JPH0860239A - Production of thick steel plate excellent in low temperature toughness - Google Patents
Production of thick steel plate excellent in low temperature toughnessInfo
- Publication number
- JPH0860239A JPH0860239A JP19882994A JP19882994A JPH0860239A JP H0860239 A JPH0860239 A JP H0860239A JP 19882994 A JP19882994 A JP 19882994A JP 19882994 A JP19882994 A JP 19882994A JP H0860239 A JPH0860239 A JP H0860239A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- less
- rolling
- cooling
- transformation point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は低温靱性に優れた厚鋼板
の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thick steel sheet having excellent low temperature toughness.
【0002】[0002]
【従来の技術】厚鋼板は構造物として用いられるため、
構造物の安全性確保の観点から低温靱性を要求される場
合が多い。厚鋼板において、低温靱性を得る方法は種々
提案されているが、高価な合金元素を用いずに、他の特
性劣化を生じない方法としてフェライト(α)結晶粒径
の微細化が代表的であり、αの微細化方法として、従来
から種々の方法が提案され、実用化されている。2. Description of the Related Art Since thick steel plates are used as structures,
From the viewpoint of ensuring the safety of structures, low temperature toughness is often required. Although various methods for obtaining low temperature toughness have been proposed for thick steel sheets, miniaturization of ferrite (α) crystal grain size is a typical method that does not cause deterioration of other properties without using expensive alloy elements. As a method of refining .alpha., .Alpha., Various methods have been proposed and put to practical use.
【0003】代表的な方法としては、例えば特公昭49
−7291号公報、特公昭57−21007号公報、特
公昭59−14535号公報等にあるように、オーステ
ナイト(γ)の未再結晶温度域において制御圧延を行
い、引き続いて加速冷却を行うことによるγからαへの
変態時にαを微細化する方法が提案されている。γから
αへの変態を利用する方法では、γが粗大な場合は未再
結晶域圧延の有効活用によりγ/α変換比を高めること
が可能であるが、γが微細になるとγ/α変換比は1に
近づくため、αの微細化の程度は飽和してしまい、αの
顕著な微細化は望めない。As a typical method, for example, Japanese Patent Publication No. Sho 49
As disclosed in Japanese Patent Publication No. 7291, Japanese Patent Publication No. 57-21007, Japanese Patent Publication No. 59-14535, etc., by performing controlled rolling in the unrecrystallized temperature range of austenite (γ) and subsequently performing accelerated cooling. A method of refining α during the transformation from γ to α has been proposed. In the method utilizing the transformation from γ to α, it is possible to increase the γ / α conversion ratio by effectively utilizing the unrecrystallized zone rolling when γ is coarse, but when γ becomes fine, the γ / α conversion Since the ratio approaches 1, the degree of miniaturization of α is saturated, and significant miniaturization of α cannot be expected.
【0004】制御圧延の温度域をα/γ二相域まで拡大
した、いわゆる二相域圧延による強度・靱性改善技術も
提案されている。例えば、特公昭58−5967号公報
にあるように、成分やγ域での圧下条件の工夫等により
二相域圧延に特徴的なセパレーションの発生を抑制して
靱性の向上を計る技術が提案されている。しかし、従来
の技術ではα粒径は通常の制御圧延と同程度であり、セ
パレーションの発生による3軸応力の低減効果を用いて
初めて大幅な靱性向上が計れる。A technique for improving the strength and toughness by so-called two-phase region rolling, in which the temperature range of controlled rolling is expanded to the α / γ two-phase region, has also been proposed. For example, as disclosed in Japanese Examined Patent Publication No. 58-5967, there is proposed a technique for improving the toughness by suppressing the occurrence of the separation characteristic of the two-phase region rolling by devising the composition and the rolling condition in the γ region. ing. However, in the conventional technique, the α-grain size is almost the same as that in the ordinary controlled rolling, and the toughness can be significantly improved only by using the effect of reducing the triaxial stress due to the occurrence of separation.
【0005】また、圧延等の熱間加工によらず熱処理に
よる方法も提案されている。例えば、〔鉄と鋼、第77
年、第1号、1991、第171〜178頁〕に示され
ているように、V、Nを多量に添加させることによりγ
の細粒化を計るとともに、変態時のγ/α変換比を増大
させて、焼きならし処理で微細なα組織とする方法が開
発されている。しかし、焼きならしで細粒化効果を十分
発揮するためには、Vを0.01%以上、Nも0.01
%以上添加する必要があり、到達できるα粒径も5μm
程度である。Also, a method of heat treatment has been proposed instead of hot working such as rolling. For example, [Iron and Steel, No. 77
, No. 1, 1991, pp. 171-178], by adding a large amount of V and N,
Has been developed, a method of increasing the γ / α conversion ratio during transformation and making a fine α structure by normalizing treatment is developed. However, in order to fully exert the grain-refining effect by normalizing, V is 0.01% or more and N is also 0.01%.
% Or more, and the attainable α particle size is 5 μm
It is a degree.
【0006】さらに、〔材料とプロセス、第3年、第6
号、1990、第1796頁〕においては、γ−α変態
の繰り返しを含む複雑な加工熱処理により、粒径が3μ
m以下の超細粒鋼を得る方法が開示されている。この方
法は、制御圧延後、加速冷却を行い、500℃程度で加
速冷却を停止した後、常温まで冷却することなく900
℃に再加熱し、所定の温度で熱間圧延を行うことにより
超細粒鋼を得るものであるが、α粒径は冷却停止温度の
影響を強く受け、冷却停止温度が500℃のごく近傍以
外では3μm以下のα粒径は得られておらず、工業的に
安定して製造することは困難であると考えられる。Furthermore, [Materials and Processes, Third Year, Sixth Year]
No., 1990, p. 1796], the grain size was 3 μm due to complicated thermomechanical treatment including repeated γ-α transformation.
A method for obtaining ultra-fine grain steel of m or less is disclosed. In this method, after controlled rolling, accelerated cooling is performed, and after accelerated cooling is stopped at about 500 ° C., 900 ° C. without cooling to room temperature.
Ultra-fine grain steel is obtained by reheating to ℃ and hot rolling at a prescribed temperature. The α grain size is strongly influenced by the cooling stop temperature, and the cooling stop temperature is very close to 500 ° C. Other than that, an α particle size of 3 μm or less has not been obtained, and it is considered difficult to industrially manufacture the α particle size.
【0007】従って、上記の従来の方法は、いずれも生
産性の劣化や熱処理工程の増加、さらには合金元素の増
加等、コスト高を伴うとともに、安定して得られるα粒
径は一部の実験的手法を除けば10μm程度、厳密に制
御された複雑な工程によっても5μm程度が限界であ
り、それ以上のαの微細化による大幅な靱性向上は望め
ない。Therefore, all of the above-mentioned conventional methods are accompanied by high costs such as deterioration of productivity, increase of heat treatment steps, increase of alloying elements, and the like. Except for the experimental method, the limit is about 10 μm, and the limit is about 5 μm even by a complicated process that is strictly controlled, and it is not possible to expect a significant improvement in toughness by further refinement of α.
【0008】[0008]
【発明が解決しようとする課題】本発明は、高価な合金
元素の多量な添加や生産性の劣る工程や、複雑な繰り返
し工程を行わずに、生産性良く、平均α粒径が3μm以
下程度の超細粒αを得ることのできる低温靱性に優れた
厚鋼板の製造方法を提供することを目的とするものであ
る。DISCLOSURE OF THE INVENTION The present invention has good productivity and an average α particle size of about 3 μm or less without adding a large amount of expensive alloying elements, a process having poor productivity, and a complicated repeating process. It is an object of the present invention to provide a method for producing a thick steel sheet having excellent low temperature toughness, which can obtain the ultrafine grain α.
【0009】[0009]
【課題を解決するための手段】本発明らは、上記課題を
解決するために、αの熱間加工挙動を詳細に調査するこ
とにより、αの超細粒化のための手段を見出し、本発明
を完成するに至ったものである。即ち、本発明の要旨と
するところは、重量%で、C:0.01〜0.20%、
Si:0.03〜1.0%、Mn:0.30〜2.0
%、Al:0.005〜0.1%、N:0.001〜
0.01%を含有し、さらに必要に応じて、Cr:0.
01〜0.50%、Ni:0.01〜3.0%、Mo:
0.01〜0.50%、Cu:0.01〜1.5%、T
i:0.003〜0.10%、V:0.005〜0.2
0%、Nb:0.003〜0.05%、B:0.000
3〜0.0020%の1種または2種以上を含有し、残
部Feおよび不可避不純物からなる鋼片を、Ac3変態点
以上、1200℃以下の温度に加熱し、Ar3変態点以上
の温度で終了する粗圧延により平均オーステナイト粒径
を50μm以下とした上で、2℃/秒以下の冷却速度で
フェライト割合が50%以上となる温度まで冷却した
後、累積圧下率50%以上の仕上圧延を650℃以上の
温度で終了するか、圧延終了後、引き続いて5℃/秒以
上の冷却速度で550℃以下の温度に加速冷却し、必要
に応じて、600℃以下の加熱温度で焼き戻すことを特
徴とする低温靱性に優れた厚鋼板の製造方法にある。In order to solve the above-mentioned problems, the present inventors have found a means for ultra-fine graining of α by investigating the hot working behavior of α in detail, and The invention has been completed. That is, the gist of the present invention is, by weight%, C: 0.01 to 0.20%,
Si: 0.03 to 1.0%, Mn: 0.30 to 2.0
%, Al: 0.005-0.1%, N: 0.001-
0.01%, and if necessary, Cr: 0.
01 to 0.50%, Ni: 0.01 to 3.0%, Mo:
0.01 to 0.50%, Cu: 0.01 to 1.5%, T
i: 0.003 to 0.10%, V: 0.005 to 0.2
0%, Nb: 0.003 to 0.05%, B: 0.000
Containing one or more 3 to 0.0020%, a slab containing the balance of Fe and inevitable impurities, A c3 transformation point or higher, then heated to a temperature of 1200 ° C. or less, A r3 transformation point or above the temperature After the average austenite grain size is reduced to 50 μm or less by the rough rolling ending in step 1, and after cooling to a temperature at which the proportion of ferrite is 50% or more at a cooling rate of 2 ° C./second or less, finish rolling with a cumulative reduction of 50% or more. Is finished at a temperature of 650 ° C. or higher, or after rolling is finished, it is subsequently accelerated cooled to a temperature of 550 ° C. or lower at a cooling rate of 5 ° C./sec or higher, and tempered at a heating temperature of 600 ° C. or lower, if necessary. A method for producing a thick steel sheet excellent in low temperature toughness, which is characterized by the above.
【0010】以下に本発明について実験結果に基づいて
詳細に説明する。本発明はαの細粒化の手段として、加
工αの回復・再結晶による方法を用いている点に特徴を
有する。即ち、γ/α二相域で加工を加えることにより
得られるαを加工後回復・再結晶せしめて実質的なαの
細粒化を計る。この場合、超細粒化のためには加工後の
αの回復・再結晶は再加熱熱処理のような方法ではな
く、圧延後の冷却中、好ましくは圧延中あるいは直後に
生じさせる方が有利となる。ただし、冷却中にαを一定
量以上生成させようとすると必然的に温度が低下するた
め、圧延中あるいはその後の冷却中に適正な回復・再結
晶を生じせしめることは一般的には困難である。本発明
者らは、この冷却過程での加工におけるαの挙動を詳細
な実験により調査し、加工αの回復・再結晶により超細
粒化するためには二相域加工条件の適正化とともに二相
域加工に入る前の組織を規定する必要があることを見出
し、本発明を完成するに至った。以下に実験に基づいて
さらに説明する。The present invention will be described in detail below based on experimental results. The present invention is characterized in that a method of recovery / recrystallization of processed α is used as a means for making α fine. That is, the α obtained by applying the processing in the γ / α two-phase region is recovered and recrystallized after the processing to substantially reduce the grain size of α. In this case, for the purpose of ultra-fine graining, it is advantageous that the recovery / recrystallization of α after working is not performed by a method such as reheating heat treatment, but is performed during cooling after rolling, preferably during rolling or immediately after rolling. Become. However, if it is attempted to generate a certain amount or more of α during cooling, the temperature will inevitably decrease, so it is generally difficult to cause proper recovery and recrystallization during rolling or during cooling thereafter. . The present inventors investigated the behavior of α in the processing during this cooling process by detailed experiments, and in order to achieve ultrafine graining by recovery / recrystallization of the processed α, the two-phase region processing conditions should be optimized together with the optimization. The inventors have found that it is necessary to define the structure before entering the phase region processing, and have completed the present invention. Further description will be given below based on experiments.
【0011】化学組成がC:0.15%、Si:0.2
%、Mn:1.2%、Nb:0.006%、Ti:0.
01%、N:0.0032%の鋼を1150℃に加熱
し、γ域の圧延条件(圧下率、圧下温度)を変化させ
て、γ/α変態前のγ粒径を約30μmと65μmの2
種類とした上で、圧下率と圧下温度を変えた二相域1パ
ス加工を行った。二相域圧下温度を変化させることは加
工時のα分率を変えることを意味する。二相域加工に入
るときの板厚が揃うように初期スラブ厚を変えた。従っ
て、二相域圧下後の板厚は圧下率に応じて異なる。二相
域圧下後は冷却速度が約20℃/秒になるように調整し
て、ほぼ室温まで制御冷却を行い、板厚中心部の組織を
観察した。αの形態はナイタール腐食組織を光学顕微鏡
により観察して判定し、α粒径は走査型電子顕微鏡によ
り倍率3500倍の写真を用いて測定した。走査型電子
顕微鏡写真では、いわゆる大傾角粒界と小傾角粒界とは
明確には区別できないが、本発明では両者を全て粒界と
みなして測定した。The chemical composition is C: 0.15%, Si: 0.2
%, Mn: 1.2%, Nb: 0.006%, Ti: 0.
01%, N: 0.0032% steel is heated to 1150 ° C., and the rolling conditions (reduction rate, reduction temperature) in the γ region are changed to change the γ grain size before the γ / α transformation to about 30 μm and 65 μm. Two
After selecting the type, the two-phase region one-pass processing was performed by changing the reduction rate and the reduction temperature. Changing the two-phase zone rolling temperature means changing the α fraction during processing. The initial slab thickness was changed so that the plate thickness is uniform when entering the two-phase processing. Therefore, the plate thickness after the two-phase region reduction depends on the reduction rate. After reducing the pressure in the two-phase region, the cooling rate was adjusted to about 20 ° C./sec, control cooling was performed to about room temperature, and the structure at the center of the plate thickness was observed. The form of α was determined by observing the Nital corrosion structure with an optical microscope, and the α particle size was measured with a scanning electron microscope using a photograph at a magnification of 3500 times. In a scanning electron micrograph, so-called high-angle grain boundaries and small-angle grain boundaries cannot be clearly distinguished, but in the present invention, both were regarded as grain boundaries for measurement.
【0012】図1、図2は二相域圧下条件とαの形態お
よびα粒径の関係を示す図であるが、図1は変態前のγ
粒径が約30μmの場合、図2は65μmの場合の結果
である。図1から圧下率が増加するにつれてα粒径は微
細化する傾向が認められるが、整細粒で粒径が約3μm
以下となるためには、圧下率だけでなく、二相域加工時
のα分率も規定する必要があることが分かる。FIG. 1 and FIG. 2 are views showing the relationship between the two-phase zone rolling condition, the form of α and the α grain size. FIG. 1 shows γ before transformation.
When the particle size is about 30 μm, FIG. 2 shows the result when the particle size is 65 μm. It can be seen from Fig. 1 that the α particle size tends to become finer as the rolling reduction increases.
It is understood that not only the rolling reduction but also the α fraction during the two-phase region processing needs to be defined in order to become the following.
【0013】即ち、α分率が小さいと加工されるαの割
合が小さいため、得られる組織としては加工αから形成
される組織よりもγから変態する組織が主体となり、圧
下率が大きくてもγからの変態で生じるαの粒径には限
界があるため、全体のα粒径の微細化にも限度がある。
また、混粒組織にもなりやすい。一方、α分率が多くて
も、圧下率が小さいとαの回復・再結晶が進行し難いた
め、加工ままαとなりαの微細化は達成されない。従っ
て、超細粒化のためには、一定以上のα分率を確保した
上で一定以上の圧下率で圧下を加える必要がある。図1
の検討を種々の成分の鋼について実施した結果、超細粒
化するための圧下条件範囲は加工前のα分率と圧下率で
規定すれば鋼種によらずほぼ一定であることが判明して
おり、α粒径が安定して3μm以下となる条件から、γ
域の圧下に引き続く二相域温度での圧下条件として、加
工時のα分率が50%以上で、かつ累積圧下率が50%
以上を本発明の範囲とする。That is, when the α fraction is small, the proportion of processed α is small. Therefore, the obtained structure mainly consists of the structure transformed from γ rather than the structure formed from processed α, and even if the rolling reduction is large. Since there is a limit to the particle size of α generated by the transformation from γ, there is also a limit to the refinement of the entire α particle size.
Also, it tends to have a mixed grain structure. On the other hand, even if the α fraction is large, if the reduction ratio is small, the recovery and recrystallization of α are difficult to proceed, so that α remains as-processed and α cannot be refined. Therefore, in order to achieve ultrafine graining, it is necessary to secure the α fraction above a certain level and then apply the reduction at a certain down rate. FIG.
As a result of conducting investigations on steels of various components, it was found that the range of reduction conditions for ultra-fine graining is almost constant regardless of the steel type if it is specified by the α fraction and the reduction rate before processing. From the condition that the α particle size is stable at 3 μm or less,
As a rolling condition at the two-phase region temperature following the rolling reduction, the α fraction during processing is 50% or more, and the cumulative rolling reduction is 50%.
The above is the scope of the present invention.
【0014】以上は、変態開始前のγ粒径が約30μm
と微細な場合であるが、αの超細粒化のためには、上記
二相域圧下条件だけでなく、加工前の組織を規定する必
要がある。即ち、図2は変態前のγ粒径が約65μmの
場合であるが、この場合は図1と同様の二相域圧下条件
範囲内であってもほとんどα粒径が3μm以下とはなら
ない。これは、前組織が粗大であるためαの回復・再結
晶が抑制されることに起因する。二相域加工前の組織は
圧延条件としては変態域での冷却速度と変態前のγ粒径
で代表され、一般的にはγ粒径が一定であれば、冷却速
度が大きいほど前組織は微細となる。一方、冷却速度が
大きくなるにつれてαの生成が抑制されるため、同じα
分率を得るためにはより低温まで冷却する必要が生じ、
その結果としてαの加工温度も低下することになる。前
組織を微細化してもαの加工温度が低くなるとαの回復
・再結晶は抑制されるため、冷却速度を高めることでの
前組織の微細化は却ってαの細粒化にとっては不利とな
る。むしろ、より高温でαの量を確保するために冷却速
度は小さくすべきである。このような条件下で前組織を
微細化する方法としては、γの微細化が有効となる。別
途、詳細な検討の結果、γ単相域での加工後、所望のα
分率を得るまでの冷却速度が2℃/秒以下で、かつその
冷却条件下でγ粒径を50μm以下とすれば前組織を微
細化でき、図1で示したように二相域加工時のα分率が
50%以上で、かつ累積圧下率が50%以上の条件で約
3μm以下の超細粒αを安定して得ることが可能となる
ことを知見した。この、所望のα分率を得るまでの冷却
速度が2℃/秒以下で、かつその冷却条件下でγ粒径が
50μm以下の前提条件を外れた場合は、二相域圧下の
条件を如何に調整しても超細粒αが得られないか、得ら
れてもその二相域圧下条件範囲が非常に狭く、工業的に
利用することが難しい。Above, the γ grain size before the start of transformation is about 30 μm
However, in order to make α into ultrafine grains, it is necessary to specify not only the above-mentioned two-phase region rolling condition but also the structure before processing. That is, FIG. 2 shows the case where the γ particle size before transformation is about 65 μm. In this case, however, the α particle size is almost 3 μm or less even within the same two-phase region rolling condition range as in FIG. This is because the anterior structure is coarse and α recovery and recrystallization are suppressed. The structure before processing in the two-phase region is represented by the cooling rate in the transformation region and the γ grain size before transformation as rolling conditions.Generally, if the γ grain size is constant, the larger the cooling rate, the more It becomes fine. On the other hand, since the generation of α is suppressed as the cooling rate increases, the same α
It becomes necessary to cool to a lower temperature to obtain the fraction,
As a result, the processing temperature for α also decreases. Since the recovery and recrystallization of α is suppressed when the processing temperature of α is lowered even if the anterior structure is made finer, the refinement of the anterior structure by increasing the cooling rate is rather disadvantageous for the grain refinement of α. . Rather, the cooling rate should be low to ensure the amount of α at higher temperatures. As a method of refining the front structure under such conditions, miniaturization of γ is effective. Separately, as a result of detailed examination, after processing in the γ single-phase region, the desired α
If the cooling rate until obtaining the fraction is 2 ° C./sec or less and the γ grain size is 50 μm or less under the cooling conditions, the pre-structure can be made finer, and as shown in FIG. It has been found that it becomes possible to stably obtain ultrafine particles α of about 3 μm or less under the condition that the α fraction is 50% or more and the cumulative rolling reduction is 50% or more. When the cooling rate to obtain the desired α fraction is 2 ° C./sec or less and the γ particle size is 50 μm or less under the cooling conditions, the condition under the two-phase region pressure is not determined. Even if it is adjusted to, ultrafine particles α cannot be obtained, or even if it is obtained, the rolling condition range of the two-phase region is very narrow, and it is difficult to industrially utilize it.
【0015】以上の理由から、本発明においては、所定
の化学組成を有する鋼片をAc3変態点以上、1200℃
以下の温度に加熱し、Ar3変態点以上の温度で終了する
粗圧延により平均オーステナイト粒径を50μm以下と
した上で、2℃/秒以下の冷却速度でフェライト割合が
50%以上となる温度まで冷却した後、累積圧下率50
%以上の仕上圧延を行うことを要件とする。For the above reasons, in the present invention, a steel piece having a predetermined chemical composition is treated at the A c3 transformation point or more and 1200 ° C.
Temperature at which the proportion of ferrite becomes 50% or more at a cooling rate of 2 ° C./sec or less after the average austenite grain size is set to 50 μm or less by rough rolling which is heated to the following temperature and finished at a temperature of A r3 transformation point or more. After cooling down to 50, the cumulative rolling reduction is 50
It is necessary to perform finish rolling of not less than%.
【0016】ここで、加熱温度をAc3変態点以上、12
00℃以下としたのは、Ac3変態点未満では容体化が不
十分であり、また、未変態のαが粗大な場合は引き続く
圧延、冷却によっては、二相域加工前のαの微細化が困
難なためであり、一方1200℃を超えるとγが混粒を
生じやすく、平均的なγ粒径を50μm以下にしても一
部αが超細粒化しない部分が生じ、靱性値としては改善
が望めないためである。Here, the heating temperature is set to the A c3 transformation point or more, 12
The temperature is set to 00 ° C. or lower because if it is less than the Ac 3 transformation point, the compaction is insufficient, and if the untransformed α is coarse, the α is refined before the two-phase region processing depending on the subsequent rolling and cooling. On the other hand, if the temperature exceeds 1200 ° C., γ is likely to cause mixed grains, and even if the average γ grain size is 50 μm or less, a part of α does not become ultrafine grain, and the toughness value is This is because improvement cannot be expected.
【0017】また、γ粒の調整を目的とした圧延におい
ては、その終了温度はAr3変態点以上とする。これは、
変態点未満での圧延はγ粒の微細化に有効でなく、また
αを十分形成する前の加工はαの超細粒化にも有効でな
いためである。なお、二相域圧延となる仕上圧延は65
0℃以上で終了する必要がある。これは、加工温度が低
いとαの回復・再結晶が抑制されて超細粒化が不十分と
なるためで、二相域圧延の全過程でαの回復・再結晶を
進行せしめて安定的に超細粒組織を得るための条件であ
る。In the rolling for the purpose of adjusting the γ grain, the finishing temperature is set to the Ar 3 transformation point or higher. this is,
This is because rolling below the transformation point is not effective for refining γ grains, and processing before sufficiently forming α is not effective for ultrafine graining of α. The finish rolling, which is a two-phase rolling, is 65
It is necessary to finish above 0 ° C. This is because if the processing temperature is low, the recovery and recrystallization of α is suppressed and the ultra-fine graining becomes insufficient, so that the recovery and recrystallization of α progresses in the whole process of the two-phase region rolling, and it is stable. This is a condition for obtaining an ultrafine grain structure.
【0018】圧延後の冷却は放冷によっても、水冷等に
よる加速冷却によっても本発明の効果は損なわれること
はない。また、加速冷却後、強度調整、残留応力除去等
の目的で焼き戻しを施すことも可能であるが、その場合
は得られた超細粒αを成長させないように、焼き戻し温
度は600℃以下とすべきである。The effect of the present invention is not impaired by cooling after rolling, by cooling alone, or by accelerated cooling such as water cooling. After the accelerated cooling, it is possible to perform tempering for the purpose of strength adjustment, residual stress removal, etc., but in that case, the tempering temperature is 600 ° C. or lower so as not to grow the obtained ultrafine particles α. Should be.
【0019】[0019]
【作用】以上が製造方法に関する本発明の限定理由であ
るが、低温靱性を確保するためには、製造方法だけでな
く、化学成分も適正範囲内とする必要がある。以下に、
本発明における化学成分の限定理由を述べる。先ず、C
は鋼の強度を向上させる有効な成分として添加するもの
で、0.01%未満では構造用鋼に必要な強度の確保が
困難であり、また0.20%を超える過剰の添加は靱性
や耐溶接割れ性などを著しく低下させるので、0.01
〜0.20%の範囲とした。The above are the reasons for limiting the present invention relating to the manufacturing method. However, in order to secure the low temperature toughness, not only the manufacturing method but also the chemical composition must be within the proper range. less than,
The reasons for limiting the chemical components in the present invention will be described. First, C
Is added as an effective component to improve the strength of steel. If it is less than 0.01%, it is difficult to secure the strength required for structural steel, and if it is added in excess of 0.20%, toughness and resistance are increased. Since it significantly reduces weld crackability, etc., 0.01
It was set to a range of 0.20%.
【0020】次に、Siは脱酸元素として、また母材の
強度確保に有効な元素である。0.03%未満の添加で
は脱酸が不十分となり、また強度確保に不利である。逆
に、1.0%を超える過剰の添加は粗大な酸化物を形成
して延性や靱性劣化を招く。そこで、Siの範囲は0.
03〜1.0%とした。また、Mnは母材の強度、靱性
の確保に必要な元素であり、最低限0.30%は添加す
る必要があるが、溶接部の靱性、割れ性など材質上許容
できる範囲で上限を2.0%とした。Next, Si is an element effective as a deoxidizing element and for ensuring the strength of the base material. Addition of less than 0.03% results in insufficient deoxidation and is disadvantageous in securing strength. On the contrary, excessive addition of more than 1.0% forms a coarse oxide and causes ductility and toughness deterioration. Therefore, the range of Si is 0.
It was set to 03 to 1.0%. Further, Mn is an element necessary to secure the strength and toughness of the base metal, and it is necessary to add at least 0.30%, but the upper limit is 2 within the allowable range of the material such as the toughness and crackability of the welded portion. It was set to 0.0%.
【0021】Alは脱酸、γ粒径の細粒化等に有効な元
素であり、効果を発揮させるためには0.005%以上
含有する必要があるが、0.1%を超えて過剰に添加す
ると、粗大な酸化物を形成して延性を極端に劣化させる
ため、0.005〜0.1%の範囲に限定する必要があ
る。NはAlやTiと結びついてγ粒微細化に有効に働
くが、その効果を明確にするためには0.001%以上
含有させる必要がある。一方、過剰に添加すると固溶N
が増加して靱性に悪影響を及ぼすため、許容できる範囲
として上限を0.01%とする。Al is an element effective in deoxidizing, refining the γ grain size, etc., and must be contained in an amount of 0.005% or more in order to exert its effect. When added to, a coarse oxide is formed and ductility is extremely deteriorated, so it is necessary to limit the content to 0.005 to 0.1%. N works effectively in γ grain refinement in combination with Al and Ti, but in order to clarify the effect, it is necessary to contain N by 0.001% or more. On the other hand, if added excessively, solid solution N
Increases and adversely affects toughness, so the upper limit is made 0.01% as an allowable range.
【0022】以上が本発明鋼の基本成分であるが、所望
の強度レベルに応じて母材強度の上昇を目的として、必
要に応じて、Cr、Ni、Mo、Cu、Ti、V、N
b、Bの1種または2種以上を含有することができる。
先ず、CrおよびMoは、いずれも母材の強度向上に有
効な元素であるが、明瞭な効果を生じさせるためには
0.01%以上必要であり、一方、0.50%を超えて
添加すると、靱性が劣化する傾向を有するため、0.0
1〜0.50%の範囲とする。The above are the basic components of the steel of the present invention, but Cr, Ni, Mo, Cu, Ti, V, N, if necessary, for the purpose of increasing the strength of the base material according to the desired strength level.
One or more of b and B may be contained.
First, Cr and Mo are both effective elements for improving the strength of the base material, but 0.01% or more is necessary for producing a clear effect, while Cr is added in excess of 0.50%. Then, since the toughness tends to deteriorate, 0.0
The range is from 1 to 0.50%.
【0023】また、Niは母材の強度と靱性を同時に向
上でき、非常に有効な元素であるが、効果を発揮させる
ためには0.01%以上含有させる必要がある。含有量
が多くなると強度、靱性は向上するが、3.0%を超え
て添加しても効果が飽和するためと、Ar3変態点が極端
に低下して本発明の条件である、仕上圧延前のα量50
%以上と、仕上圧延開始温度650℃以上を同時に満足
することができなくなるため、経済性も考慮して、上限
を3.0%とする。Ni is a very effective element because it can improve the strength and toughness of the base material at the same time, but it is necessary to contain Ni in an amount of 0.01% or more in order to exert the effect. Although the strength and toughness are improved when the content is increased, the effect is saturated even if the content exceeds 3.0%, and the Ar3 transformation point is extremely lowered, which is a condition of the present invention. Previous α amount 50
% And the finish rolling start temperature of 650 ° C. or more cannot be satisfied at the same time, so the upper limit is set to 3.0% in consideration of economic efficiency.
【0024】次に、CuもほぼNiと同様の効果を有す
るが、1.5%超の添加では熱間加工性に問題を生じる
ため、0.01〜1.5%の範囲に限定する。Tiは析
出強化により母材の強度向上に寄与するとともに、Ti
Nの形成によりγ粒微細化にも有効な元素であるが、効
果を発揮させるためには0.003%以上の添加が必要
である。一方、0.10%を超えると、Alと同様、粗
大な酸化物を形成して靱性や延性を劣化させるため、上
限を0.10%とする。Next, Cu has almost the same effect as Ni, but addition of more than 1.5% causes a problem in hot workability, so the range is limited to 0.01 to 1.5%. Ti contributes to the strength improvement of the base material by precipitation strengthening, and
Although it is an element effective for making γ grains fine by forming N, it is necessary to add 0.003% or more in order to exert the effect. On the other hand, if it exceeds 0.10%, similarly to Al, a coarse oxide is formed to deteriorate toughness and ductility, so the upper limit is made 0.10%.
【0025】VおよびNbは、いずれも主として析出強
化により母材の強度向上に寄与するが、過剰に添加する
と靱性が劣化する。従って、靱性の劣化を招かずに、効
果を発揮できる範囲として、Vは0.005〜0.20
%、Nbは0.003〜0.05%とする。Bは0.0
003%以上のごく微量添加で鋼材の焼入性を高めて強
度上昇に非常に有効であるが、過剰に添加するとBNを
形成して、逆に焼入性を落としたり、靱性を大きく劣化
させるため、上限を0.0020%とする。Both V and Nb mainly contribute to improving the strength of the base material by precipitation strengthening, but if added excessively, the toughness deteriorates. Therefore, V is 0.005 to 0.20 as a range in which the effect can be exhibited without deteriorating the toughness.
% And Nb are 0.003 to 0.05%. B is 0.0
Addition of a very small amount of 003% or more is very effective for enhancing the hardenability of steel materials and increasing the strength, but if added in excess, it forms BN, which adversely reduces the hardenability and greatly deteriorates the toughness. Therefore, the upper limit is made 0.0020%.
【0026】次に、本発明の効果を実施例によってさら
に具体的に述べる。Next, the effects of the present invention will be described more specifically by way of examples.
【0027】[0027]
【実施例】実施例に用いた供試鋼の化学成分を表1に示
す。各供試鋼は造塊後、分塊圧延により、あるいは連続
鋳造により鋼片となした。表1の内、鋼番1〜10は本
発明の化学成分範囲を満足しており、鋼番11〜13は
本発明の化学成分範囲を外れている。[Examples] Table 1 shows the chemical composition of the test steels used in the examples. Each of the test steels was made into a billet by slab rolling or continuous casting after ingot casting. In Table 1, Steel Nos. 1 to 10 satisfy the chemical composition range of the present invention, and Steel Nos. 11 to 13 are out of the chemical composition range of the present invention.
【0028】表1の鋼片を表2、表3(表2のつづき−
1)、表4(表2のつづき−2)、表5(表2のつづき
−3)に示す条件により鋼板に製造し、強度、シャルピ
ー衝撃特性、DWTT特性を調査した。試験片は全て板
厚中心部から圧延直角方向に採取した。シャルピー衝撃
特性は50%破面遷移温度(vTrs)で、またDWT
T特性は85%延性破面遷移温度(85%FATT)で
それぞれ評価した。強度、靱性の試験結果も表2〜表5
に示す。The steel pieces in Table 1 are shown in Tables 2 and 3 (continued from Table 2).
1), Table 4 (Continued-2 in Table 2) and Table 5 (Continued-3 in Table 2) were manufactured into steel sheets and the strength, Charpy impact characteristics and DWTT characteristics were investigated. All test pieces were sampled in the direction perpendicular to the rolling from the center of the plate thickness. Charpy impact property is 50% fracture surface transition temperature (vTrs), and also DWT
The T characteristics were evaluated at 85% ductile fracture transition temperature (85% FATT). The test results of strength and toughness are also shown in Table 2 to Table 5.
Shown in
【0029】[0029]
【表1】 [Table 1]
【0030】[0030]
【表2】 [Table 2]
【0031】[0031]
【表3】 [Table 3]
【0032】[0032]
【表4】 [Table 4]
【0033】[0033]
【表5】 [Table 5]
【0034】表2〜表5において、試験No.A1〜A
17はいずれも本発明に従って製造した鋼板であり、全
て平均α粒径が約3μm以下の超細粒組織が得られ、靱
性値もvTrsで−100℃以下、DWTTの80%F
ATTで−70℃以下が達成されている。一方、試験N
o.B1〜B9は比較例であり、いずれかの条件が本発
明の限定範囲を外れているためαの超細粒化が計られて
おらず、本発明例に比べてシャルピー特性、DWTT特
性ともはるかに劣る。即ち、試験No.B1は加熱温度
が高過ぎるため、前組織の微細化が十分計られていな
い。B2およびB5は変態前のγ粒径が粗大な上、二相
域加工時のα分率が本発明の限定範囲を外れている。ま
た試験No.B3およびB6は仕上圧延の圧下率が不十
分なため、超細粒化が不十分である。また、B4はγ粒
径が粗大なため、B7〜B9は化学成分範囲が本発明範
囲外であるため、超細粒化が達成されなかったり、他の
靱性劣化要因のために低温靱性が劣る。In Tables 2 to 5, the test No. A1-A
All of 17 are steel sheets manufactured according to the present invention, all of which have an ultrafine grain structure with an average α grain size of about 3 μm or less, a toughness value of vTrs of −100 ° C. or less, and a DWTT of 80% F.
A temperature of -70 ° C or lower is achieved by ATT. On the other hand, test N
o. B1 to B9 are comparative examples, and any one of the conditions is out of the limited range of the present invention, so that the ultrafine graining of α is not measured, and the Charpy characteristics and the DWTT characteristics are far more than those of the present invention examples. Inferior to. That is, the test No. The heating temperature of B1 is too high, and therefore the fineness of the front structure is not sufficiently measured. In B2 and B5, the γ grain size before transformation is coarse, and the α fraction during processing in the two-phase region is outside the range of the present invention. In addition, the test No. For B3 and B6, the rolling reduction in finish rolling is insufficient, and thus ultrafine graining is insufficient. Further, since B4 has a large γ particle size, and B7 to B9 have a chemical composition range outside the range of the present invention, ultra-fine graining cannot be achieved, or low temperature toughness is poor due to other toughness deterioration factors. .
【0035】以上から、本発明によれば約3μm以下の
超細粒化組織を有し、非常に良好な低温靱性を示す鋼板
の製造が可能であることが明白である。From the above, it is clear that according to the present invention, it is possible to manufacture a steel sheet having an ultra-fine grained structure of about 3 μm or less and exhibiting very good low temperature toughness.
【0036】[0036]
【発明の効果】本発明は、高価な合金元素を用いたり、
複雑な熱履歴により生産性を低下させることなく、低温
靱性の良好な厚鋼板を製造できる画期的な方法であり、
製造コストの低減、構造物としての安全性の向上等、産
業上の効果は極めて大きい。INDUSTRIAL APPLICABILITY The present invention uses expensive alloy elements,
It is an epoch-making method that can produce thick steel plate with good low temperature toughness without reducing productivity due to complicated heat history.
Industrial effects such as reduction of manufacturing cost and improvement of safety as a structure are extremely large.
【図1】変態前γ粒径が30μmの場合の二相域圧下条
件とαの形態、粒径との関係をを示す図である。FIG. 1 is a diagram showing a relationship between a two-phase region rolling condition, a morphology of α, and a grain size when a γ grain size before transformation is 30 μm.
【図2】変態前γ粒径が65μmの場合の二相域圧下条
件とのαの形態、粒径との関係を示す図である。FIG. 2 is a diagram showing a relationship between a morphology of α and a grain size in a two-phase region rolling condition when a γ grain size before transformation is 65 μm.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/54 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C22C 38/54
Claims (6)
を、Ac3変態点以上、1200℃以下の温度に加熱し、
Ar3変態点以上の温度で終了する粗圧延により平均オー
ステナイト粒径を50μm以下とした上で、2℃/秒以
下の冷却速度でフェライト割合が50%以上となる温度
まで冷却した後、累積圧下率50%以上の仕上圧延を6
50℃以上の温度で終了することを特徴とする低温靱性
に優れた厚鋼板の製造方法。1. By weight%, C: 0.01 to 0.20%, Si: 0.03 to 1.0%, Mn: 0.30 to 2.0%, Al: 0.005 to 0. 1%, N: 0.001 to 0.01%, and a steel slab composed of the balance Fe and unavoidable impurities is heated to a temperature not lower than the Ac 3 transformation point and not higher than 1200 ° C.,
After the average austenite grain size is reduced to 50 μm or less by rough rolling ending at a temperature of A r3 transformation point or more, the ferrite is cooled to a temperature at which the proportion of ferrite is 50% or more at a cooling rate of 2 ° C./sec or less, and then the cumulative rolling reduction is performed. 6 finish rolling with a rate of 50% or more
A method for producing a thick steel sheet excellent in low-temperature toughness, which is characterized by ending at a temperature of 50 ° C. or higher.
不純物からなる鋼片を、Ac3変態点以上、1200℃以
下の温度に加熱し、Ar3変態点以上の温度で終了する粗
圧延により平均オーステナイト粒径を50μm以下とし
た上で、2℃/秒以下の冷却速度でフェライト割合が5
0%以上となる温度まで冷却した後、累積圧下率50%
以上の仕上圧延を650℃以上の温度で終了することを
特徴とする低温靱性に優れた厚鋼板の製造方法。2. C: 0.01 to 0.20%, Si: 0.03 to 1.0%, Mn: 0.30 to 2.0%, Al: 0.005 to 0. 1%, N: 0.001-0.01% is contained, Cr: 0.01-0.50%, Ni: 0.01-3.0%, Mo: 0.01-0.50% Cu: 0.01 to 1.5%, Ti: 0.003 to 0.10%, V: 0.005 to 0.20%, Nb: 0.003 to 0.05%, B: 0.0003 contain one or more ~0.0020%, a slab containing the balance of Fe and inevitable impurities, a c3 transformation point or higher, then heated to a temperature of 1200 ° C. or less, in a r3 transformation point or higher temperatures By finishing rough rolling, the average austenite grain size is reduced to 50 μm or less, and the ferrite ratio is 5 at a cooling rate of 2 ° C./sec or less.
After cooling to a temperature of 0% or more, the cumulative rolling reduction is 50%
A method for producing a thick steel sheet excellent in low-temperature toughness, characterized in that the above finishing rolling is finished at a temperature of 650 ° C. or higher.
を、Ac3変態点以上、1200℃以下の温度に加熱し、
Ar3変態点以上の温度で終了する粗圧延により平均オー
ステナイト粒径を50μm以下とした上で、2℃/秒以
下の冷却速度でフェライト割合が50%以上となる温度
まで冷却した後、累積圧下率50%以上の仕上圧延を6
50℃以上の温度で終了し、引き続いて5℃/秒以上の
冷却速度で550℃以下の温度に加速冷却することを特
徴とする低温靱性に優れた厚鋼板の製造方法。3. C .: 0.01 to 0.20%, Si: 0.03 to 1.0%, Mn: 0.30 to 2.0%, Al: 0.005 to 0. 1%, N: 0.001 to 0.01%, and a steel slab composed of the balance Fe and unavoidable impurities is heated to a temperature not lower than the Ac 3 transformation point and not higher than 1200 ° C.,
After the average austenite grain size is reduced to 50 μm or less by rough rolling ending at a temperature of A r3 transformation point or more, the ferrite is cooled to a temperature at which the proportion of ferrite is 50% or more at a cooling rate of 2 ° C./sec or less, and then the cumulative rolling reduction is performed. 6 finish rolling with a rate of 50% or more
A method for producing a thick steel sheet excellent in low-temperature toughness, which comprises terminating at a temperature of 50 ° C. or higher, and subsequently performing accelerated cooling to a temperature of 550 ° C. or lower at a cooling rate of 5 ° C./sec or higher.
不純物からなる鋼片を、Ac3変態点以上、1200℃以
下の温度に加熱し、Ar3変態点以上の温度で終了する粗
圧延により平均オーステナイト粒径を50μm以下とし
た上で、2℃/秒以下の冷却速度でフェライト割合が5
0%以上となる温度まで冷却した後、累積圧下率50%
以上の仕上圧延を650℃以上の温度で終了し、引き続
いて5℃/秒以上の冷却速度で550℃以下の温度に加
速冷却することを特徴とする低温靱性に優れた厚鋼板の
製造方法。4. C .: 0.01 to 0.20%, Si: 0.03 to 1.0%, Mn: 0.30 to 2.0%, Al: 0.005 to 0. 1%, N: 0.001-0.01% is contained, Cr: 0.01-0.50%, Ni: 0.01-3.0%, Mo: 0.01-0.50% Cu: 0.01 to 1.5%, Ti: 0.003 to 0.10%, V: 0.005 to 0.20%, Nb: 0.003 to 0.05%, B: 0.0003 contain one or more ~0.0020%, a slab containing the balance of Fe and inevitable impurities, a c3 transformation point or higher, then heated to a temperature of 1200 ° C. or less, in a r3 transformation point or higher temperatures By finishing rough rolling, the average austenite grain size is reduced to 50 μm or less, and the ferrite ratio is 5 at a cooling rate of 2 ° C./sec or less.
After cooling to a temperature of 0% or more, the cumulative rolling reduction is 50%
A method for producing a thick steel sheet excellent in low-temperature toughness, which comprises finishing the above-mentioned finish rolling at a temperature of 650 ° C. or higher, and subsequently performing accelerated cooling to a temperature of 550 ° C. or lower at a cooling rate of 5 ° C./second or higher.
を、Ac3変態点以上、1200℃以下の温度に加熱し、
Ar3変態点以上の温度で終了する粗圧延により平均オー
ステナイト粒径を50μm以下とした上で、2℃/秒以
下の冷却速度でフェライト割合が50%以上となる温度
まで冷却した後、累積圧下率50%以上の仕上圧延を6
50℃以上の温度で終了し、引き続いて5℃/秒以上の
冷却速度で550℃以下の温度に加速冷却した後、60
0℃以下の温度で焼き戻すことを特徴とする低温靱性に
優れた厚鋼板の製造方法。5. In weight%, C: 0.01 to 0.20%, Si: 0.03 to 1.0%, Mn: 0.30 to 2.0%, Al: 0.005 to 0. 1%, N: 0.001 to 0.01%, and a steel slab composed of the balance Fe and unavoidable impurities is heated to a temperature not lower than the Ac 3 transformation point and not higher than 1200 ° C.,
After the average austenite grain size is reduced to 50 μm or less by rough rolling ending at a temperature of A r3 transformation point or more, the ferrite is cooled to a temperature at which the proportion of ferrite is 50% or more at a cooling rate of 2 ° C./sec or less, and then the cumulative rolling reduction is performed. 6 finish rolling with a rate of 50% or more
After terminating at a temperature of 50 ° C. or higher, and subsequently accelerating cooling to a temperature of 550 ° C. or lower at a cooling rate of 5 ° C./sec or higher, 60
A method for producing a thick steel sheet excellent in low-temperature toughness, which comprises tempering at a temperature of 0 ° C or lower.
以上を含有し、残部Feおよび不可避不純物からなる鋼
片を、Ac3変態点以上、1200℃以下の温度に加熱
し、Ar3変態点以上の温度で終了する粗圧延により平均
オーステナイト粒径を50μm以下とした上で、2℃/
秒以下の冷却速度でフェライト割合が50%以上となる
温度まで冷却した後、累積圧下率50%以上の仕上圧延
を650℃以上の温度で終了し、引き続いて5℃/秒以
上の冷却速度で550℃以下の温度に加速冷却した後、
600℃以下の加熱温度で焼き戻すことを特徴とする低
温靱性に優れた厚鋼板の製造方法。6. In% by weight, C: 0.01 to 0.20%, Si: 0.03 to 1.0%, Mn: 0.30 to 2.0%, Al: 0.005 to 0. 1%, N: 0.001-0.01% is contained, Cr: 0.01-0.50%, Ni: 0.01-3.0%, Mo: 0.01-0.50% Cu: 0.01 to 1.5%, Ti: 0.003 to 0.10%, V: 0.005 to 0.20%, Nb: 0.003 to 0.05%, B: 0.0003 contain one or more ~0.0020%, a slab containing the balance of Fe and inevitable impurities, a c3 transformation point or higher, then heated to a temperature of 1200 ° C. or less, in a r3 transformation point or higher temperatures The average austenite grain size is reduced to 50 μm or less by rough rolling to be finished, and then 2 ° C. /
After cooling to a temperature at which the proportion of ferrite is 50% or more at a cooling rate of not more than seconds, finish rolling with a cumulative reduction of 50% or more is completed at a temperature of 650 ° C or more, and subsequently at a cooling rate of 5 ° C / second or more. After accelerated cooling to a temperature below 550 ° C,
A method for producing a thick steel sheet excellent in low temperature toughness, which comprises tempering at a heating temperature of 600 ° C. or lower.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19882994A JP3261515B2 (en) | 1994-08-23 | 1994-08-23 | Method of manufacturing thick steel plate with excellent low temperature toughness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19882994A JP3261515B2 (en) | 1994-08-23 | 1994-08-23 | Method of manufacturing thick steel plate with excellent low temperature toughness |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0860239A true JPH0860239A (en) | 1996-03-05 |
JP3261515B2 JP3261515B2 (en) | 2002-03-04 |
Family
ID=16397616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19882994A Expired - Fee Related JP3261515B2 (en) | 1994-08-23 | 1994-08-23 | Method of manufacturing thick steel plate with excellent low temperature toughness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3261515B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998049362A1 (en) * | 1997-04-30 | 1998-11-05 | Kawasaki Steel Corporation | Steel material having high ductility and high strength and process for production thereof |
JP2002105533A (en) * | 2000-09-26 | 2002-04-10 | National Institute For Materials Science | Method for manufacturing high-tensile steel with low yield ratio |
KR100711467B1 (en) * | 2005-12-23 | 2007-04-24 | 주식회사 포스코 | A method for manufacturing boron-added thick steel plate having excellent toughness at the surface region |
JP2007162076A (en) * | 2005-12-14 | 2007-06-28 | Kobe Steel Ltd | Hot rolled steel sheet having excellent workability and fatigue property and casting method therefor |
KR100946051B1 (en) * | 2002-12-27 | 2010-03-09 | 주식회사 포스코 | Method for manufacturing the good weldability and high strength thick plate steel |
WO2022139135A1 (en) * | 2020-12-21 | 2022-06-30 | 주식회사 포스코 | Ultra-thick steel sheet with excellent strength and low-temperature impact toughness, and manufacturing method therefor |
-
1994
- 1994-08-23 JP JP19882994A patent/JP3261515B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998049362A1 (en) * | 1997-04-30 | 1998-11-05 | Kawasaki Steel Corporation | Steel material having high ductility and high strength and process for production thereof |
KR100351791B1 (en) * | 1997-04-30 | 2002-11-18 | 가와사키 세이테츠 가부시키가이샤 | Steel pipe having high ductility and high strength and process for production thereof |
JP2002105533A (en) * | 2000-09-26 | 2002-04-10 | National Institute For Materials Science | Method for manufacturing high-tensile steel with low yield ratio |
JP4590532B2 (en) * | 2000-09-26 | 2010-12-01 | 独立行政法人物質・材料研究機構 | Production method of low yield ratio high strength steel |
KR100946051B1 (en) * | 2002-12-27 | 2010-03-09 | 주식회사 포스코 | Method for manufacturing the good weldability and high strength thick plate steel |
JP2007162076A (en) * | 2005-12-14 | 2007-06-28 | Kobe Steel Ltd | Hot rolled steel sheet having excellent workability and fatigue property and casting method therefor |
JP4502272B2 (en) * | 2005-12-14 | 2010-07-14 | 株式会社神戸製鋼所 | Hot-rolled steel sheet excellent in workability and fatigue characteristics and casting method thereof |
KR100711467B1 (en) * | 2005-12-23 | 2007-04-24 | 주식회사 포스코 | A method for manufacturing boron-added thick steel plate having excellent toughness at the surface region |
WO2022139135A1 (en) * | 2020-12-21 | 2022-06-30 | 주식회사 포스코 | Ultra-thick steel sheet with excellent strength and low-temperature impact toughness, and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP3261515B2 (en) | 2002-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3314295B2 (en) | Method of manufacturing thick steel plate with excellent low temperature toughness | |
JP4235247B1 (en) | High-strength steel sheet for can manufacturing and its manufacturing method | |
JPH11140582A (en) | High toughness thick steel plate excellent in toughness in weld heat-affected zone, and its production | |
JPH10306316A (en) | Production of low yield ratio high tensile-strength steel excellent in low temperature toughness | |
JP3842836B2 (en) | Method for producing high-tensile steel with excellent low-temperature toughness | |
JPH093609A (en) | Niobium-containing rolled steel sheet having high strengths and excellent drawability and its production | |
JP3242303B2 (en) | High-strength hot-rolled steel sheet having ultrafine grains and excellent in ductility, toughness, fatigue properties and strength-ductility balance, and method for producing the same | |
JP4405026B2 (en) | Method for producing high-tensile strength steel with fine grain | |
JP3261515B2 (en) | Method of manufacturing thick steel plate with excellent low temperature toughness | |
JP3255790B2 (en) | Method for producing thick steel sheet with excellent brittle crack arrestability and low temperature toughness | |
JPH1171615A (en) | Production of thick steel plate excellent in low temperature toughness | |
JPH05195058A (en) | Production of thick steel plate having high toughness and high tensile strength | |
JP3335651B2 (en) | Method for producing thick 9% Ni steel with excellent CTOD characteristics of base metal and weld heat affected zone | |
JP3246993B2 (en) | Method of manufacturing thick steel plate with excellent low temperature toughness | |
JPH0629480B2 (en) | Hot-rolled high-strength steel sheet excellent in strength, ductility, toughness, and fatigue characteristics, and method for producing the same | |
JP3212348B2 (en) | Manufacturing method of fine grain thick steel plate | |
JP4116708B2 (en) | Manufacturing method of fine grain structure steel | |
JPH05295432A (en) | Production of steel plate having high strength and high toughness by online thermomechanical treatment | |
JP3485737B2 (en) | Manufacturing method of thick steel plate with excellent low temperature toughness | |
KR100946050B1 (en) | Method for manufacturing the ultra-fine ferrite by dynamic transformation | |
JPH05148544A (en) | Production of high-strength high-toughness steel plate having uniform hardness distribution in thickness direction | |
JP3502809B2 (en) | Method of manufacturing steel with excellent toughness | |
KR100240999B1 (en) | The manufacturing method for high strength steel sheet with low temperature shocking toughness property | |
JP3127721B2 (en) | Method for manufacturing low yield ratio steel for fire resistance | |
JP3923485B2 (en) | Manufacturing method of ferritic single-phase stainless steel with excellent deep drawability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20011023 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081221 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081221 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091221 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101221 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101221 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111221 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111221 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121221 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121221 Year of fee payment: 11 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131221 Year of fee payment: 12 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131221 Year of fee payment: 12 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131221 Year of fee payment: 12 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |