[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH085842B2 - Process for producing 2-hydroxyalkyl (meth) acrylate - Google Patents

Process for producing 2-hydroxyalkyl (meth) acrylate

Info

Publication number
JPH085842B2
JPH085842B2 JP18429986A JP18429986A JPH085842B2 JP H085842 B2 JPH085842 B2 JP H085842B2 JP 18429986 A JP18429986 A JP 18429986A JP 18429986 A JP18429986 A JP 18429986A JP H085842 B2 JPH085842 B2 JP H085842B2
Authority
JP
Japan
Prior art keywords
distillation
meth
hydroxyalkyl
acrylate
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18429986A
Other languages
Japanese (ja)
Other versions
JPS6341514A (en
Inventor
芳彦 神原
志郎 浅野
度 磯崎
公一 朝生
Original Assignee
三井東圧化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井東圧化学株式会社 filed Critical 三井東圧化学株式会社
Priority to JP18429986A priority Critical patent/JPH085842B2/en
Publication of JPS6341514A publication Critical patent/JPS6341514A/en
Publication of JPH085842B2 publication Critical patent/JPH085842B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、2−ヒドロキシアルキルアクリレートまた
は2−ヒドロキシアルキルメタクリレート(以下、この
両者を2−ヒドロキシアルキル(メタ)アクリレートま
たは単量体と称する)の製造方法に関するものである。
さらに詳しくは、2−ヒドロキシアルキル(メタ)アク
リレートの合成反応時または蒸留時における重合防止に
関する。
TECHNICAL FIELD The present invention relates to the production of 2-hydroxyalkyl acrylate or 2-hydroxyalkyl methacrylate (both of which are referred to as 2-hydroxyalkyl (meth) acrylate or monomer). It is about the method.
More specifically, it relates to prevention of polymerization during the synthesis reaction or distillation of 2-hydroxyalkyl (meth) acrylate.

従来の技術 2−ヒドロキシアルキル(メタ)アクリレートは、通
常、触媒の存在下、アクリル酸又はメタクリル酸(以
下、この両者を(メタ)アクリル酸と称する)とアルキ
レンオキサイドとを反応させて合成し、次いで蒸留によ
り精製することによって、留分として得られる。
2. Description of the Related Art 2-Hydroxyalkyl (meth) acrylate is usually synthesized by reacting acrylic acid or methacrylic acid (both of which are referred to as (meth) acrylic acid) with an alkylene oxide in the presence of a catalyst, Then, the product is obtained as a fraction by purifying by distillation.

2−ヒドロキシアルキル(メタ)アクリレートは、非
常に重合しやすいビニルモノマーであり、反応中または
蒸留中に重合するトラブルが発生しやすく、その防止は
なかなか困難である。
2-Hydroxyalkyl (meth) acrylate is a vinyl monomer that is very easily polymerized, and a problem of polymerization during the reaction or during distillation is likely to occur, and it is difficult to prevent it.

その為、従来から種々の重合防止技術が提案され、重
合防止剤も種々提案されている。
Therefore, various polymerization preventing techniques have been conventionally proposed, and various polymerization inhibitors have also been proposed.

例えば、フェノール型の重合防止剤として、ハイドロ
キノン、ハイドロキノンモノメチルエーテル等、アミン
型では、N,N′−ジ−2−ナフチル−p−フェニレンジ
アミン(特開昭51−8214号)、フェノチアジン等がよく
知られている。その他、亜硝酸カリウムまたは亜硝酸ナ
トリウム(米国特許第2,819,296号)、水溶性亜硫酸ア
ルカリ金属塩(特公昭44−2685号)、ジアルキルジチオ
カルバミン酸銅塩(特公昭59−12658号)等の無機塩又
は錯塩も用いられる。
For example, as a phenol type polymerization inhibitor, hydroquinone, hydroquinone monomethyl ether and the like, and as an amine type, N, N'-di-2-naphthyl-p-phenylenediamine (JP-A-51-8214), phenothiazine and the like are often used. Are known. In addition, inorganic salts or complex salts such as potassium nitrite or sodium nitrite (US Pat. No. 2,819,296), water-soluble alkali metal sulfite (Japanese Patent Publication No. 44-2685), copper dialkyldithiocarbamic acid (Japanese Patent Publication No. 59-12658) Is also used.

特公昭60−43056号では、蒸留時の重合防止法とし
て、該単量体の蒸気を加熱することで、塔部での凝縮を
防止し、且つ該単量体の蒸気を予冷した凝縮液と並流接
触させることで凝縮し急冷する方法が提案されている。
In Japanese Examined Patent Publication No. 60-43056, as a method for preventing polymerization during distillation, a vapor of the monomer is heated to prevent condensation in the column portion, and a condensation liquid obtained by precooling the vapor of the monomer is used. A method of condensing and quenching by contacting in parallel is proposed.

発明が解決しようとする問題点 しかしながら、本発明者等が検討したところによれ
ば、従来の提案のいずれもが反応中又は蒸溜中の重合を
防止するという点で十分なものではなかった。
Problems to be Solved by the Invention However, according to the studies by the present inventors, none of the conventional proposals is sufficient in preventing polymerization during the reaction or distillation.

例えば、前記した重合防止剤を使用した場合、ガラス
製器具を用いた小試験規模での合成及び蒸留には満足な
重合防止効果を発揮した。しかしながら、ステンレス鋼
製である商業的生産設備の反応装置又は蒸留装置におい
ては、十分な重合防止効果は得られなかった。また、特
公昭60−43056号の方法では、本発明者等が試験したと
ころによれば、以下の問題を生じることがわかった。
For example, when the above-mentioned polymerization inhibitor was used, a satisfactory polymerization inhibition effect was exhibited in the synthesis and distillation on a small test scale using a glass instrument. However, in a reactor or distillation apparatus of a commercial production facility made of stainless steel, a sufficient polymerization inhibiting effect was not obtained. According to the tests conducted by the present inventors, the method disclosed in Japanese Examined Patent Publication No. 60-43056 was found to cause the following problems.

蒸留缶伝熱部に重合物付着が生じやすい。Polymers are easily attached to the heat transfer part of the distillation can.

該単量体の蒸気配管を加熱し、凝縮を防止するのは有
効な重合防止法であるが、蒸留缶液と蒸気とが混在す
る、例えば、気液分離部に適用することにより加熱伝熱
面の全面に硬い重合物が付着成長し、やがては操業でき
なくなる。又、該重合物は壁面に強固に付着し、清掃除
去が困難である。
It is an effective polymerization prevention method to prevent the condensation by heating the vapor line of the monomer, but the distillation can liquid and the vapor are mixed, for example, the heat transfer by applying to the gas-liquid separation section. A hard polymer adheres and grows on the entire surface, and eventually it becomes impossible to operate. Further, the polymer adheres firmly to the wall surface and is difficult to remove by cleaning.

一方、気液分離部の加熱をしない場合、該単量体の蒸
気の一部が凝縮し、液滴となって重合を開始し、短時間
で気液分離部全体が重合物で埋まり、操業不能となる。
On the other hand, when the gas-liquid separation part is not heated, a part of the vapor of the monomer is condensed and becomes a droplet to start the polymerization, and the entire gas-liquid separation part is filled with the polymer in a short time, which causes the operation. It becomes impossible.

以上のように、従来提案された技術では、ステンレス
鋼を用いた商業的生産設備での2−ヒドロキシアルキル
(メタ)アクリレートの合成及び蒸留時の重合防止は満
足できるものではなかった。
As described above, the conventionally proposed techniques have not been satisfactory in synthesizing 2-hydroxyalkyl (meth) acrylate in a commercial production facility using stainless steel and preventing polymerization during distillation.

問題点を解決するための手段及び作用 本発明者等は、前記問題点を解決するため鋭意検討を
行い、 商業的製造設備に通常用いられるステンレス鋼はその
表面が該単量体の重合を非常に生起しやすい、 ステンレス鋼表面に電解研磨処理を施すことにより重
合に対し不活性と考えられるフッ素樹脂、フェノール樹
脂またはガラス等よりさらに重合しにくい表面となる、 という事実を発見し、本発明を完成するに至ったもので
ある。
Means and Actions for Solving Problems The present inventors have conducted diligent studies to solve the above problems, and the surface of stainless steel usually used for commercial production equipment has a very high degree of polymerization of the monomer. It was found that the surface of stainless steel is more difficult to polymerize than fluororesin, phenolic resin, glass, etc., which are considered to be inert to polymerization, by subjecting the stainless steel surface to electrolytic polishing treatment. It has been completed.

すなわち、本発明の2−ヒドロキシアルキル(メタ)
アクリレートの製造方法は、(メタ)アクリル酸とアル
キレンオキサイドとを反応させ、次いで得られた反応液
を蒸留することにより2−ヒドロキシアルキル(メタ)
アクリレートを製造するに際し、ステンレス鋼製である
反応装置及び/又は蒸留装置の内壁面が電解研磨されて
いることを特徴とする2−ヒドロキシアルキル(メタ)
アクリレートの製造法である。
That is, 2-hydroxyalkyl (meth) of the present invention
The production method of acrylate is as follows. 2- (meth) acrylic acid and alkylene oxide are reacted with each other, and then the obtained reaction solution is distilled to obtain 2-hydroxyalkyl (meth).
When producing acrylate, 2-hydroxyalkyl (meth), characterized in that the inner wall surface of the reaction device and / or distillation device made of stainless steel is electrolytically polished.
This is a method for producing acrylate.

本発明の目的は、ステンレス鋼製商業的生産設備での
2−ヒドロキシアルキル(メタ)アクリレートの合成反
応時及び蒸留時の重合発生を、装置器壁表面を電解研磨
することによって防止するものである。
The object of the present invention is to prevent the occurrence of polymerization during the synthesis reaction and distillation of 2-hydroxyalkyl (meth) acrylate in a stainless steel commercial production facility by electrolytically polishing the surface of the equipment wall. .

ここにおいて電解研磨とは、電解液中に浸した被研磨
体を陽極にし、不溶解性の金属を陰極にして、電気化学
的に被研磨体の表面を研磨する方法であり、例えば、新
版表面処理ハンドブック384〜389頁(1969年)産業図書
発行に記載された方法を採用することができる。
Here, the electropolishing is a method of electrochemically polishing the surface of an object to be polished by using an object to be polished immersed in an electrolytic solution as an anode and an insoluble metal as a cathode. The methods described in Processing Handbook, pages 384-389 (1969), Industrial Book Publishing, can be used.

本発明の方法を、2−ヒドロキシアルキル(メタ)ア
クリレートを製造する実施の態様も含めて、以下に説明
する。
The method of the present invention is described below, including the embodiment for producing 2-hydroxyalkyl (meth) acrylate.

本発明の方法において使用されるアルキレンオキサイ
ドは、エチレンオキサイド、プロピレンオキサイド等の
アルキレンオキサイド、エピクロルヒドリン等のオキシ
ラン化合物である。
The alkylene oxide used in the method of the present invention is an alkylene oxide such as ethylene oxide or propylene oxide, or an oxirane compound such as epichlorohydrin.

反応には通常触媒が用いられるが、その種類として
は、各種アミン類(特公昭44−2685号)、四級アンモニ
ウム塩(特公昭45−27083号)、3価の鉄化合物と助触
媒としての銀または水銀等の組合わせ(特公昭43−1889
0号)、クロム化合物(特開昭57−42657号)等が知られ
ているが、その何れを用いてもよい。触媒量は、一般に
は、原料の(メタ)アクリル酸に対し0.01〜10重量%、
好ましくは0.03〜3重量%の割合である。
A catalyst is usually used in the reaction, and as the types thereof, various amines (Japanese Patent Publication No. 44-2685), quaternary ammonium salts (Japanese Patent Publication No. 45-27083), trivalent iron compounds and co-catalysts are used. A combination of silver or mercury (Japanese Patent Publication No. 43-1889)
No. 0), chromium compounds (JP-A-57-42657) and the like are known, but any of them may be used. The catalyst amount is generally 0.01 to 10% by weight with respect to the raw material (meth) acrylic acid,
The proportion is preferably 0.03 to 3% by weight.

2−ヒドロキシアルキル(メタ)アクリレートの合成
反応は、通常回分的に次のように行う。加熱及び冷却機
能と攪拌装置とを備えた反応機に(メタ)アクリル酸、
触媒、重合防止剤を仕込み、爆発の危険を避けるため反
応機内空間部の気体を窒素ガスなどの不活性気体で置換
し、次いで液温を50〜110℃、好ましくは60〜90℃に昇
温する。次いで、アルキレンオキサイドをガス状または
液状で反応機に供給して反応を開始する。アルキレンオ
キサイドの供給により反応が始まり、液温が上昇を始め
るので、冷却することによって反応温度を50〜110℃、
好ましくは70〜90℃に保つ。反応操作圧力は、特に限定
されず、加圧、常圧、減圧のいずれでも良い。
The synthesis reaction of 2-hydroxyalkyl (meth) acrylate is usually carried out batchwise as follows. (Meth) acrylic acid in a reactor equipped with heating and cooling functions and a stirring device,
Charge the catalyst and polymerization inhibitor, replace the gas in the space inside the reactor with an inert gas such as nitrogen gas to avoid the risk of explosion, and then raise the liquid temperature to 50-110 ° C, preferably 60-90 ° C. To do. Then, the alkylene oxide is supplied to the reactor in a gaseous or liquid state to start the reaction. The reaction starts when the alkylene oxide is supplied, and the liquid temperature starts to rise, so that the reaction temperature is cooled to 50 to 110 ° C,
It is preferably maintained at 70 to 90 ° C. The reaction operating pressure is not particularly limited, and may be increased pressure, normal pressure, or reduced pressure.

アルキレンオキサイド供給量が(メタ)アクリル酸に
対し、モル比で1.0〜1.2、好ましくは1.03〜1.10となっ
た時点でアルキレンオキサイドの供給を停止し、反応液
中の(メタ)アクリル酸濃度が1.0重量%以下、好まし
くは0.5重量%以下となるまで、上記反応温度を維持し
て反応を継続する。
When the supply amount of alkylene oxide to (meth) acrylic acid is 1.0 to 1.2, preferably 1.03 to 1.10, the supply of alkylene oxide is stopped and the (meth) acrylic acid concentration in the reaction solution is 1.0. The above reaction temperature is maintained and the reaction is continued until the amount becomes not more than 0.5% by weight, preferably not more than 0.5% by weight.

重合防止剤としては、ハイドロキノン、ハイドロキノ
ンモノメチルエーテル、カテコール、フェノチアジン、
N,N′−ジ−2−ナフチル−p−フェニレンジアミン、
硝酸または硝酸塩等から一種または二種以上を、(メ
タ)アクリル酸に対して通常0.01〜3重量%、好ましく
は0.03〜1重量%用いる。
As the polymerization inhibitor, hydroquinone, hydroquinone monomethyl ether, catechol, phenothiazine,
N, N'-di-2-naphthyl-p-phenylenediamine,
One or two or more kinds of nitric acid or nitrates are usually used in an amount of 0.01 to 3% by weight, preferably 0.03 to 1% by weight, based on (meth) acrylic acid.

以下、図面に基づいて更に詳しく説明する。 Hereinafter, further details will be described with reference to the drawings.

前記のようにして得られた反応液は蒸留により精製さ
れ、留分として製品が得られる。
The reaction solution obtained as described above is purified by distillation to obtain a product as a fraction.

蒸留装置は、蒸発の為の必要な伝熱を行う蒸留缶6、
気液分離器9及び/又は蒸留塔、冷却凝縮器14及び排気
ライン16等から構成される。
The distillation device is a distillation can 6 that performs necessary heat transfer for evaporation.
It is composed of a gas-liquid separator 9 and / or a distillation column, a cooling condenser 14 and an exhaust line 16.

蒸留缶の型式としては、ジャケット付容器、または、
缶出液を循環させ、多管式熱交換器にて加熱する型式な
どがあるが、特に後者の型式で且つ流下液膜式のものが
伝熱係数が大きいため好ましい。
The model of the distillation can is a jacketed container, or
There is a type in which bottoms are circulated and heated in a multi-tube heat exchanger, but the latter type and falling liquid film type are particularly preferable because of high heat transfer coefficient.

蒸留は減圧下で行う。操作圧力としては重合防止の観
点から出来るだけ低い方が望ましいが、1mmHgabs以下の
低い圧力とすることは商業的生産設備では困難であり、
通常は1〜8mmHgabs、好ましくは3〜6mmHgabsである。
蒸留缶6の液温は70〜100℃、好ましくは80〜90℃であ
る。
Distillation is performed under reduced pressure. It is desirable that the operating pressure is as low as possible from the viewpoint of polymerization prevention, but it is difficult to use a low pressure of 1 mmHgabs or less in a commercial production facility.
It is usually 1 to 8 mmHgabs, preferably 3 to 6 mmHgabs.
The temperature of the distillation can 6 is 70 to 100 ° C, preferably 80 to 90 ° C.

蒸留缶6より発生した該単量体の蒸気は、通常、気液
分離器9及び/又は蒸留塔を経て冷却凝縮器14に導かれ
る。
The vapor of the monomer generated from the distillation can 6 is usually introduced to the cooling condenser 14 via the gas-liquid separator 9 and / or the distillation column.

気液分離器9及び/又は蒸留塔にはデミスター10を設
け、飛沫同伴を防止することが望ましい。また、蒸気導
管11は外部から加熱し、該単量体の蒸気を過熱状態に保
って凝縮を防止することで重合を防止するのが好まし
い。
It is desirable to provide a demister 10 in the gas-liquid separator 9 and / or the distillation column to prevent entrainment of droplets. Further, it is preferable to heat the vapor conduit 11 from the outside and keep the vapor of the monomer in an overheated state to prevent condensation, thereby preventing polymerization.

しかしながら、該単量体の蒸気を過熱された状態で、
冷却凝縮器14に導くと、そこで重合が生じやすい為、予
冷された凝縮液と蒸気を接触させ急冷することが好まし
い。
However, when the vapor of the monomer is superheated,
Since the polymerization is likely to occur when it is introduced into the cooling condenser 14, it is preferable to bring the pre-cooled condensate and steam into contact with each other for rapid cooling.

本発明では、上記した合成反応操作及び蒸留操作を、
該単量体と接する部分の材質の一部または全部がステン
レス鋼である装置を用いて行う。ステンレス鋼の種類と
しては、いわゆるオーステナイト系、マンテンサイト
系、フェライト系の何れでもよいが、入手、加工のしや
すさから、SUS−304、SUS−316等のオーステナイト系が
通常用いられる。
In the present invention, the above synthetic reaction operation and distillation operation,
It is carried out using an apparatus in which a part or all of the material of the portion in contact with the monomer is stainless steel. The type of stainless steel may be any of so-called austenitic, mantensite, and ferritic types, but austenitic types such as SUS-304 and SUS-316 are usually used because they are easy to obtain and process.

本発明では、該ステンレス鋼装置器壁の一部または全
部に電解研磨を行う。
In the present invention, part or all of the stainless steel device wall is electrolytically polished.

電解研磨の処理条件の一例としては、Cu−Pbを陰極と
して、りん酸45%、硫酸35%、クロム酸3%の組成の電
解液にて、0.20〜0.40A/cm2の電流にて行うことが好ま
しい。
As an example of the electrolytic polishing treatment conditions, Cu-Pb is used as a cathode, and an electrolytic solution having a composition of 45% phosphoric acid, 35% sulfuric acid and 3% chromic acid is used at a current of 0.20 to 0.40 A / cm 2 . It is preferable.

実施例 以下、本発明を実施例により更に具体的に説明する。EXAMPLES Hereinafter, the present invention will be described more specifically by way of examples.

実施例1 内容積150lのSUS−304製反応機の内壁全面に、Cu−Pb
を陰極として、りん酸45重量%、硫酸35重量%およびク
ロム酸3重量%を成分とする電解液にて、電流密度0.30
A/cm2、温度60〜70℃にて20分間電解研磨を行った。
Example 1 On the entire inner wall of a SUS-304 reactor having an internal volume of 150 l, Cu-Pb
With a cathode as the cathode and an electrolyte solution containing 45% by weight of phosphoric acid, 35% by weight of sulfuric acid and 3% by weight of chromic acid at a current density of 0.30.
Electrolytic polishing was performed for 20 minutes at A / cm 2 and a temperature of 60 to 70 ° C.

メタクリル酸を66.1Kg、触媒として塩化第2クロム
(6水塩)を410g、重合防止剤としてフェノチアジンを
66g該反応機に仕込み、内部気体をN2ガス置換した後、8
0℃に昇温し、内圧を2.2気圧とした。35.1Kgの酸化エチ
レンを4時間かけて供給し、この間80℃を維持して反応
させた。
66.1 kg of methacrylic acid, 410 g of chromium (II) chloride (hexahydrate) as a catalyst, and phenothiazine as a polymerization inhibitor
66 g was charged into the reactor, the internal gas was replaced with N 2 gas, and then 8
The temperature was raised to 0 ° C and the internal pressure was adjusted to 2.2 atm. 35.1 Kg of ethylene oxide was supplied over 4 hours, and the temperature was maintained at 80 ° C for the reaction.

供給終了後、90℃に昇温して3時間反応を継続したと
ころ、反応液中のメタクリル酸濃度は0.28%、酸化エチ
レン濃度は400ppmであり、直ちに冷却した後、液を抜き
出した。
After completion of the supply, the temperature was raised to 90 ° C. and the reaction was continued for 3 hours. As a result, the concentration of methacrylic acid in the reaction solution was 0.28% and the concentration of ethylene oxide was 400 ppm. Immediately after cooling, the solution was withdrawn.

次いで、反応機内部を点検したところ、重合物の生成
付着は認められなかった。
Then, when the inside of the reactor was inspected, formation and adhesion of a polymer was not observed.

また、該反応液の粘度は4.8cst(30℃)であり、重合
の兆候である粘度増加は無かった。
Further, the viscosity of the reaction solution was 4.8 cst (30 ° C.), and there was no increase in viscosity, which is a sign of polymerization.

点検終了後、引続きもう1バッチ同様にして反応を行
った。2バッチ終了後も反応機内に重合物の生成付着は
無く、得られた反応液も異常なく、その粘度は4.8cst
(30℃)であった。
After the inspection was completed, the reaction was continued in the same manner as another batch. After the completion of 2 batches, there was no polymer formation and adhesion in the reactor, the reaction liquid obtained was normal, and its viscosity was 4.8 cst.
(30 ° C).

比較例1 反応機内壁面の電解研磨を行わなかった以外は、実施
例1と同様に行った。
Comparative Example 1 The procedure of Example 1 was repeated, except that the inner wall surface of the reactor was not electrolytically polished.

1バッチ目終了後、内部を点検すると、反応機の上方
部、即ち、気相部分の付着液の粘度が高く、糸をひく状
態であった。
After the completion of the first batch, the inside was inspected, and it was found that the viscosity of the adhered liquid in the upper part of the reactor, that is, in the vapor phase part was high and the string was pulled.

得られた反応液の粘度は5.1cst(30℃)と若干高かっ
た。
The viscosity of the obtained reaction liquid was 5.1 cst (30 ° C), which was slightly high.

続いて2バッチ目の反応を行った。酸化エチレン供給
終了後90℃に昇温して2時間を経たところで、反応液の
粘度を測定すると、重合の為7.2cst(30℃)と高かった
ので、直ちに液を冷却し抜き出した。
Then, the reaction of the second batch was performed. Two hours after the temperature was raised to 90 ° C. after the completion of the ethylene oxide supply, the viscosity of the reaction liquid was measured and found to be as high as 7.2 cst (30 ° C.) because of polymerization, so the liquid was immediately cooled and extracted.

次いで反応機内部を解体点検したところ、気相部を中
心にゼリー状の重合物が各所に付着していた。
Next, when the inside of the reactor was disassembled and inspected, a jelly-like polymer was found to be attached to various places around the gas phase.

実施例2 長さ1mの1インチ管を伝熱管とする流下液膜式の二重
管式熱交換器を蒸留缶とした第1図に示す蒸留装置を用
いて、実施例1の方法で得られた反応液の蒸留を行っ
た。該蒸留装置の2−ヒドロキシエチルメタクリレート
の接触部の材質は全てSUS−304であった。また、蒸留缶
から気液分離器、蒸気導管と冷却凝縮器から下の凝縮液
受器迄を、実施例1と同様に電解研磨を行った。
Example 2 Obtained by the method of Example 1 by using the distillation apparatus shown in FIG. 1 in which a falling liquid film type double-tube heat exchanger using a 1-inch tube having a length of 1 m as a heat transfer tube was used as a distillation can. The reaction liquid thus obtained was distilled. The material of the contact portion of 2-hydroxyethyl methacrylate of the distillation apparatus was SUS-304. Further, electrolytic polishing was performed in the same manner as in Example 1 from the distillation can to the gas-liquid separator, the vapor conduit and the cooling condenser to the condensate receiver below.

反応液には安定剤としてハイドロキノンモノメチルエ
ーテルを200ppm、硝酸クロム(9水塩)を100ppm添加し
た。
To the reaction solution, 200 ppm of hydroquinone monomethyl ether and 100 ppm of chromium nitrate (decahydrate) were added as stabilizers.

蒸留缶供給ラインの液流量を100l/Hrとして、100℃の
スチームにて、蒸留缶での加熱を行った。また蒸留缶の
上部より空気を6Nl/Hr供給した。
With the liquid flow rate in the distillation can supply line set to 100 l / Hr, heating was performed in the distillation can with steam at 100 ° C. Air was supplied at 6 Nl / Hr from the top of the distillation can.

気液分離器での圧力は4mmHgabsであり、缶出液の液温
は86℃であった。気液分離器上方にはテフロン製のメッ
シュ状のデミスターを付け、そこから先の蒸気導管は壁
温が100℃となるようにヒーターで加熱した。冷却凝縮
器は同様に長さ1mの1インチ管を伝熱管とする流下液膜
式の二重管式熱交換器でシェル側に30℃の冷却水を流し
つつ、チューブ側に液温40〜50℃の凝縮液を30〜40l/Hr
の条件で上から供給し、蒸気と凝縮液とが向流接触する
ようにした。
The pressure in the gas-liquid separator was 4 mmHgabs, and the liquid temperature of the bottom liquid was 86 ° C. A Teflon mesh-shaped demister was attached above the gas-liquid separator, and the vapor conduit beyond this was heated by a heater so that the wall temperature was 100 ° C. Similarly, the cooling condenser is a falling-film double-tube heat exchanger that uses a 1-inch tube with a length of 1 m as a heat transfer tube, while flowing cooling water of 30 ° C to the shell side and a liquid temperature of 40 ~ 30 ~ 40l / Hr of condensate at 50 ℃
It was supplied from above under the conditions described above, and the vapor and the condensate were brought into countercurrent contact with each other.

このようにして、1時間に5.5Kgの反応液を供給し、
5.0Kg/Hrの留出液と、0.5Kg/Hrの缶出液が定常的に得ら
れ、その状態を10日間維持した。
In this way, 5.5 Kg of reaction solution was supplied per hour,
A 5.0 Kg / Hr distillate and a 0.5 Kg / Hr bottom liquor were constantly obtained, which was maintained for 10 days.

その後、該蒸留装置を解体点検したところ、蒸留缶の
液分散器に若干の重合物付着が認められただけで、他の
重合物は無かった。
After that, when the distillation apparatus was disassembled and inspected, only a small amount of the polymer was found to adhere to the liquid disperser of the distillation can, and no other polymer was present.

比較例2 電解研磨処理を行わなかった以外は、実施例2と同様
に蒸留を行った。
Comparative Example 2 Distillation was performed in the same manner as in Example 2 except that electrolytic polishing treatment was not performed.

その結果、運転開始20時間後に気液分離器が重合物で
閉塞し運転不能となった。
As a result, 20 hours after the start of operation, the gas-liquid separator was clogged with the polymer and the operation was impossible.

また、蒸留缶加熱面の下側1/3程度のかなりの部分に
ゼリー状の重合物が付着していた。また、冷却凝縮器下
方の蒸気導管の接合部分を中心とした周辺に若干の重合
物付着が見られた。
In addition, the jelly-like polymer was attached to a considerable part of the lower side of the heating surface of the distillation can about 1/3. In addition, some polymer adhesion was found around the joint of the steam conduit below the cooling condenser.

比較例3 蒸気導管の加熱域を気液分離器の気相部である上半分
迄広げた以外は、比較例2と同様に行った。運転開始4
日後に、気液分離器での圧力が5mmHgabs、缶出液温が91
℃となったので、運転を停めて点検を行った。その結
果、気液分離器からデミスター迄の加熱域の器壁に厚さ
5mm〜2cmの硬い重合物が強固に付着していた。また蒸留
缶加熱面の下側1/2程度のほぼ全面にゼリー状の重合物
が付着していた。
Comparative Example 3 The procedure of Comparative Example 2 was repeated except that the heating area of the steam conduit was expanded to the upper half which is the gas phase part of the gas-liquid separator. Start of operation 4
After a day, the pressure in the gas-liquid separator was 5 mmHgabs and the temperature of the bottom liquid was 91.
Since it became ℃, I stopped the operation and inspected it. As a result, the thickness of the wall of the heating area from the gas-liquid separator to the demister is increased.
A hard polymer of 5 mm to 2 cm was firmly attached. In addition, the jelly-like polymer adhered to almost the entire lower half of the heating surface of the distillation can.

比較例4 気液分離器の内壁面を第1表に示す処理を施した以外
は、実施例2とほぼ同様に蒸留を行った。結果を第1表
に示す。
Comparative Example 4 Distillation was performed in substantially the same manner as in Example 2 except that the inner wall surface of the gas-liquid separator was treated as shown in Table 1. The results are shown in Table 1.

発明の効果 従来は、2−ヒドロキシアルキル(メタ)アクリレー
トは、ステンレス鋼を用いた商業的生産設備で製造する
場合、重合トラブルが頻発し、円滑な生産が困難であっ
た。
EFFECTS OF THE INVENTION Conventionally, when 2-hydroxyalkyl (meth) acrylate was produced in a commercial production facility using stainless steel, polymerization troubles frequently occurred, and smooth production was difficult.

しかしながら、前述したように本発明の方法によりス
テンレス鋼表面での重合の防止が可能となり、従って円
滑な2−ヒドロキシアルキル(メタ)アクリレートの商
業的生産が可能となった。
However, as described above, the method of the present invention enabled the prevention of polymerization on the surface of stainless steel, and thus enabled smooth commercial production of 2-hydroxyalkyl (meth) acrylate.

【図面の簡単な説明】[Brief description of drawings]

第1図は実施例2に示した蒸留装置のフローシートであ
る。 図中の符号は、 1:反応液入口、2:缶出液出口 3:蒸留缶供給ライン、4:空気入口 5:液分散器、6:蒸留缶 7:スチーム入口、8:ドレーン出口 9:気液分離器、10:デミスター 11:蒸気導管、12:加熱部 13:缶出液循環ポンプ、14:冷却凝縮器 15:液分散器、16:排気ライン 17:冷却水入口、18:冷却水出口 19:凝縮液受器、20:凝縮液取出し口 21:凝縮液循環ライン、22:凝縮液循環ポンプである。
FIG. 1 is a flow sheet of the distillation apparatus shown in Example 2. The symbols in the figure are: 1: reaction liquid inlet, 2: bottom liquid outlet 3: distillation can supply line, 4: air inlet 5: liquid disperser, 6: distillation can 7: steam inlet, 8: drain outlet 9: Gas-liquid separator, 10: demister 11: steam conduit, 12: heating part 13: bottoms circulation pump, 14: cooling condenser 15: liquid disperser, 16: exhaust line 17: cooling water inlet, 18: cooling water Outlet 19: Condensate receiver, 20: Condensate outlet 21: Condensate circulation line, 22: Condensate circulation pump.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】(メタ)アクリル酸とアルキレンオキサイ
ドとを反応させ、次いで得られた反応液を蒸留すること
により2−ヒドロキシアルキル(メタ)アクリレートを
製造するに際し、 ステンレス鋼製である反応装置及び/又は蒸留装置の内
壁面が電解研磨されていることを特徴とする、2−ヒド
ロキシアルキル(メタ)アクリレートの製造法。
1. When a 2-hydroxyalkyl (meth) acrylate is produced by reacting (meth) acrylic acid with an alkylene oxide and then distilling the obtained reaction solution, a reaction apparatus made of stainless steel and / Or the inner wall surface of the distillation apparatus is electrolytically polished, a method for producing 2-hydroxyalkyl (meth) acrylate.
JP18429986A 1986-08-07 1986-08-07 Process for producing 2-hydroxyalkyl (meth) acrylate Expired - Lifetime JPH085842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18429986A JPH085842B2 (en) 1986-08-07 1986-08-07 Process for producing 2-hydroxyalkyl (meth) acrylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18429986A JPH085842B2 (en) 1986-08-07 1986-08-07 Process for producing 2-hydroxyalkyl (meth) acrylate

Publications (2)

Publication Number Publication Date
JPS6341514A JPS6341514A (en) 1988-02-22
JPH085842B2 true JPH085842B2 (en) 1996-01-24

Family

ID=16150903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18429986A Expired - Lifetime JPH085842B2 (en) 1986-08-07 1986-08-07 Process for producing 2-hydroxyalkyl (meth) acrylate

Country Status (1)

Country Link
JP (1) JPH085842B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10212249A (en) 1997-01-31 1998-08-11 Nippon Shokubai Co Ltd Purification of readily polymerizable organic compound and purifier
JP2002275126A (en) * 2001-01-10 2002-09-25 Nippon Shokubai Co Ltd Method for producing hydroxyalkyl (meth)acrylate
WO2017188209A1 (en) * 2016-04-28 2017-11-02 富士フイルム株式会社 Purification device, purification method, manufacturing device, method of manufacturing chemical liquid, container, and chemical liquid housing
WO2018092763A1 (en) 2016-11-18 2018-05-24 富士フイルム株式会社 Chemical liquid, pattern forming method and kit
JP6880085B2 (en) 2017-02-20 2021-06-02 富士フイルム株式会社 Chemical solution, chemical container, and pattern forming method

Also Published As

Publication number Publication date
JPS6341514A (en) 1988-02-22

Similar Documents

Publication Publication Date Title
TW307754B (en)
JPH085842B2 (en) Process for producing 2-hydroxyalkyl (meth) acrylate
WO2022215297A1 (en) Industrial production method of cyclic alkylene carbonate
JP3708212B2 (en) Concentration method of acrylamide aqueous solution
US6723872B2 (en) Production process for hydroxyalkyl ester
JPH03145481A (en) Production of epichlorohydrin
JP2679954B2 (en) Method and apparatus for producing unsaturated carboxylic acid esters
JP3850975B2 (en) Method for producing 2-hydroxyethyl (meth) acrylate
JPS6341440A (en) Production of 2-hydroxyalkyl (meth)acrylate
JPH0710794B2 (en) Method for distilling 2-hydroxyalkyl (meth) acrylate
JPH0819014B2 (en) Method for producing ethane dichloride
JP6693959B2 (en) Method for producing acetic acid
JP3104256B2 (en) Process for producing difluoromethane and difluorochloromethane
JP4673028B2 (en) Method for purifying ethylene carbonate
JPS6327457A (en) Production of 2-hydroxyalkyl (meth)acrylate
JP3710514B2 (en) Method for producing 2,3,5,6-tetrafluoroaniline
JP3162394B2 (en) Catalyst removal method from chloroprene by oxygen acid treatment
JPH02500188A (en) Method for recovering and purifying unreacted acrylonitrile from waste streams in the production of 2-acrylamido-2-methylpropanesulfonic acid
JPS58192851A (en) Preparation of higher alcoholic ester from acrylic or methacrylic acid
JP2000212177A (en) Purification of glycidyl (meth)acrylate
JPS59204146A (en) Method for purifying fluorine-containing organic compound
JP2523936B2 (en) Method for producing dicarbonyl fluoride
EP1090903A2 (en) production process for hydroxyalkyl (meth)acrylate
JPH01283254A (en) Production of methacrylic acid ester
JP2001172246A (en) Method for producing acrylonitrile