress load - Google Patents
Bearing steel excellent in heat treatment productivity as well as in property of retarding microstructural change due to repeated stress loadInfo
- Publication number
- JPH0873988A JPH0873988A JP20984894A JP20984894A JPH0873988A JP H0873988 A JPH0873988 A JP H0873988A JP 20984894 A JP20984894 A JP 20984894A JP 20984894 A JP20984894 A JP 20984894A JP H0873988 A JPH0873988 A JP H0873988A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- heat treatment
- bearing
- rolling
- fatigue life
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Rolling Contact Bearings (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ころ軸受あるいは玉軸
受といった転がり軸受の要素部材として用いられる軸受
鋼に関し、とくに熱処理時に起こる脱炭層の生成を抑制
する効果ならびに軸受使用環境の過酷化に伴って生ずる
特有の劣化, すなわち繰り返し応力負荷によって転動接
触面下に発生するミクロ組織変化(劣化)に対する遅延
特性とに優れた軸受鋼についての提案である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing steel used as an element member of a rolling bearing such as a roller bearing or a ball bearing, and particularly with the effect of suppressing the formation of a decarburized layer during heat treatment and the severer environment of bearing use. This is a proposal for a bearing steel that is excellent in the characteristic deterioration that occurs as a result, that is, the delay characteristics for the microstructural change (deterioration) that occurs under the rolling contact surface due to repeated stress loading.
【0002】[0002]
【従来の技術】自動車ならびに産業機械等で用いられる
ころがり軸受としては、従来、高炭素クロム軸受鋼(JI
S:SUJ 2)が最も多く使用されている。一般に軸受鋼と
いうのは、転動疲労寿命の長いことが重要な性質の1つ
であるが、この転動疲労寿命に与える要因としては、鋼
中非金属介在物の影響が最も大きいと考えられていた。
そのため、最近の研究の主流は、鋼中酸素量の低減を通
じて非金属介在物の量, 大きさを制御することによって
軸受寿命を向上させる方策がとられてきた。例えば、軸
受の転動疲労寿命の一層の向上を目指して開発されたも
のとしては、特開平1−306542号公報や特開平3−1268
39号公報などの提案があり、これらは、鋼中の酸化物系
非金属介在物の組成, 形状あるいは分布状態をコントロ
ールする技術である。しかしながら、非金属介在物の少
ない軸受鋼を製造するには、鋼中酸素量の低減が不可欠
であるところ、これも既に限界に達しており、高価な溶
製設備の設置あるいは従来設備の大幅な改良が必要であ
り、経済的な負担が大きいという問題があった。2. Description of the Related Art Conventionally, high-carbon chromium bearing steel (JI
S: SUJ 2) is most often used. In general, bearing steel is one of the important properties that long rolling fatigue life is important, but it is considered that the influence of non-metallic inclusions in steel is the most significant factor affecting rolling fatigue life. Was there.
Therefore, the mainstream of recent research has been to take measures to improve the bearing life by controlling the amount and size of non-metallic inclusions by reducing the amount of oxygen in steel. For example, as those developed with the aim of further improving the rolling contact fatigue life of bearings, there are Japanese Patent Laid-Open Nos. 1-306542 and 3-1268.
There are proposals such as Japanese Patent No. 39, which are technologies for controlling the composition, shape, or distribution state of oxide-based nonmetallic inclusions in steel. However, in order to manufacture bearing steel with few non-metallic inclusions, it is essential to reduce the amount of oxygen in the steel, but this has already reached the limit, and expensive melting equipment or a large amount of conventional equipment has to be installed. There was a problem that improvement was necessary and the financial burden was large.
【0003】また、上記高炭素軸受鋼(JIS-SUJ 2)の特
性改善を図るためのもう1つの動きは、加工性、特に熱
処理時の脱炭層の生成を抑制することの研究である。一
般に、上記JIS-SUJ 2 に規定された軸受鋼は、0.95〜1.
10wt%のCを含むことから、非常に硬質であり、それ故
に、球状化焼なましを行って加工性を向上させた後に成
形加工し、その後焼入れ, 焼もどし処理を施すことによ
って、転がり軸受に必要な強度と靱性を得ていた。とこ
ろが、このような特性改善のための熱処理が何回もかさ
なると、素材表面には、Cと雰囲気ガスとの反応によっ
て、脱炭層と呼ばれる“低C濃度領域”が発生すること
が知られている。この脱炭層は、転がり軸受の硬さ低下
のみならず転動疲労寿命劣化の原因となることから、切
削または研削加工により除去するのが普通であった。そ
のために材料歩留り、さらには生産性の低下を余儀なく
されていたのである。これに対して従来、上記脱炭層の
生成を防止する手段として、熱処理時における炉内の雰
囲気ガス中のカーボンポテンシャルをコントロールする
方法や、特開平2−54717 号公報に開示されている, 球
状化焼なましの初期段階に浸炭処理を施す方法などが提
案されている。しかし、上記の各方法はいずれも、熱処
理あるいはその前処理時の雰囲気制御によるものである
ことから、熱処理コストが嵩むのみならず、材料の組成
や熱処理時間等に応じた適切なガス組成の設定といった
煩雑な操作を必要とするところに問題があった。Another move to improve the characteristics of the above-mentioned high carbon bearing steel (JIS-SUJ 2) is a study on workability, especially suppressing formation of a decarburized layer during heat treatment. In general, the bearing steel specified in JIS-SUJ 2 above is 0.95 to 1.
Since it contains 10 wt% of C, it is very hard. Therefore, rolling bearings can be obtained by performing spheroidizing annealing to improve workability, then forming, and then quenching and tempering. Had the necessary strength and toughness. However, it is known that when the heat treatment for improving the characteristics is repeated many times, a "low C concentration region" called a decarburized layer is generated on the surface of the material due to the reaction between C and the atmosphere gas. There is. This decarburized layer not only lowers the hardness of the rolling bearing but also causes the deterioration of rolling contact fatigue life, and therefore it is usually removed by cutting or grinding. For this reason, the material yield and the productivity have been unavoidably reduced. On the other hand, heretofore, as a means for preventing the formation of the decarburized layer, a method of controlling the carbon potential in the atmosphere gas in the furnace during the heat treatment and the spheroidizing method disclosed in JP-A-2-54717 have been disclosed. A method of carburizing at the initial stage of annealing has been proposed. However, since each of the above methods is controlled by the atmosphere during the heat treatment or its pretreatment, not only the heat treatment cost increases, but also the setting of an appropriate gas composition according to the material composition, heat treatment time, etc. There was a problem in that a complicated operation was required.
【0004】[0004]
【発明が解決しようとする課題】上述した従来技術につ
いてさらに追求するため発明者らは最近、種々の研究を
行った。その結果、意外にも軸受転動寿命を決めている
要因には、従来から一般に論じられてきた上述した現
象;すなわち、上述した“非金属介在物”の存在や熱処
理時に生じる“脱炭層”(低C濃度領域)の生成以外の
要因もあるということを突き止めた。というのは、従来
技術の下で単に非金属介在物や脱炭層を減少させても、
軸受の転動疲労寿命、特に、高負荷あるいは高温といっ
た過酷な条件下での軸受寿命の向上に対しては大きな効
果が得られないというケースを多く経験したからであ
る。このことから、発明者らは、軸受寿命を左右する要
因として、非金属介在物の存在, 脱炭層の生成の他
に、さらに高負荷転動時の転動接触面下に生成するミ
クロ組織変化の3つがあることを知見したのである。DISCLOSURE OF THE INVENTION In order to further pursue the above-mentioned prior art, the inventors have recently conducted various studies. As a result, the factors that unexpectedly determine the rolling life of the bearing are the above-mentioned phenomena that have been generally discussed in the past; namely, the presence of the above-mentioned "non-metallic inclusions" and the "decarburization layer" ( It was found that there are other factors besides the generation of the low C concentration region). Because simply reducing non-metallic inclusions and decarburized layers under the prior art,
This is because there have been many cases in which a large effect cannot be obtained for the rolling contact fatigue life of the bearing, particularly for improving the bearing life under severe conditions such as high load or high temperature. From these facts, the inventors have found that the factors that affect bearing life include the presence of non-metallic inclusions and the formation of decarburized layers, as well as the microstructural changes that occur under the rolling contact surface during high-load rolling. It was discovered that there are three types.
【0005】そこで、発明者らは、最近の軸受使用環境
を考慮した上での軸受寿命、とくに転がり軸受の剥離の
発生原因について、さらに調査を行った。その結果、軸
受使用環境の激化に伴って、軸受の内・外輪と転動体と
の回転接触時に発生する繰り返し剪断応力により、図1
(a) に示すような、転動接触面(表層部)の下部に、帯
状の白色生成物と棒状の析出物からなるミクロ組織変化
層が発生し、これが転動回数を増すにつれて次第に成長
し、終にはこのミクロ組織変化部から、図1(b) に示す
ような疲労剥離が生じて軸受部材表層部を欠損して軸受
寿命がつきることがわかった。さらに、軸受使用環境の
苛酷化すなわち, 高面圧化(小型化), 使用温度の上昇
は、これらミクロ組織変化が発生するまでの転動回数を
短縮し、著しい軸受寿命の低下につながるということも
突き止めた。Therefore, the present inventors have further investigated the bearing life in consideration of the recent bearing usage environment, in particular, the cause of separation of rolling bearings. As a result, due to the repeated use of the shearing stress that occurs when the inner and outer races of the bearing are in rolling contact with the rolling elements, as shown in FIG.
At the bottom of the rolling contact surface (surface layer), as shown in (a), a microstructural change layer consisting of white strip-shaped products and rod-shaped precipitates is generated, which gradually grows as the number of rolling increases. At the end, it was found that fatigue delamination occurred as shown in Fig. 1 (b) from the microstructure-changed portion, and the surface layer of the bearing member was damaged to extend the bearing life. Furthermore, the harsh bearing operating environment, that is, higher surface pressure (miniaturization) and higher operating temperature, will shorten the number of rolling cycles until these microstructural changes occur, leading to a marked reduction in bearing life. I also found out.
【0006】以上説明したように、軸受寿命というの
は、従来技術のような、軸受部材の表面層の部分におけ
る脱炭層や非金属介在物の制御だけでは不十分であり、
例えば、浸炭・窒化や球状化焼鈍などの各種の熱処理に
よって、表面層の脱炭層や非金属介在物量を単に低減さ
せるだけでは、上述した転動接触面(表層部)下で発生
するミクロ組織変化が発生するまでの時間を遅延させる
ことはできない。その結果として、軸受寿命の今まで以
上の向上は図り得ないということを知見したのである。As described above, the bearing life is not sufficient to control the decarburization layer and the non-metallic inclusions in the surface layer portion of the bearing member as in the prior art.
For example, by simply reducing the amount of decarburized layer in the surface layer and the amount of non-metallic inclusions by various heat treatments such as carburizing / nitriding and spheroidizing annealing, the microstructural changes that occur under the rolling contact surface (surface layer portion) described above. It is not possible to delay the time until the occurrence of. As a result, they have found that the bearing life cannot be further improved.
【0007】そこで、本発明の目的は、非金属介在物粒
径の制御を通じて相対的な転動疲労寿命の向上を図るこ
とにあわせ、特に過酷な使用条件の下での軸受使用中に
発生が予想されるミクロ組織変化を遅延させることによ
り、軸受寿命を改善し、さらに、熱処理時の脱炭層の形
成を抑えて熱処理生産性( 加工除去量を減少させること
による効果)の向上をも図り、もって高寿命の軸受鋼を
得ようとすることにある。Therefore, the object of the present invention is to improve the relative rolling contact fatigue life by controlling the particle size of non-metallic inclusions, and also to cause the occurrence of the problem during the use of the bearing under particularly severe operating conditions. By delaying the expected microstructural change, the bearing life is improved and the formation of a decarburized layer during heat treatment is suppressed to improve heat treatment productivity (the effect of reducing the amount of machining removal). Therefore, it is to obtain a bearing steel having a long life.
【0008】[0008]
【課題を解決するための手段】さて、発明者らは、上述
した知見に基づき軸受寿命として、新たに“ミクロ組織
変化遅延特性”というものにも着目した。そして、この
特性の向上を図るには、当然そのための合金設計(成分
組成)が必要であり、このことの実現なくして軸受のよ
り一層の寿命向上は図れないという認識に立ち、さら
に、脱炭層の形成を抑制することを併せ達成する種々の
実験と検討とを行った。その結果、意外にも、Moおよび
Sbの量を適正範囲に制御すれば、繰り返し応力負荷によ
る転動接触面下に生成する上述したミクロ組織変化を著
しく遅延できると同時に、熱処理時の脱炭層の発生抑制
もでき、これに非金属介在物の最大粒径の制御も併せて
行えば、望ましい軸受鋼を得ることができることを見い
出し、本発明に想到した。Based on the above-mentioned findings, the present inventors have also noticed a new "microstructure change delay characteristic" as the bearing life. In order to improve these characteristics, it is of course necessary to design an alloy (component composition) for that purpose, and it is recognized that the life of the bearing cannot be further improved without realizing this. Various experiments and investigations were performed to achieve the suppression of the formation of the. As a result, surprisingly, Mo and
If the amount of Sb is controlled within an appropriate range, it is possible to remarkably delay the above-mentioned microstructural change generated under the rolling contact surface due to repeated stress loading, and at the same time suppress the generation of a decarburized layer during heat treatment. It was found that a desirable bearing steel can be obtained by controlling the maximum grain size of inclusions, and the present invention has been made.
【0009】すなわち、本発明軸受鋼は、以下の如き要
旨構成を有するものである。 (1) C:0.5 〜1.5 wt%, Mo:1.0 超〜2.0 wt
%, Sb:0.005 超〜0.015 wt% を含有し、残部がFeおよび不可避的不純物からなり、酸
化物系非金属介在物の最大粒径が8μm 以下である、繰
り返し応力負荷によるミクロ組織変化の遅延特性と熱処
理生産性とに優れた軸受鋼。That is, the bearing steel of the present invention has the following essential constitution. (1) C: 0.5 to 1.5 wt%, Mo: over 1.0 to 2.0 wt
%, Sb: more than 0.005 to 0.015 wt%, the balance consisting of Fe and unavoidable impurities, the maximum grain size of oxide-based non-metallic inclusions is 8 μm or less, delay of microstructure change due to repeated stress loading Bearing steel with excellent properties and heat treatment productivity.
【0010】(2) C:0.5 〜1.5 wt%, Mo:1.0
超〜2.0 wt%, Sb:0.005 超〜0.015 wt%を含み、さらに Si:0.05〜0.5 wt%, Mn:0.05〜2.0 wt%, Cr:0.05〜2.5 wt%, Ni:0.05〜1.0 wt%, Cu:0.05〜1.0 wt%, B:0.0005〜0.01wt%, Al:0.005 〜0.07wt%及び N:0.0005〜0.012 wt% のうちから選ばれるいずれか1種または2種以上を含有
し、残部がFeおよび不可避的不純物からなり、酸化物系
非金属介在物の最大粒径が8μm 以下である、繰り返し
応力負荷によるミクロ組織変化の遅延特性と熱処理生産
性とに優れた軸受鋼。(2) C: 0.5 to 1.5 wt%, Mo: 1.0
Super ~ 2.0 wt%, Sb: 0.005 ~ 0.015 wt%, Si: 0.05 ~ 0.5 wt%, Mn: 0.05 ~ 2.0 wt%, Cr: 0.05 ~ 2.5 wt%, Ni: 0.05 ~ 1.0 wt%, Cu: 0.05 to 1.0 wt%, B: 0.0005 to 0.01 wt%, Al: 0.005 to 0.07 wt% and N: 0.0005 to 0.012 wt% Any one or more selected from the rest, and the balance Bearing steel consisting of Fe and unavoidable impurities, having a maximum grain size of oxide-based non-metallic inclusions of 8 μm or less and excellent in delay characteristics of microstructure change due to repeated stress load and heat treatment productivity.
【0011】(3) ただし、上記基本成分(C, Mo, Sb)
に対しさらに、選択的に添加される任意添加成分(Si,
Mn, Cr, Ni, Cu, B, Al, N)については、上記(2) の
組成の範囲内において、次のような組合わせで添加する
ことが推奨される。 0.05〜0.5 wt%Si−(Mn, Cr, Ni, Cu,B, Alおよび
Nのいずれか1種以上) 0.05〜2.0 wt%Mn−(Cr, Ni, Cu,B, AlおよびNの
いずれか1種以上) 0.05〜2.5 wt%Cr−(Ni, Cu,B, AlおよびNのいず
れか1種以上) 0.05〜1.0 wt%Ni−(Cu,B, AlおよびNのいずれか
1種以上) 0.05〜1.0 wt%Cu−( B, AlおよびNのいずれか1
種以上) 0.0005〜0.01wt%B−(Al,Nの1種または2種) 0.005 〜0.07wt%Al−N 0.0005〜0.012 wt%N(3) However, the above basic components (C, Mo, Sb)
In addition, the optional additive components (Si,
It is recommended that Mn, Cr, Ni, Cu, B, Al, N) be added in the following combinations within the range of the composition of (2) above. 0.05 to 0.5 wt% Si- (one or more of Mn, Cr, Ni, Cu, B, Al and N) 0.05 to 2.0 wt% Mn- (any of Cr, Ni, Cu, B, Al and N) 0.05 to 2.5 wt% Cr- (any one or more of Ni, Cu, B, Al and N) 0.05 to 1.0 wt% Ni- (any one or more of Cu, B, Al and N) 0.05-1.0 wt% Cu- (Any of B, Al and N 1
0.0005 to 0.01 wt% B- (one or two of Al and N) 0.005 to 0.07 wt% Al-N 0.0005 to 0.012 wt% N
【0012】(4) C:0.5 〜1.5 wt%, Mo:1.0
超〜2.0 wt%, Sb:0.005 超〜0.015 wt%を含み、さらに Si:0.5 超〜2.5 wt%, Cr:2.5 超〜8.0 wt%, Ni:1.0 超〜3.0 wt%, N:0.012 超〜0.050 wt
%, V:0.05〜1.0 wt%, Nb:0.05〜1.0 wt%, W:0.05〜1.0 wt%, Zr:0.02〜0.5 wt%, Ta:0.02〜0.5 wt%, Hf:0.02〜0.5 wt% およびCo:0.05〜1.5 wt% のうちから選ばれるいずれか1種または2種以上を含有
し、残部がFeおよび不可避的不純物からなり、酸化物系
非金属介在物の最大粒径が8μm 以下である、繰り返し
応力負荷によるミクロ組織変化の遅延特性と熱処理生産
性とに優れた軸受鋼。(4) C: 0.5 to 1.5 wt%, Mo: 1.0
Over ~ 2.0 wt%, Sb: over 0.005 ~ 0.015 wt%, Si: over 0.5 ~ 2.5 wt%, Cr: over 2.5 ~ 8.0 wt%, Ni: over 1.0 ~ 3.0 wt%, N: over 0.012 ~ 0.050 wt
%, V: 0.05 to 1.0 wt%, Nb: 0.05 to 1.0 wt%, W: 0.05 to 1.0 wt%, Zr: 0.02 to 0.5 wt%, Ta: 0.02 to 0.5 wt%, Hf: 0.02 to 0.5 wt% and Co: contains 0.05 to 1.5 wt% of any one kind or two kinds or more, the balance is Fe and inevitable impurities, and the maximum particle size of the oxide-based nonmetallic inclusions is 8 μm or less. , Bearing steel with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress loading.
【0013】(5) ただし、上記基本成分(C, Mo, Sb)
に対しさらに、選択的に多量添加される任意添加成分
(Si, Cr, Ni, N)とその他の少量添加される任意添加
成分( V,Nb, W, Zr, Ta, HfおよびCo)については、上
記(4) に記載の組成範囲内において、次のような組合わ
せで添加することが推奨される。 0.5 超〜2.5 wt%Si−(Cr, Ni およびNのうちのい
ずれか1種以上)−(V, Nb, W, Zr, Ta, HfおよびCoの
うちのいずれか1種以上) 2.5 超〜8.0 wt%Cr−(Ni,Nの1種または2種)−
( V, Nb, W, Zr, Ta,HfおよびCoのうちのいずれか1種
以上) 1.0 超〜3.0 wt%Ni− (N)−( V, Nb, W, Zr, T
a, HfおよびCoのうちのいずれか1種以上) 0.012 超〜0.050 wt%N−( V, Nb, W, Zr, Ta, Hf
およびCoのうちのいずれか1種以上) ( V, Nb, W, Zr, Ta, HfおよびCoのうちのいずれか
1種以上)(5) However, the above basic components (C, Mo, Sb)
On the other hand, regarding optional additive components (Si, Cr, Ni, N) that are selectively added in large amounts and other optional additive components (V, Nb, W, Zr, Ta, Hf and Co) that are added in small amounts, In the composition range described in (4) above, it is recommended to add the following combinations. Over 0.5-2.5 wt% Si- (any one or more of Cr, Ni and N)-(any one or more of V, Nb, W, Zr, Ta, Hf and Co) over 2.5- 8.0 wt% Cr- (Ni, N 1 or 2)-
(One or more of V, Nb, W, Zr, Ta, Hf and Co) 1.0 over to 3.0 wt% Ni− (N) − (V, Nb, W, Zr, T
at least one of a, Hf and Co) over 0.012 to 0.050 wt% N- (V, Nb, W, Zr, Ta, Hf
And any one or more of Co) (any one or more of V, Nb, W, Zr, Ta, Hf and Co)
【0014】(6) C:0.5 〜1.5 wt%, Mo:1.0
超〜2.0 wt%, Sb:0.005 超〜0.015 wt%を含み、さらに Si:0.05〜0.5 wt%, Mn:0.05〜2.0 wt%, Cr:0.05〜2.5 wt%, Ni:0.05〜1.0 wt%, Cu:0.05〜1.0 wt%, B:0.0005〜0.01wt%, Al:0.005 〜0.07wt%及び N:0.0005〜0.012 wt% のうちから選ばれるいずれか1種または2種以上を、強
度上昇による転動疲労を改善する成分として含み、さら
にまた、上記改善成分のいずれか1種以上のものが選択
された場合はその元素を除く下記の成分、すなわち、 Si:0.5 超〜2.5 wt%, Cr:2.5 超〜8.0 wt%, Ni:1.0 超〜3.0 wt%, N:0.012 超〜0.050 wt
%, V:0.05〜1.0 wt%, Nb:0.05〜1.0 wt%, W:0.05〜1.0 wt%, Zr:0.02〜0.5 wt%, Ta:0.02〜0.5 wt%, Hf:0.02〜0.5 wt% およびCo:0.05〜1.5 wt% のうちから選ばれるいずれか1種または2種以上を、ミ
クロ組織変化の遅延による転動疲労寿命を改善する成分
として含有し、残部がFeおよび不可避的不純物からな
り、酸化物系非金属介在物の最大粒径が8μm 以下であ
る、繰り返し応力負荷によるミクロ組織変化の遅延特性
と熱処理生産性とに優れた軸受鋼。(6) C: 0.5 to 1.5 wt%, Mo: 1.0
Super ~ 2.0 wt%, Sb: 0.005 ~ 0.015 wt%, Si: 0.05 ~ 0.5 wt%, Mn: 0.05 ~ 2.0 wt%, Cr: 0.05 ~ 2.5 wt%, Ni: 0.05 ~ 1.0 wt%, Cu: 0.05 to 1.0 wt%, B: 0.0005 to 0.01 wt%, Al: 0.005 to 0.07 wt% and N: 0.0005 to 0.012 wt% Any one or more selected from the group due to strength increase When one or more of the above-mentioned improving components is selected as a component for improving dynamic fatigue, the following components excluding the element, that is, Si: more than 0.5 to 2.5 wt%, Cr: Over 2.5 ~ 8.0 wt%, Ni: over 1.0 ~ 3.0 wt%, N: over 0.012 ~ 0.050 wt
%, V: 0.05 to 1.0 wt%, Nb: 0.05 to 1.0 wt%, W: 0.05 to 1.0 wt%, Zr: 0.02 to 0.5 wt%, Ta: 0.02 to 0.5 wt%, Hf: 0.02 to 0.5 wt% and Co: 0.05 to 1.5 wt% selected from the group consisting of one or more selected from the group consisting of Fe and unavoidable impurities, with the balance being Fe and inevitable impurities. A bearing steel that has a maximum grain size of oxide-based non-metallic inclusions of 8 μm or less and is excellent in retarding microstructural changes due to repeated stress loading and heat treatment productivity.
【0015】(7) ただし、上記(6) において、強度上昇
による転動疲労寿命改善成分については、次のような組
合わせが推奨される。 0.05〜0.5 wt%Si−(Mn, Cr, Ni, Cu,B, Alおよび
Nのいずれか1種以上) 0.05〜2.0 wt%Mn−(Cr, Ni, Cu,B, AlおよびNの
いずれか1種以上) 0.05〜2.5 wt%Cr−(Ni, Cu,B, AlおよびNのいず
れか1種以上) 0.05〜1.0 wt%Ni−(Cu,B, AlおよびNのいずれか
1種以上) 0.05〜1.0 wt%Cu−( B, AlおよびNのいずれか1
種以上) 0.0005〜0.01wt%B−(Al,Nの1種または2種) 0.005 〜0.07wt%Al−N 0.0005〜0.012 wt%N また、ミクロ組織変化の遅延による転動疲労寿命改善成
分についての組合わせは下記のものが推奨される。 ′0.5 超〜2.5 wt%Si−(Cr, Ni およびNのうちのい
ずれか1種以上)−(V, Nb, W, Zr, Ta, HfおよびCoの
うちのいずれか1種以上) ′2.5 超〜8.0 wt%Cr−(Ni,Nの1種または2種)−
( V, Nb, W, Zr, Ta,HfおよびCoのうちのいずれか1種
以上) ′1.0 超〜3.0 wt%Ni− (N)−( V, Nb, W, Zr, T
a, HfおよびCoのうちのいずれか1種以上) ′0.012 超〜0.050 wt%N−( V, Nb, W, Zr, Ta, Hf
およびCoのうちのいずれか1種以上) ′( V, Nb, W, Zr, Ta, HfおよびCoのうちのいずれか
1種以上)(7) However, in the above item (6), the following combinations are recommended for the rolling fatigue life improving component due to the increase in strength. 0.05 to 0.5 wt% Si- (one or more of Mn, Cr, Ni, Cu, B, Al and N) 0.05 to 2.0 wt% Mn- (any of Cr, Ni, Cu, B, Al and N) 0.05 to 2.5 wt% Cr- (any one or more of Ni, Cu, B, Al and N) 0.05 to 1.0 wt% Ni- (any one or more of Cu, B, Al and N) 0.05-1.0 wt% Cu- (Any of B, Al and N 1
0.0005 to 0.01 wt% B- (one or two of Al and N) 0.005 to 0.07 wt% Al-N 0.0005 to 0.012 wt% N Also, regarding the components for improving rolling fatigue life due to delay of microstructure change The following combinations are recommended. '0.5-2.5 wt% Si- (any one or more of Cr, Ni and N)-(any one or more of V, Nb, W, Zr, Ta, Hf and Co)' 2.5 Super ~ 8.0 wt% Cr- (One or two kinds of Ni and N)-
(One or more of V, Nb, W, Zr, Ta, Hf, and Co) '1.0 over ~ 3.0 wt% Ni- (N)-(V, Nb, W, Zr, T
a, Hf and / or Co)) '0.012 to 0.050 wt% N- (V, Nb, W, Zr, Ta, Hf
And any one or more of Co) ′ ((any one or more of V, Nb, W, Zr, Ta, Hf and Co))
【0016】[0016]
【作用】以下に、上記合金設計になる本発明軸受鋼に想
到した背景につき、本発明者らが行った実験結果に基づ
いて説明する。まず、実験に当たり、 鋼A SUJ 2 ( C:1.02wt%, Si:0.25wt%, Mn:0.45
wt%, Cr:1.35wt%, N:0.0040wt%, O:0.0012wt
%) と、 鋼B SUJ 2 ( C:1.01wt%, Si:0.24wt%, Mn:0.46
wt%, Cr:1.32wt%, N:0.0042wt%, O:0.0015wt
%) と、 MoとSbとを2水準変化させて添加した材料 鋼C (C:1.00wt%, Si:0.21wt%, Mn:0.43wt%,
Cr:1.33wt%, Mo :1.14wt%, Sb:0.0061wt%, N:
0.0035wt%, O:0.0008wt%) 鋼D (C:0.98wt%, Si:0.22wt%, Mn:0.42wt%,
Cr:1.30wt%, Mo :1.12wt%, Sb:0.0059wt%, N:
0.0037wt%, O:0.0035wt%) 鋼E (C:0.98wt%, Si:0.20wt%, Mn:0.41wt%,
Cr:1.31wt%, Mo :1.82wt%, Sb:0.0094wt%, N:
0.0033wt%, O:0.0009wt%) 鋼F (C:0.98wt%, Si:0.21wt%, Mn:0.42wt%,
Cr:1.31wt%, Mo :1.80wt%, Sb:0.0093wt%, N:
0.0037wt%, O:0.0013wt%) とを溶製した。このうち、B,DおよびFについては、
精錬ならびに凝固条件を制御して酸化物系介在物の最大
径を8μmに調整した。次いで、これらの供試材から、
15mmφ×22mmの円筒型の顕微鏡検査用試験片と、12mmφ
×22mmの転動疲労試験用試験片とを採取し、雰囲気制御
なしに(大気雰囲気で)、焼ならし、球状化焼なまし、
焼入れ焼もどしの各処理を施した。その後、転動疲労試
験用試験片については、脱炭層を完全に除去する目的で
1mm以上のラッピング仕上げを行い、試験面の粗度をR
a:0.1 μm以下とした。The background to the idea of the bearing steel of the present invention having the above alloy design will be described below based on the results of experiments conducted by the present inventors. First, in an experiment, steel A SUJ 2 (C: 1.02 wt%, Si: 0.25 wt%, Mn: 0.45
wt%, Cr: 1.35wt%, N: 0.0040wt%, O: 0.0012wt
%) And steel B SUJ 2 (C: 1.01 wt%, Si: 0.24 wt%, Mn: 0.46
wt%, Cr: 1.32wt%, N: 0.0042wt%, O: 0.0015wt
%), And a material in which Mo and Sb are changed in two levels. Steel C (C: 1.00wt%, Si: 0.21wt%, Mn: 0.43wt%,
Cr: 1.33wt%, Mo: 1.14wt%, Sb: 0.0061wt%, N:
0.0035wt%, O: 0.0008wt%) Steel D (C: 0.98wt%, Si: 0.22wt%, Mn: 0.42wt%,
Cr: 1.30wt%, Mo: 1.12wt%, Sb: 0.0059wt%, N:
0.0037wt%, O: 0.0035wt%) Steel E (C: 0.98wt%, Si: 0.20wt%, Mn: 0.41wt%,
Cr: 1.31wt%, Mo: 1.82wt%, Sb: 0.0094wt%, N:
0.0033wt%, O: 0.0009wt%) Steel F (C: 0.98wt%, Si: 0.21wt%, Mn: 0.42wt%,
Cr: 1.31wt%, Mo: 1.80wt%, Sb: 0.0093wt%, N:
0.0037 wt%, O: 0.0013 wt%). Of these, for B, D and F,
The maximum diameter of oxide inclusions was adjusted to 8 μm by controlling refining and solidification conditions. Then, from these test materials,
15mmφ × 22mm cylindrical specimen for microscopic inspection and 12mmφ
A 22 mm rolling fatigue test piece was taken and normalized, spheroidized and annealed without controlling the atmosphere (in the air).
Each treatment of quenching and tempering was performed. After that, the rolling contact fatigue test pieces are lapped to a thickness of 1 mm or more to completely remove the decarburized layer, and the roughness of the test surface is R
a: 0.1 μm or less.
【0017】なお、転動疲労寿命試験は、上記転動疲労
用試験片をラジアルタイプ型の転動疲労寿命試験機を用
い、ヘルツ最大接触応力:600kgf/mm2、繰返し応力数46
500cpm、潤滑:#68タービン飛沫油の負荷条件の下で
試験したものである。試験の結果は、ワイブル分布確立
紙上にプロットし, 非金属介在物の制御によって影響さ
れる材料強度の上昇による転動疲労寿命の向上を示す数
値と見られる、累積破損確率10%での軸受寿命(以下、
これを「B10転動疲労寿命」という)と高負荷転動時の
繰り返し応力負荷によるミクロ組織変化発生を遅延させ
ることによる転動疲労寿命の向上を示す数値と見られ
る、累積破損確率50%での軸受寿命 (以下、これを「B
50転動疲労寿命」という)とを求め、それぞれ鋼Aを1
として評価した。また、脱炭層の試験については、上記
の円筒状試験片を10mmの位置で高さ方向に垂直に切断
後、ナイタールにて腐食し、ミクロ組織変化による円周
上の全脱炭層の最大値( 以後、「最大脱炭層」という)
で評価した。The rolling fatigue life test was carried out by using a radial type rolling fatigue life tester for the rolling fatigue test piece, and Hertz maximum contact stress: 600 kgf / mm 2 , cyclic stress number 46.
500 cpm, lubrication: # 68 Turbine spray oil tested under loading conditions. The test results are plotted on the Weibull distribution establishment paper, and it is considered that it is a numerical value showing the improvement of rolling fatigue life due to the increase of material strength affected by the control of nonmetallic inclusions. (Less than,
This is referred to as "B 10 rolling fatigue life") and a numerical value showing the improvement of rolling fatigue life by delaying the occurrence of microstructural changes due to repetitive stress loading during high load rolling. Bearing life at
50 rolling fatigue life))
Evaluated as. Further, for the test of the decarburized layer, after cutting the above cylindrical test piece vertically in the height direction at a position of 10 mm, it is corroded by Nital and the maximum value of the total decarburized layer on the circumference due to the microstructure change ( (Hereinafter referred to as "maximum decarburized layer")
Was evaluated.
【0018】その結果を表1に示す。この表1に示す結
果から判るように、非金属介在物制御をすることなく、
単に多量のMoとSbとを複合添加しただけのものでは、前
記B 10転動疲労寿命の改善は小さいものの、B50転動疲
労寿命の改善は著しく改善されることが判る。例えば、
B50転動疲労寿命は、鋼C( Mo :1.14wt%, Sb:0.00
61wt%)ではSUJ 2に比べて約18倍、鋼E( Mo :1.
82wt%, Sb:0.0094wt%では約26倍もの改善が認めら
れた。これに対して、MoとSbとを複合添加し、かつ酸化
物系非金属介在物の最大粒径を制御した鋼Dおよび鋼F
では、B50転動疲労寿命が高いことに加えてB10転動疲
労寿命も極めて改善され、とくに鋼Dは鋼中酸素が高い
にもかかわらずB10転動疲労寿命が約21倍もの高い値
を示している。上記のようなMo,Sb 添加の効果は、前述
したミクロ組織変化の遅延を介して得られたものであっ
て、これらの元素が転動疲労寿命の向上に顕著な効果を
もたらすことが明らかとなった。また、最大脱炭層に関
しては、SUJ 2が0.10mmであったが、Sb:0.006 wt%、
0.009 wt%含むものではそれぞれ0.01mm、0.01mm以下
と、適当なSbの含有が脱炭層の発生抑制に効果のあるこ
とも判った。The results are shown in Table 1. The results shown in Table 1
As you can see from the results, without controlling non-metallic inclusions,
In the case of simply adding a large amount of Mo and Sb in combination,
Note B TenAlthough the rolling fatigue life improvement is small, B50Rolling fatigue
It can be seen that the improvement in working life is significantly improved. For example,
B50The rolling fatigue life of steel C (Mo: 1.14 wt%, Sb: 0.00
61 wt%) is about 18 times that of SUJ 2 and steel E (Mo: 1.
At 82wt%, Sb: 0.0094wt%, about 26 times improvement was observed.
It was On the other hand, by adding Mo and Sb in combination, and oxidizing
Steel D and Steel F with controlled maximum grain size of physical nonmetallic inclusions
Then B50In addition to high rolling fatigue life, BTenRolling fatigue
The working life is also significantly improved, and especially steel D has a high oxygen content in the steel.
Nevertheless BTenRolling fatigue life is about 21 times higher
Is shown. The effects of adding Mo and Sb as described above are
Was obtained through the delay of microstructural changes
And these elements have a remarkable effect on the improvement of rolling contact fatigue life.
It became clear to bring. Also, regarding the maximum decarburization layer
, SUJ 2 was 0.10 mm, but Sb: 0.006 wt%,
0.019 and 0.01 mm or less for those containing 0.009 wt%
In addition, proper Sb content is effective in suppressing the generation of decarburized layer.
I also understood.
【0019】[0019]
【表1】 [Table 1]
【0020】また、図2は、上記軸受転動疲労寿命の実
験結果をまとめたものであって、非金属介在物に起因す
る軸受の寿命とミクロ組織変化に起因する寿命の変化と
の関係を示す模式図である。この図に示すように、B10
転動疲労寿命は、単にMoとSbを多量に添加しただけでは
あまり向上しないが、酸化物系の非金属介在物制御をも
併せて行った場合に顕著な改善される。一方、B50転動
疲労寿命についてみると、このMoとSb多量添加の効果は
非金属介在物制御とは関係なく、極めて顕著なものとな
っている。そこで発明者らは、こうした知見をもとに、
B10転動疲労寿命およびB50転動疲労寿命を向上させ、
かつ熱処理時の脱炭層の成長の抑制を図るには、どのよ
うな合金設計が有効であるかという観点から、以下に説
明するような成分組成の範囲を決定した。FIG. 2 is a summary of the experimental results of the rolling fatigue life of the above-mentioned bearing, and shows the relationship between the life of the bearing caused by non-metallic inclusions and the change in the life caused by microstructural changes. It is a schematic diagram which shows. As shown in this figure, B 10
The rolling contact fatigue life is not improved so much by simply adding a large amount of Mo and Sb, but it is significantly improved when oxide-based nonmetallic inclusion control is also performed. On the other hand, regarding the B 50 rolling contact fatigue life, the effect of adding a large amount of Mo and Sb is extremely remarkable regardless of the control of nonmetallic inclusions. Therefore, based on these findings, the inventors
Improves B 10 rolling fatigue life and B 50 rolling fatigue life,
In addition, from the viewpoint of what kind of alloy design is effective for suppressing the growth of the decarburized layer during heat treatment, the range of the composition of components as described below was determined.
【0021】C:0.5 〜1.5 wt% Cは、基地に固溶してマルテンサイトの強化に有効に作
用する元素であり、焼入れ焼もどし後の強度確保とそれ
による転動疲労寿命を向上させるために含有させる。そ
の含有量が0.5 wt%未満ではこうした効果が得られな
い。一方、 1.5wt%超では被削性, 鍛造性が低下するの
で、 0.5〜1.5 wt%の範囲に限定する。なお、好ましい
範囲は0.65〜1.10wt%である。C: 0.5 to 1.5 wt% C is an element that forms a solid solution in the matrix and effectively acts to strengthen martensite, and in order to secure the strength after quenching and tempering and to improve the rolling fatigue life by it. Contained in. If the content is less than 0.5 wt%, such effects cannot be obtained. On the other hand, if it exceeds 1.5 wt%, machinability and forgeability will deteriorate, so it is limited to the range of 0.5 to 1.5 wt%. The preferable range is 0.65 to 1.10 wt%.
【0022】Mo:1.0 超〜2.0 wt% Moは、基本的には残留炭化物の安定化により耐摩耗性を
向上させる元素であり、さらに本発明においてこのMo
は、もっと重要な役割を果たしており、とくにその添加
量が1.0 wt%を超えるような多量を添加すると、繰り返
し応力の負荷によるミクロ組織変化を遅らせる効果が著
しくなり、この面での転動疲労寿命を向上させる。しか
し、その量が 2.0wt%を超えると、被削性, 鍛造性を低
下させ、コストアップの因ともなるため、 1.0超〜2.0
wt%の範囲内で添加することが必要である。なお、好ま
しい範囲は1.0 〜1.5 wt%である。Mo: over 1.0 to 2.0 wt% Mo is an element that basically improves wear resistance by stabilizing residual carbides.
Plays a more important role, especially when added in a large amount exceeding 1.0 wt%, the effect of delaying microstructural change due to repeated stress loading becomes remarkable, and rolling fatigue life in this aspect. Improve. However, if the amount exceeds 2.0 wt%, machinability and forgeability will be reduced, and this will cause cost increase.
It is necessary to add it within the range of wt%. The preferable range is 1.0 to 1.5 wt%.
【0023】Sb:0.005 超〜0.015 wt% このSbは、この発明において重要な役割を担っている元
素である。とくに、このSbは、熱処理時において、鋼材
表層部のCと雰囲気ガスとの反応を抑制して脱炭層の発
生を阻止することによって、熱処理生産性向上に寄与す
る。しかも、脱炭層の抑制にあわせてミクロ組織変化の
遅延に対しても効果を示す。このような2つの作用は、
このSb含有量が0.005 超wt%以上で顕著なものとなる
が、0.015wt%を超えて添加すると熱間加工性および靱
性の劣化を招くようになる。従って、Sbは0.005 超〜0.
015 wt%の範囲で含有させることとした。なお、好まし
い範囲は0.005 〜0.010 wt%である。Sb: more than 0.005 to 0.015 wt% This Sb is an element that plays an important role in the present invention. In particular, this Sb contributes to the improvement of the heat treatment productivity by suppressing the reaction between C in the surface layer portion of the steel material and the atmospheric gas during the heat treatment to prevent the generation of the decarburized layer. Moreover, it is effective in retarding the microstructural change as well as suppressing the decarburized layer. These two effects are
This Sb content becomes remarkable when the content of Sb exceeds 0.005 wt% or more, but if it is added in an amount of more than 0.015 wt%, hot workability and toughness will be deteriorated. Therefore, Sb exceeds 0.005 to 0.
It was decided to contain it in the range of 015 wt%. The preferable range is 0.005 to 0.010 wt%.
【0024】Si:0.05〜0.5 wt%、0.5 超〜2.5 wt% Siは、鋼の溶製時の脱酸剤として用いられる他、基地に
固溶して焼もどし軟化抵抗の増大により焼入れ, 焼もど
し後の強度を高めて転動疲労寿命を向上させる元素とし
て有効である。こうした目的の下に添加されるSiの含有
量は、0.05〜0.5 wt%、好ましくは0.15〜0.50wt%の範
囲とする。また、このSiは、0.5 wt%超を添加すると、
繰り返し応力負荷の下でのミクロ組織変化の遅延をもた
らして転動疲労寿命を向上させる効果がある。しかし、
その含有量が 2.5wt%を超えると、その効果が飽和する
一方で、加工性や靱性を低下させるので、ミクロ組織変
化遅延特性のより一層の向上のためには、 0.5超〜2.5
wt%、好ましくは0.5 超〜2.0 wt%の範囲で添加するこ
とが有効である。Si: 0.05 to 0.5 wt%, more than 0.5 to 2.5 wt% Si is used as a deoxidizing agent during the melting of steel, and is also solid-dissolved in the matrix to increase quenching and quenching due to an increase in temper softening resistance. It is effective as an element that enhances the strength after rehabilitation and improves rolling contact fatigue life. The content of Si added for these purposes is in the range of 0.05 to 0.5 wt%, preferably 0.15 to 0.50 wt%. In addition, if Si is added in excess of 0.5 wt%,
It has the effect of delaying the microstructural change under cyclic stress loading and improving rolling fatigue life. But,
If the content exceeds 2.5 wt%, the effect is saturated, but the workability and toughness are reduced. Therefore, in order to further improve the microstructure change retardation property, the content exceeds 0.5 to 2.5.
It is effective to add wt%, preferably more than 0.5 to 2.0 wt%.
【0025】Mn:0.05〜2.0 wt% Mnは、鋼の溶製時の脱酸剤として作用し、鋼の低酸素化
に有効な元素である。また、鋼の焼入れ性を向上させる
ことにより基地マルテンサイトの靱性, 硬度を向上さ
せ、転動疲労寿命の向上に有効に作用する。このために
Mnは、0.05〜2.0wt%の範囲内で添加する。なお、好ま
しい範囲は0.25〜2.0 wt%である。Mn: 0.05 to 2.0 wt% Mn acts as a deoxidizing agent during the melting of steel, and is an element effective in reducing oxygen in steel. Also, by improving the hardenability of steel, it improves the toughness and hardness of the base martensite, and effectively acts to improve the rolling fatigue life. For this
Mn is added within the range of 0.05 to 2.0 wt%. The preferable range is 0.25 to 2.0 wt%.
【0026】Cr:0.05〜2.5 wt%、2.5 超〜8.0 wt% Crは、焼入れ性の向上と安定な炭化物の形成を通じて、
強度の向上ならびに耐摩耗性を向上させ、ひいては転動
疲労寿命を向上させる成分である。この効果を得るため
には、0.05〜2.5 wt%、好ましくは0.15〜2.5 wt%の添
加で十分である。さらに、このCrは、 2.5wt%を超えて
多量に添加した場合には、繰返し応力負荷によるミクロ
組織変化を遅延せしめて、この面での転動疲労寿命を向
上させるのに有効である。そして、この目的のためのCr
添加の効果は、 8.0wt%を超えても飽和するのみなら
ず、却って焼入れ時の固溶C量の低下を招いて強度が低
下する。従って、この目的のために添加するときは、
2.5超〜8.0 wt%としなければならない。なお、好まし
い範囲は2.5 超〜5.0 wt%である。Cr: 0.05 to 2.5 wt%, more than 2.5 to 8.0 wt% Cr improves the hardenability and forms stable carbides.
It is a component that improves strength and wear resistance, and eventually improves rolling contact fatigue life. To obtain this effect, the addition of 0.05 to 2.5 wt%, preferably 0.15 to 2.5 wt% is sufficient. Furthermore, when Cr is added in a large amount exceeding 2.5 wt%, it is effective in delaying the microstructure change due to repeated stress loading and improving the rolling fatigue life in this aspect. And Cr for this purpose
The effect of addition not only saturates even if it exceeds 8.0 wt%, but rather it causes a decrease in the amount of solid solution C during quenching, resulting in a decrease in strength. Therefore, when adding for this purpose,
It must be over 2.5 to 8.0 wt%. The preferred range is over 2.5 to 5.0 wt%.
【0027】Ni:0.05〜1.0 wt%、1.0 超〜3.0 wt% Niは、焼入れ性の増大により焼入れ焼もどし後の強度を
高め靱性を向上させるとともに、転動疲労寿命を向上さ
せるので、この目的のためには0.05〜1.0 wt%、好まし
くは0.15〜1.0 wt%の範囲内で添加する。さらに、この
Niは、 1.0wt%を超えて添加した場合には、転動時のミ
クロ組織変化を遅らせ、それにより転動疲労寿命を向上
させる。しかし、この場合でも3.0 wt%を超えて添加す
ると、多量の残留γを析出して強度の低下ならびに寸法
安定性を害することになるほか、コストアップになるた
め、この作用効果を期待する場合には、1.0 超〜3.0 wt
%の範囲内で添加することが必要である。なお、好まし
い範囲は1.0 超〜2.5 wt%である。Ni: 0.05 to 1.0 wt%, more than 1.0 to 3.0 wt% Ni increases the hardenability, thereby increasing the strength after quenching and tempering and improving the toughness as well as the rolling fatigue life. Is added in an amount of 0.05 to 1.0 wt%, preferably 0.15 to 1.0 wt%. Furthermore, this
When Ni is added in excess of 1.0 wt%, it delays the microstructure change during rolling, thereby improving rolling fatigue life. However, even in this case, if it is added in excess of 3.0 wt%, a large amount of residual γ will precipitate, resulting in reduced strength and impaired dimensional stability, and increased costs. Is over 1.0 to 3.0 wt
It is necessary to add it within the range of%. The preferred range is over 1.0 to 2.5 wt%.
【0028】Cu:0.05〜1.0 wt% Cuは、焼入れの増大により焼入れ焼もどし後の強度を高
め、この面から転動疲労寿命を向上させる元素である。
この作用は、0.05wt%以上で顕れ、1.0 wt%で飽和す
る。なお、好ましい範囲は0.15〜1.0 wt%である。Cu: 0.05 to 1.0 wt% Cu is an element that enhances the strength after quenching and tempering by increasing quenching, and from this aspect improves rolling fatigue life.
This effect appears at 0.05 wt% or more and saturates at 1.0 wt%. The preferable range is 0.15 to 1.0 wt%.
【0029】B:0.0005〜0.01wt% Bは、焼入れ性の増大により焼入れ焼もどし後の強度を
高め、転動疲労寿命を向上させるので、0.0005wt%以上
を添加する。しかしながら、0.01wt%を超えて添加する
と加工性を劣化させるので、0.0005〜0.01wt%の範囲に
限定する。なお、好ましい範囲は0.0015〜0.005 wt%で
ある。B: 0.0005 to 0.01 wt% B is added in an amount of 0.0005 wt% or more because it increases the hardenability and thereby enhances the strength after quenching and tempering and improves the rolling contact fatigue life. However, if added in excess of 0.01 wt%, the workability deteriorates, so the range is limited to 0.0005 to 0.01 wt%. The preferable range is 0.0015 to 0.005 wt%.
【0030】Al:0.005 〜0.07wt% Alは、鋼の溶製時の脱酸剤として用いられると同時に、
鋼中Nと結合して結晶粒を微細化して鋼の靱性向上に寄
与する。また、焼入れ焼きもどし後の強度を高めること
による転動疲労性の向上にも有効に作用する。このよう
な作用のためにAlは、0.005 〜0.07 wt%添加すること
が有効である。なお、好ましい範囲は0.010 〜0.07wt%
である。Al: 0.005 to 0.07 wt% Al is used as a deoxidizer during the melting of steel, and at the same time,
Combines with N in the steel to refine the crystal grains and contribute to the improvement of the toughness of the steel. Further, it also effectively acts to improve rolling fatigue by increasing the strength after quenching and tempering. Due to such an effect, it is effective to add 0.005 to 0.07 wt% of Al. The preferred range is 0.010-0.07wt%
Is.
【0031】 N:0.0005〜0.012 wt%、0.012 超〜0.050 wt% Nは、窒化物形成元素と結合して結晶粒を微細化すると
共に、基地に固溶して焼入れ焼もどし後の強度を高め、
転動疲労寿命を向上させる。この目的のためには0.0005
〜0.012 wt%、好ましくは0.0020〜0.012 wt%の範囲内
で添加する。また、このNは、0.012 wt%を超えて添加
した場合には、繰り返し応力によるミクロ組織変化を遅
らせることにより転動疲労寿命を向上させる。ただし、
その量が0.050 wt%を超えると、加工性が低下するた
め、この目的のためには0.012超〜0.050 wt%を添加す
る。なお、好ましい範囲は0.012 超 〜0.035 wt%であ
る。N: 0.0005 to 0.012 wt%, more than 0.012 to 0.050 wt% N combines with the nitride-forming element to refine the crystal grains, and also forms a solid solution in the matrix to enhance the strength after quenching and tempering. ,
Improves rolling fatigue life. 0.0005 for this purpose
˜0.012 wt%, preferably 0.0020 to 0.012 wt%. Further, when N exceeds 0.012 wt%, the rolling fatigue life is improved by delaying the microstructural change due to repeated stress. However,
If the amount exceeds 0.050 wt%, the workability decreases, so for this purpose, more than 0.012 to 0.050 wt% is added. The preferred range is more than 0.012 to 0.035 wt%.
【0032】以上、繰り返し応力負荷によるミクロ組織
変化を遅延させることによる転動疲労寿命を改善する成
分、強度の上昇を通じて転動疲労寿命を改善するための
成分、および脱炭層の生成を抑えて軸受の加工性と生産
性を向上させるための成分限定の理由について説明し
た。ところで、本発明ではさらに、V, Nb, W, Zr, T
a, HfおよびCoのうちから選ばれるいずれか1種または
2種以上を添加して軸受寿命をさらに改善するようにし
てもよい。上記各元素の好適添加範囲と添加の目的、上
限値、下限値限定の理由につき、表2にまとめて示す。As described above, the component for improving the rolling fatigue life by delaying the microstructural change due to the repeated stress load, the component for improving the rolling fatigue life by increasing the strength, and the decarburized layer are suppressed to form the bearing. The reason for limiting the components for improving the processability and productivity of was explained. By the way, in the present invention, further, V, Nb, W, Zr, T
The bearing life may be further improved by adding one or more selected from a, Hf and Co. Table 2 shows the preferable addition range of each of the above elements, the purpose of addition, and the reasons for limiting the upper limit value and the lower limit value.
【0033】[0033]
【表2】 [Table 2]
【0034】本発明においては、被削性を改善するため
に、S,Se, Te, REM, Pb,Bi, Ca,Ti, Mg, P,Sn, As
等を添加しても、上述した本発明の目的である繰り返し
応力負荷によるミクロ組織変化による遅延特性を阻害す
ることはなく、容易に被削性を改善することができるの
で、必要に応じて添加してもよい。In the present invention, in order to improve machinability, S, Se, Te, REM, Pb, Bi, Ca, Ti, Mg, P, Sn, As
Even if added, etc., it does not inhibit the retardation property due to the microstructural change due to the repeated stress load, which is the object of the present invention, and the machinability can be easily improved, so it is added as necessary. You may.
【0035】なお、Pは、鋼の靱性ならびに転動疲労寿
命を低下させることから可能なかぎり低いことが望まし
く、0.025 wt%以下、好ましくは 0.015wt%以下に抑え
ることが望ましい。また、Sは、Mnと結合してMnSを形
成し、被削性を向上させる元素である。しかし、多量に
含有させると転動疲労寿命を低下させることから、0.02
5 wt%以下、好ましくは 0.015wt%以下に抑えるのがよ
い。It is desirable that P be as low as possible in order to reduce the toughness and rolling contact fatigue life of the steel, and it is desirable to keep it to 0.025 wt% or less, preferably 0.015 wt% or less. Further, S is an element that combines with Mn to form MnS and improves machinability. However, if it is contained in a large amount, the rolling contact fatigue life will be shortened.
It is preferable to suppress it to 5 wt% or less, preferably 0.015 wt% or less.
【0036】次いで、鋼中の酸化物系非金属介在物の最
大系の限定理由について説明する。鋼中には、一般に、
酸化物系、硫化物系等の非金属介在物が存在するが、と
くに酸化物系非金属介在物は硬質であり、剥離の起点と
なって転動疲労寿命を著しく劣化させる。図3に、JI
S−SUJ2鋼(前記鋼A、Bに相当)と本発明適合成
分鋼(前記鋼C、Dに相当)について、酸化物系非金属
介在物の最大径とB10値との関係を調査した結果を示
す。この図より、酸化物系非金属介在物の最大径が8μ
mを超えるとB10値が急激に低下することがわかった。
よって、酸化物系非金属介在物の最大径を8μm以下と
する。Next, the reasons for limiting the maximum system of oxide-based nonmetallic inclusions in steel will be described. In steel, in general,
Although there are non-metallic inclusions such as oxide-based and sulfide-based inclusions, especially oxide-based non-metallic inclusions are hard and act as a starting point of peeling, which significantly deteriorates the rolling fatigue life. In Figure 3, JI
For S-SUJ2 steel (corresponding to the steels A and B) and steel compatible with the present invention (corresponding to the steels C and D), the relationship between the maximum diameter of oxide nonmetallic inclusions and the B 10 value was investigated. The results are shown. From this figure, the maximum diameter of oxide non-metallic inclusions is 8μ.
It was found that the B 10 value sharply decreases when the value exceeds m.
Therefore, the maximum diameter of the oxide-based nonmetallic inclusions is set to 8 μm or less.
【0037】[0037]
【実施例】表3, 4に示す化学組成を有する鋼材を転炉
で溶製したのち連続鋳造した。ここで、転炉スラグ組成
の制御、二次精錬方法の制御、連続鋳造時の溶鋼加熱度
および凝固条件の制御を行い酸化物系非金属介在物の最
大径を調整した。このようにして得られた鋼材を1240℃
で30h の拡散焼鈍の後に65mmφの棒鋼に圧延した。次い
で、切削加工により棒鋼D/4部から15mmφ×20mmの非
金属介在物および脱炭層調査用の円筒状試験片ならびに
転動疲労用試験片を採取した。その後、これらの試験片
について、雰囲気制御なしに( 大気雰囲気中で) 、焼な
らし・球状化焼なまし・焼入れ・焼もどしの順で試験を
行った。さらに、転動疲労用試験片は、脱炭層を完全に
除去する目的で1mm以上の研磨およびラッピング仕上を
行い、試験片寸法を12mmφ×22mmとした。酸化物系非金
属介在物の調査は、400 倍で200 視野について酸化物系
非金属介在物の円相当径を測定し、各視野での介在物最
大径をGumbel確率紙上にまとめ、50000mm2相当の極値を
計算で導出し、鋼中に存在する酸化物系非金属介在物の
最大径とした。熱処理後の脱炭層深さは、15mmφ×20mm
の円筒状試験片を10mmの位置で高さ方向と垂直に切断
し、ナイタールにて腐食後、ミクロ組織観察による円周
上の全脱炭層の最大値 (以下、「最大脱炭層」と称す
る) で評価した。転動疲労寿命試験は、ラジアルタイプ
の転動疲労寿命試験機によりヘルツ最大接触応力:600
kgf/mm2,繰り返し応力数:約46500 cpm 、潤滑:#68
タービン飛沫油の条件の下での条件で行ったものある。
試験結果は、ワイブル分布に従うものとして確率紙上に
まとめ、鋼材No.1のB10転動疲労寿命およびB50転動疲
労寿命をそれぞれ1として評価した。その評価結果を、
表3, 4にあわせて示す。EXAMPLE Steel materials having the chemical compositions shown in Tables 3 and 4 were melted in a converter and continuously cast. Here, the maximum diameter of oxide-based nonmetallic inclusions was adjusted by controlling the converter slag composition, controlling the secondary refining method, and controlling the molten steel heating degree and solidification conditions during continuous casting. The steel material obtained in this way
After diffusion annealing for 30 h, it was rolled into a steel bar of 65 mmφ. Then, a cylindrical test piece for investigating a non-metallic inclusion of 15 mmφ × 20 mm and a decarburized layer and a test piece for rolling fatigue were taken from the steel D / 4 part by cutting. Then, these test pieces were tested in the order of normalizing, spheroidizing annealing, quenching, and tempering without controlling the atmosphere (in the air atmosphere). Further, the rolling fatigue test piece was ground and lapped to a size of 1 mm or more for the purpose of completely removing the decarburized layer, and the size of the test piece was 12 mmφ × 22 mm. In the investigation of oxide-based non-metallic inclusions, the circle equivalent diameter of oxide-based non-metallic inclusions was measured in 400 views at 200 times, and the maximum diameter of inclusions in each view was summarized on the Gumbel probability paper and equivalent to 50000 mm 2. Was calculated and the maximum diameter of the oxide-based non-metallic inclusions present in the steel was determined. Decarburized layer depth after heat treatment is 15mmφ × 20mm
The maximum value of the total decarburized layer on the circumference by microstructure observation after corroding the cylindrical test piece at 10 mm perpendicular to the height direction and corroding with Nital (hereinafter referred to as "maximum decarburized layer") It was evaluated by. The rolling fatigue life test is performed by a radial type rolling fatigue life tester using a Hertz maximum contact stress of 600.
kgf / mm 2 , cyclic stress: approx. 46500 cpm, lubrication: # 68
It was done under the condition of turbine splash oil.
The test results were summarized on the probability paper according to the Weibull distribution, and evaluated with the B 10 rolling fatigue life and the B 50 rolling fatigue life of steel No. 1 being 1 respectively. The evaluation result,
It is also shown in Tables 3 and 4.
【0038】[0038]
【表3】 [Table 3]
【0039】[0039]
【表4】 [Table 4]
【0040】表3, 4に示す結果から明らかなように、
鋼中C量が本発明範囲外である鋼材No.5, 鋼中Mo量が本
発明鋼の範囲外である鋼材No.6は、軸受寿命のB10転動
疲労寿命, B50転動疲労寿命とも、従来鋼(鋼材No.1)
と同じか少し悪い値となっている。一方、鋼中Sb量が本
発明鋼範囲外である鋼材No.4のB50転動疲労寿命は、従
来鋼 (鋼材No.1) より優れているものの、最大脱炭層は
0.11mmと従来例(SUJ 2) と比較してそれほど改善されて
いない。また、Sbを全く含有しない鋼材No.2も、最大脱
炭層が悪い結果を示している。また、介在物最大粒径の
大きい鋼材No.3は、B10転動疲労寿命が低い値となって
いる。一方、発明鋼である鋼材No.7のB10転動疲労寿
命、B50転動疲労寿命で示す軸受平均寿命は、従来鋼
(鋼材No.1) に比較してそれぞれ約8倍、約7倍も優れ
ており、酸化物系非金属介在物の効果に加えて、Moの添
加がミクロ組織変化を著しく遅延し、その結果転動疲労
寿命の向上に有効に作用したことが窺える。しかも、最
大脱炭層深さも0.01mmであり、従来鋼No.1に比べてはる
かに少なく、Sbが本発明適正範囲を外れている鋼No.4と
比べても約1/10と改善効果が顕著である。As is clear from the results shown in Tables 3 and 4,
Steel No. 5 in which the amount of C in the steel is outside the range of the present invention and No. 6 in which the amount of Mo in the steel is outside the range of the present invention are B 10 rolling contact fatigue life and B 50 rolling fatigue of bearing life. Conventional life (steel material No. 1)
It is the same as or a little worse. On the other hand, although the B 50 rolling fatigue life of steel material No. 4 in which the Sb content in the steel is outside the range of the steel of the present invention is superior to that of the conventional steel (steel material No. 1), the maximum decarburized layer is
0.11 mm, which is not so much improvement compared to the conventional example (SUJ 2). Further, the steel material No. 2 containing no Sb also shows a bad result in the maximum decarburized layer. Steel No. 3 having a large maximum grain size of inclusions has a low B 10 rolling contact fatigue life. On the other hand, the average bearing life indicated by B 10 rolling fatigue life and B 50 rolling fatigue life of steel material No. 7 which is an invention steel is about 8 times and about 7 times that of the conventional steel (steel material No. 1), respectively. In addition to the effect of the oxide-based non-metallic inclusions, the addition of Mo significantly retarded the microstructure change, and as a result, it can be seen that it effectively acted to improve the rolling fatigue life. Moreover, the maximum decarburized layer depth is 0.01 mm, which is far less than the conventional steel No. 1, and the improvement effect is about 1/10 compared to steel No. 4 in which Sb is outside the proper range of the present invention. It is remarkable.
【0041】また、Mo, Sbに加えてさらにSi, Mn, Cr,
Ni, Cu, Al, BおよびNのいずれか少なくとも1種以上
を添加してなる鋼No.8〜18は、軸受寿命を決めるB50転
動疲労寿命の改善に効果がある他、最大脱炭層深さも0.
02mm以下と著しく改善されていることが判った。In addition to Mo and Sb, Si, Mn, Cr and
Steel Nos. 8-18 made by adding at least one of Ni, Cu, Al, B and N are effective for improving the B 50 rolling contact fatigue life that determines the bearing life, and the maximum decarburized layer Depth is also 0.
It was found that it was significantly improved to 02 mm or less.
【0042】さらに、Mo, Sbに加えてさらにSi, Cr,
V, Nb, W, Zr, Ta, Hf, CoおよびNを所定の量以上を
積極的に加えた鋼No. 19〜30の場合には、熱処理生産性
の向上にあわせ上記軸受寿命 (B50転動疲労寿命) も改
善されていることが確かめられた。これは、本発明で推
奨する上記各改善成分のすべてを選択的に添加してなる
鋼No. 31〜45の場合も同様であって、すべての軸受転動
寿命および熱処理生産性の両方を同時に改善する効果の
あることが判った。Further, in addition to Mo and Sb, Si, Cr, and
In the case of Steel Nos. 19 to 30 in which V, Nb, W, Zr, Ta, Hf, Co and N are positively added in a predetermined amount or more, the above bearing life (B 50 It was confirmed that the rolling fatigue life) was also improved. This is also the case with Steel Nos. 31 to 45 obtained by selectively adding all of the above-mentioned improving components recommended in the present invention, and it is possible to simultaneously improve both the bearing rolling life and the heat treatment productivity. It was found to be effective in improving.
【0043】[0043]
【発明の効果】以上説明したとおり、本発明によれば、
熱処理時の加工負荷を軽減でき、しかも、高負荷転動疲
労寿命時の繰り返し応力負荷に伴うミクロ組織変化の遅
延をもたらすことが可能となる。したがって、本発明に
よれば、B50転動疲労寿命の向上を達成して、高寿命の
熱処理生産性の高い軸受用鋼を提供することができる。
さらに、本発明によれば、従来技術の下では不可欠とさ
れていた、より一層の鋼中酸素量の低減あるいは鋼中に
存在する酸化物系非金属介在物の組成, 形状,ならびに
その分布状態をコントロールするために必要となる製鋼
設備の改良あるいは建設が不必要である。なお、本発明
にかかる軸受鋼の開発によって、転がり軸受の小型化な
らびに軸受使用温度のより一層の上昇が可能となる。As described above, according to the present invention,
It is possible to reduce the working load during heat treatment, and to delay the microstructural change associated with the repeated stress load during high-load rolling fatigue life. Therefore, according to the present invention, it is possible to provide an improved B 50 rolling contact fatigue life and provide a bearing steel with a long life and high heat treatment productivity.
Furthermore, according to the present invention, the oxygen content in the steel is further reduced or the composition, shape, and distribution state of the oxide-based non-metallic inclusions present in the steel, which have been indispensable under the prior art, are further indispensable. It is not necessary to improve or construct steelmaking equipment required to control the steelmaking. The development of the bearing steel according to the present invention makes it possible to reduce the size of the rolling bearing and further increase the bearing operating temperature.
【図1】(a),(b)は、繰り返し応力負荷の下に発
生するミクロ組織変化のようすを示す金属組織の顕微鏡
写真である。1 (a) and 1 (b) are micrographs of a metal structure showing a microstructure change occurring under repeated stress loading.
【図2】非金属介在物に起因する軸受寿命とミクロ組織
変化に起因する軸受寿命とに及ぼすMo添加の影響を示す
説明図である。FIG. 2 is an explanatory diagram showing the effect of Mo addition on the bearing life due to non-metallic inclusions and the bearing life due to microstructural changes.
【図3】非金属介在物最大粒径とB10転動疲労寿命との
関係を示すグラフである。FIG. 3 is a graph showing the relationship between the maximum particle size of non-metallic inclusions and B 10 rolling contact fatigue life.
フロントページの続き (72)発明者 松崎 明博 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社鉄鋼開発・生産本部鉄鋼研究所 内 (72)発明者 天野 虔一 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社鉄鋼開発・生産本部鉄鋼研究所 内Front page continuation (72) Inventor Akihiro Matsuzaki 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Corporation Steel Research and Development Division Steel Research Laboratory (72) Inventor Shinichi Amano Kawasaki, Chuo-ku, Chiba-shi, Chiba No. 1 Town Kawasaki Steel Co., Ltd.
Claims (4)
化物系非金属介在物の最大粒径が8μm 以下である、繰
り返し応力負荷によるミクロ組織変化の遅延特性と熱処
理生産性とに優れた軸受鋼。1. C: 0.5 to 1.5 wt%, Mo: more than 1.0 to 2.0 wt%, Sb: more than 0.005 to 0.015 wt%, the balance consisting of Fe and unavoidable impurities, oxide-based non-metallic inclusion A bearing steel with a maximum grain size of 8 μm or less, which is excellent in delaying microstructural change due to repeated stress loading and heat treatment productivity.
し、残部がFeおよび不可避的不純物からなり、酸化物系
非金属介在物の最大粒径が8μm 以下である、繰り返し
応力負荷によるミクロ組織変化の遅延特性と熱処理生産
性とに優れた軸受鋼。2. C: 0.5 to 1.5 wt%, Mo: more than 1.0 to 2.0 wt%, Sb: more than 0.005 to 0.015 wt%, Si: 0.05 to 0.5 wt%, Mn: 0.05 to 2.0 wt%, Cr: 0.05 to 2.5 wt%, Ni: 0.05 to 1.0 wt%, Cu: 0.05 to 1.0 wt%, B: 0.0005 to 0.01 wt%, Al: 0.005 to 0.07 wt% and N: 0.0005 to 0.012 wt% Delay of microstructural change due to repeated stress loading, containing any one or more selected, the balance consisting of Fe and unavoidable impurities, and the maximum particle size of oxide-based nonmetallic inclusions is 8 μm or less. Bearing steel with excellent properties and heat treatment productivity.
%, V:0.05〜1.0 wt%, Nb:0.05〜1.0 wt%, W:0.05〜1.0 wt%, Zr:0.02〜0.5 wt%, Ta:0.02〜0.5 wt%, Hf:0.02〜0.5 wt% およびCo:0.05〜1.5 wt% のうちから選ばれるいずれか1種または2種以上を含有
し、残部がFeおよび不可避的不純物からなり、酸化物系
非金属介在物の最大粒径が8μm 以下である、繰り返し
応力負荷によるミクロ組織変化の遅延特性と熱処理生産
性とに優れた軸受鋼。3. C: 0.5 to 1.5 wt%, Mo: more than 1.0 to 2.0 wt%, Sb: more than 0.005 to 0.015 wt%, and further Si: more than 0.5 to 2.5 wt%, Cr: more than 2.5 to 8.0 wt%. %, Ni: over 1.0 to 3.0 wt%, N: over 0.012 to 0.050 wt
%, V: 0.05 to 1.0 wt%, Nb: 0.05 to 1.0 wt%, W: 0.05 to 1.0 wt%, Zr: 0.02 to 0.5 wt%, Ta: 0.02 to 0.5 wt%, Hf: 0.02 to 0.5 wt% and Co: contains 0.05 to 1.5 wt% of any one kind or two kinds or more, the balance is Fe and inevitable impurities, and the maximum particle size of the oxide-based nonmetallic inclusions is 8 μm or less. , Bearing steel with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress loading.
度上昇による転動疲労を改善する成分として含み、 さらにまた、上記改善成分のいずれか1種以上のものが
選択された場合はその元素を除く下記の成分、すなわ
ち、 Si:0.5 超〜2.5 wt%, Cr:2.5 超〜8.0 wt%, Ni:1.0 超〜3.0 wt%, N:0.012 超〜0.050 wt
%, V:0.05〜1.0 wt%, Nb:0.05〜1.0 wt%, W:0.05〜1.0 wt%, Zr:0.02〜0.5 wt%, Ta:0.02〜0.5 wt%, Hf:0.02〜0.5 wt% およびCo:0.05〜1.5 wt% のうちから選ばれるいずれか1種または2種以上を、ミ
クロ組織変化の遅延による転動疲労寿命を改善する成分
として含有し、残部がFeおよび不可避的不純物からな
り、酸化物系非金属介在物の最大粒径が8μm 以下であ
る、繰り返し応力負荷によるミクロ組織変化の遅延特性
と熱処理生産性とに優れた軸受鋼。4. C: 0.5 to 1.5 wt%, Mo: more than 1.0 to 2.0 wt%, Sb: more than 0.005 to 0.015 wt%, Si: 0.05 to 0.5 wt%, Mn: 0.05 to 2.0 wt%, Cr: 0.05 to 2.5 wt%, Ni: 0.05 to 1.0 wt%, Cu: 0.05 to 1.0 wt%, B: 0.0005 to 0.01 wt%, Al: 0.005 to 0.07 wt% and N: 0.0005 to 0.012 wt% When any one or more selected from the above is included as a component that improves rolling fatigue due to strength increase, and when any one or more of the above-mentioned improving components is selected, the element is excluded below. , Si: more than 0.5 to 2.5 wt%, Cr: more than 2.5 to 8.0 wt%, Ni: more than 1.0 to 3.0 wt%, N: more than 0.012 to 0.050 wt%
%, V: 0.05 to 1.0 wt%, Nb: 0.05 to 1.0 wt%, W: 0.05 to 1.0 wt%, Zr: 0.02 to 0.5 wt%, Ta: 0.02 to 0.5 wt%, Hf: 0.02 to 0.5 wt% and Co: 0.05 to 1.5 wt% selected from the group consisting of one or more selected from the group consisting of Fe and unavoidable impurities, with the balance being Fe and inevitable impurities. A bearing steel that has a maximum grain size of oxide-based non-metallic inclusions of 8 μm or less and is excellent in retarding microstructural changes due to repeated stress loading and heat treatment productivity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20984894A JP3233792B2 (en) | 1994-09-02 | 1994-09-02 | Bearing steel with excellent microstructure change delay characteristics due to cyclic stress loading and heat treatment productivity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20984894A JP3233792B2 (en) | 1994-09-02 | 1994-09-02 | Bearing steel with excellent microstructure change delay characteristics due to cyclic stress loading and heat treatment productivity |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0873988A true JPH0873988A (en) | 1996-03-19 |
JP3233792B2 JP3233792B2 (en) | 2001-11-26 |
Family
ID=16579631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20984894A Expired - Fee Related JP3233792B2 (en) | 1994-09-02 | 1994-09-02 | Bearing steel with excellent microstructure change delay characteristics due to cyclic stress loading and heat treatment productivity |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3233792B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001018273A1 (en) * | 1999-09-03 | 2001-03-15 | Nsk Ltd. | Rolling bearing |
-
1994
- 1994-09-02 JP JP20984894A patent/JP3233792B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001018273A1 (en) * | 1999-09-03 | 2001-03-15 | Nsk Ltd. | Rolling bearing |
US6770152B1 (en) | 1999-09-03 | 2004-08-03 | Nsk Ltd. | Rolling bearing |
Also Published As
Publication number | Publication date |
---|---|
JP3233792B2 (en) | 2001-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3411088B2 (en) | Bearings with excellent microstructure change delay characteristics due to repeated stress loading | |
JP3383347B2 (en) | Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading | |
JP3233792B2 (en) | Bearing steel with excellent microstructure change delay characteristics due to cyclic stress loading and heat treatment productivity | |
JP3233729B2 (en) | Bearing steel with excellent microstructure change delay characteristics due to cyclic stress loading and heat treatment productivity | |
JP3411388B2 (en) | Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load | |
JP3383345B2 (en) | Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading | |
JP3233726B2 (en) | Bearing steel with excellent heat treatment productivity and delayed microstructural change due to repeated stress loading | |
JP3243330B2 (en) | Bearing steel with excellent microstructure change delay characteristics due to cyclic stress loading and heat treatment productivity | |
JP3379786B2 (en) | Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading | |
JP3379785B2 (en) | Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading | |
JPH06287710A (en) | Bearing steel excellent in heat treatment productivity as well as in property of retarding microstructural change due to repeated stress load | |
JP3383346B2 (en) | Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading | |
JP3243329B2 (en) | Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading | |
JP3233728B2 (en) | Bearing steel with excellent heat treatment productivity and delayed microstructural change due to repeated stress loading | |
JP3379787B2 (en) | Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading | |
JPH07316726A (en) | Bearing member excellent in characteristic of retarding microstructural change due to repeated stress load as well as heat treatment productivity | |
JPH06279932A (en) | Bearing steel excellent in property of retarding change in microstructure due to repetitive stress load and heat treatment productivity | |
JP3411386B2 (en) | Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load | |
JP3411389B2 (en) | Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load | |
JPH06287692A (en) | Bearing steel excellent in delaying property in change of microstructure caused by repeated stress load | |
JPH07278742A (en) | Bearing member excellent in delaying property in change of microstructure caused by repeated stress load | |
JPH06287695A (en) | Bearing steel excellent in delaying property in change of microstructure caused by repeated stress load and heat treating productivity | |
JPH06287707A (en) | Bearing steel excellent in heat treatment productivity as well as in property of retarding microstructural change due to repeated stress load | |
JPH06271981A (en) | Bearing steel excellent in heat treatment productivity and property of retarding change in microstructure due to repeated stress load | |
JPH06287705A (en) | Bearing steel excellent in heat treatment productivity as well as in property of retarding microstructural change due to repeated stress load |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |