[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0857480A - Ion water maker - Google Patents

Ion water maker

Info

Publication number
JPH0857480A
JPH0857480A JP19141894A JP19141894A JPH0857480A JP H0857480 A JPH0857480 A JP H0857480A JP 19141894 A JP19141894 A JP 19141894A JP 19141894 A JP19141894 A JP 19141894A JP H0857480 A JPH0857480 A JP H0857480A
Authority
JP
Japan
Prior art keywords
water
flow rate
flow
control valve
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19141894A
Other languages
Japanese (ja)
Inventor
Shinsuke Shimomura
真介 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19141894A priority Critical patent/JPH0857480A/en
Publication of JPH0857480A publication Critical patent/JPH0857480A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE: To eliminate the mixing of alkaline ion water with acidic ion water at the time of the low flow rate of raw water and to suppress the emission of raw water by arranging a resistance variable flow rate control valve having a characteristic lowered in passage resistance in a low pressure region to the water supply passage connected to the anode chamber of an electrolytic cell. CONSTITUTION: The electrolytic cell 7 of the ion water maker 3 connected to a raw water pipe 1 by a water cock 2 is demarcatged into an anode chamber 7a and a cathode chamber 7b by a diaphragm and electrodes 9, 10 are respectively arranged to both chambers 7a, 7b and water supply passages 13a, 13b supplying raw water are connected to both chambers 7a, 7b and, further, respective emitting passages 14, 15 discharging treated water are connected to both chambers 7a, 7b. A resistance variable flow rate control valve 20 having a characteristic lowered in passage resistance in a low pressure region is arranged to the water supply passage 13b connected to the anode chamber 7b and a resistance variable flow rate control valve 21 having the same characteristic may be arranged to the emitting passage 14 connected to the cathode chamber 7a. By this constitution, ion water is always formed in a constant flow rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水道水、井戸水などの
原水を電気分解して、飲用、医療用として利用するアル
カリ性イオン水及び化粧水、殺菌洗浄水などとして利用
する酸性イオン水を製造するイオン水生成器に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention electrolyzes raw water such as tap water and well water to produce alkaline ionized water for drinking and medical use, and acidic ionized water for use as lotion and sterilizing wash water. The present invention relates to an ion water generator.

【0002】[0002]

【従来の技術】近年、「健康ブーム」を反映してイオン
水生成器が普及しつつある。このイオン水生成器は電解
槽内で水道水などを電気分解し、陽極側に酸性イオン水
を生成し、陰極側にアルカリ性イオン水を生成するもの
である。
2. Description of the Related Art In recent years, ion water generators have become widespread, reflecting the "health boom". This ion water generator electrolyzes tap water or the like in an electrolytic cell to generate acidic ion water on the anode side and alkaline ion water on the cathode side.

【0003】そこで従来の連続電解方式のイオン水生成
器について説明する。図6は従来のイオン水生成器の概
略全体図である。1は水道水などの原水管、2は水栓、
3は水栓2を介して原水管1と接続されたイオン水生成
器である。4は内部に活性炭や中空糸膜などを備えた浄
水器、5は後述のコントローラからの信号で開閉される
電磁弁、6は通水を確認しコントローラに制御開始の指
示をする流量センサ、8は流量センサ6を経由してきた
水を電気分解する電解槽7を陰極室7aと陽極室7bの
2つに区画する隔膜、9、10は隔膜8で2分して形成
され陰極室7aと陽極室7bに配設された電極、11、
12、13は原水の給水管、13aは陰極室への給水
路、13bは陽極室への給水路、14は電極9側の処理
水(電極9が陰極の場合アルカリ性イオン水となる)を
吐出するアルカリ性イオン水吐出路、15は電極10側
の処理水(電極10が陽極の場合酸性イオン水となる)
を吐出する酸性イオン水吐出路、16は陽極室7bへの
給水路13bに設けた流量調整用固定絞り部で、17は
イオン水生成器3の動作を制御するコントローラ、18
は電源部、19は通水スイッチである。
A conventional continuous electrolysis type ionized water generator will be described. FIG. 6 is a schematic overall view of a conventional ionized water generator. 1 is a raw water pipe such as tap water, 2 is a faucet,
Reference numeral 3 is an ion water generator connected to the raw water pipe 1 via the faucet 2. Reference numeral 4 is a water purifier having activated carbon or a hollow fiber membrane inside, 5 is a solenoid valve opened / closed by a signal from a controller described later, 6 is a flow rate sensor for confirming water flow and instructing the controller to start control, 8 Is a diaphragm that divides the electrolytic cell 7 for electrolyzing water that has passed through the flow rate sensor 6 into a cathode chamber 7a and an anode chamber 7b, and 9 and 10 are formed by dividing the electrolyte chamber 7 into two parts, a cathode chamber 7a and an anode. Electrodes disposed in the chamber 7b, 11,
12 and 13 are raw water supply pipes, 13a is a water supply channel to the cathode chamber, 13b is a water supply channel to the anode chamber, and 14 is treated water on the electrode 9 side (when the electrode 9 is a cathode, it becomes alkaline ionized water). Alkaline ionized water discharge passage, 15 is treated water on the electrode 10 side (when the electrode 10 is an anode, it becomes acidic ionized water)
The acidic ionized water discharge passage for discharging water, 16 is a fixed throttle portion for adjusting the flow rate provided in the water supply passage 13b to the anode chamber 7b, 17 is a controller for controlling the operation of the ionized water generator 3, and 18
Is a power supply unit, and 19 is a water flow switch.

【0004】以上のように構成された従来のイオン水生
成器3について以下その動作を説明する。原水管1より
水栓2を開いて通水された原水は浄水器4で原水中の残
留塩素の臭いや一般殺菌などの不純物が取り除かれ、流
量センサ6を経て電解槽7に通水される。一方電源部1
8から供給された電力はコントローラ17で所定の直流
電圧に制御されて電極9と電極10に給電される。これ
により、陽極室7bには酸性イオン水が、陰極室7aに
はアルカリ性イオン水が生成され、通水しながら電極9
がマイナス電圧になるように電圧を印加するとアルカリ
性イオン水吐出路14よりアルカリ性イオン水が、酸性
イオン水吐出路15より酸性イオン水が連続して得られ
る。
The operation of the conventional ionized water generator 3 configured as described above will be described below. The raw water that has been passed through the raw water pipe 1 by opening the faucet 2 removes impurities such as residual chlorine odor and general sterilization in the raw water by the water purifier 4, and then passes through the flow rate sensor 6 to the electrolytic cell 7. . On the other hand, power supply unit 1
The electric power supplied from 8 is controlled to a predetermined DC voltage by the controller 17 and supplied to the electrodes 9 and 10. As a result, acidic ionized water is generated in the anode chamber 7b and alkaline ionized water is generated in the cathode chamber 7a.
When a voltage is applied so that the voltage becomes a negative voltage, alkaline ionized water is continuously obtained from the alkaline ionized water discharge passage 14 and acidic ionized water is continuously obtained from the acidic ion water discharge passage 15.

【0005】ところで、アルカリ性イオン水を生成する
目的でイオン水生成器3を運転すると、通常アルカリ性
イオン水の生成流路と酸性イオン水の生成流路の構造や
陰極室7aと陽極室7bの容積にはあまり差がないた
め、アルカリイオン水と等量程度の酸性イオン水が同時
に生成する。そこでアルカリ性イオン水の生成量を多く
する目的で図6に示した陽極室7bへの給水路13bに
流量調整用固定絞り部16を設け、原水の流入量を抑え
ることによって酸性イオン水の吐出量を少なくし、アル
カリ性イオン水の吐出量を多くする方法が一般的であ
る。しかしながら酸性イオン水の生成量を少なくするた
めに流量調整用固定絞り部16を極度に絞ると、酸性イ
オン水のpHが強酸性となってしまい、大きな電流を供
給することが必要となる。このことは電極寿命を短くす
るのと同時に多くの電力を消費するという問題を生じる
ことになる。そして酸性イオン水の流量が低く抑えられ
ることから陽極側に発生する濃度の高いHClO(次亜
塩素酸)が陽極室7b内に滞留する滞留時間が長くな
り、隔膜8を通して拡散し、陰極室7a側のアルカリ性
イオン水に混入して流出するという問題が生じる。そこ
で電極寿命を長くし、消費電力を抑えると同時にHCl
O(次亜塩素酸)のアルカリ性イオン水への混入を防ぐ
必要から、アルカリ性イオン水と酸性イオン水の吐出量
の比率は通常4:1が適当とされている。しかしながら
アルカリ性イオン水、酸性イオン水の吐出量は原水の流
量の影響を受けやすく、両者の吐出量の比率も大きく変
動するものである。ここで原水流量と吐出量の比率につ
いて説明する。図7は従来の原水流量と吐出量の比率の
関係図である。図7において横軸は原水流量(l/mi
n.)であり、縦軸はアルカリ性イオン水の吐出量(Q
a)と酸性イオン水の吐出量(Qb)との比率Qa/Q
bを示している。原水が流入し、流量が約0.8l/m
in.に達すると流量センサ16がそれを検知し、コン
トローラ17からの信号によって電気分解が開始する。
その時点での吐出量の比率(Qa/Qb)は7程度であ
る。ここで原水の流入量が約0.8l/min.以上で
電気分解を開始するのは、それ以下ではHClO(次亜
塩素酸)が陰極側のアルカリ性イオン水に混入して流出
するという問題が生じるからである。次に時間経過とと
もに原水の流入量が次第に増加し4l/min.程度に
達するとアルカリ性イオン水の吐出量(Qa)が約3.
2l/min.に、酸性イオン水の吐出量(Qb)が約
0.8l/min.程度になり吐出量の比率(Qa/Q
b)は所定の約4となってイオン水が連続して生成され
ることになる。さらに原水の流入量を増やすと酸性イオ
ン水の吐出量が多くなり吐出量の比率(Qa/Qb)は
約3程度まで減少する。このように従来のイオン水生成
器3は酸性イオン水生成流路の給水路に流量調整用固定
絞り部16を設け、原水の流入量を抑えることによって
酸性イオン水の吐出量を少なくし、アルカリ性イオン水
の吐出量を多くするものである。さらに予め一定量以上
の原水を流水させて後に電極に給電し陽極側に発生する
HClO(次亜塩素酸)が陰極側のアルカリ性イオン水
に混入して流出するのを防ぐようにしたものである。
By the way, when the ion water generator 3 is operated for the purpose of generating alkaline ionized water, the structure of the channel for generating alkaline ionized water and the channel for generating acidic ionized water, and the volumes of the cathode chamber 7a and the anode chamber 7b are normally used. Since there is not much difference between the two, the same amount of acidic ionized water as alkaline ionized water is produced at the same time. Therefore, for the purpose of increasing the production amount of alkaline ionized water, the fixed flow restricting throttle portion 16 is provided in the water supply passage 13b to the anode chamber 7b shown in FIG. In general, the amount of alkaline ionized water is reduced and the amount of alkaline ionized water discharged is increased. However, if the flow restricting fixed throttle portion 16 is extremely squeezed in order to reduce the amount of acidic ionized water produced, the pH of the acidic ionized water becomes strongly acidic, and it is necessary to supply a large current. This causes a problem of consuming a large amount of electric power at the same time as shortening the life of the electrode. Since the flow rate of the acidic ionized water is kept low, the high-concentration HClO (hypochlorous acid) generated on the anode side stays in the anode chamber 7b for a long period of time, diffuses through the diaphragm 8, and the cathode chamber 7a There is a problem that the alkaline ionized water on the side mixes with and flows out. Therefore, the electrode life is extended and the power consumption is reduced, while at the same time HCl
Since it is necessary to prevent the mixture of O (hypochlorous acid) into the alkaline ionized water, the ratio of the discharged amount of the alkaline ionized water to the acidic ionized water is usually 4: 1. However, the discharge amounts of the alkaline ionized water and the acidic ionized water are easily affected by the flow rate of the raw water, and the ratio of the discharge amounts of both is greatly changed. Here, the ratio between the raw water flow rate and the discharge rate will be described. FIG. 7 is a conventional relationship diagram of the ratio of the raw water flow rate and the discharge amount. In FIG. 7, the horizontal axis represents the raw water flow rate (l / mi
n. ), And the vertical axis represents the discharge amount of alkaline ionized water (Q
The ratio Qa / Q between a) and the discharge amount (Qb) of acidic ionized water
b is shown. Raw water flows in and the flow rate is about 0.8 l / m
in. When it reaches, the flow rate sensor 16 detects it and electrolysis is started by a signal from the controller 17.
The discharge amount ratio (Qa / Qb) at that time is about 7. Here, the inflow rate of raw water is about 0.8 l / min. The reason for starting the electrolysis as described above is that below that, HClO (hypochlorous acid) mixes with the alkaline ionized water on the cathode side and flows out. Next, the inflow rate of the raw water gradually increased with the lapse of time to 4 l / min. The discharge amount (Qa) of alkaline ionized water is about 3.
2 l / min. In addition, the discharge amount (Qb) of acidic ionized water was about 0.8 l / min. Discharge rate ratio (Qa / Q
In b), a predetermined value of about 4 is obtained, and ionized water is continuously produced. Further, when the inflow amount of the raw water is increased, the discharge amount of the acidic ion water increases, and the discharge amount ratio (Qa / Qb) decreases to about 3. As described above, the conventional ion water generator 3 is provided with the fixed throttle portion 16 for adjusting the flow rate in the water supply path of the acidic ion water generation flow path to suppress the inflow amount of the raw water, thereby reducing the discharge amount of the acidic ion water and reducing the alkaline property. The amount of ionized water discharged is increased. Further, a predetermined amount or more of raw water is made to flow in advance to supply power to the electrode to prevent HClO (hypochlorous acid) generated on the anode side from mixing with alkaline ionized water on the cathode side and flowing out. .

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来技
術のイオン水生成器は陽極室への給水路に流量調整用固
定絞り部を設けているから、原水の水圧が変動すれば流
入量も変動するという問題がある。また、陽極室側に発
生するHClO(次亜塩素酸)が陰極室側のアルカリ性
イオン水に混入して流出するのを防ぐため、予め一定量
以上の原水を流水させて後に電極に給電するから、原水
を無駄に吐出させるという問題がある。さらに原水の流
入量が変動すればアルカリ性イオン水の吐出量(Qa)
と酸性イオン水の吐出量(Qb)との比率Qa/Qbが
変動するから、一定量のイオン水を生成するにはきめ細
かに原水の流入量を制御する必要があるなどの問題点も
有していた。
However, in the ion water generator of the prior art, since the fixed throttle portion for adjusting the flow rate is provided in the water supply path to the anode chamber, if the water pressure of the raw water changes, the inflow rate also changes. There is a problem. Further, in order to prevent HClO (hypochlorous acid) generated in the anode chamber side from mixing with alkaline ionized water in the cathode chamber and flowing out, a certain amount or more of raw water is preliminarily supplied and electricity is supplied to the electrode later. However, there is a problem that the raw water is discharged in vain. Furthermore, if the inflow of raw water changes, the discharge amount of alkaline ionized water (Qa)
Since the ratio Qa / Qb of the discharge amount of acidic ionized water (Qb) fluctuates, there is also a problem that the inflow rate of raw water needs to be finely controlled in order to generate a fixed amount of ionized water. Was there.

【0007】また以上とは逆に酸性イオン水を必要とす
るイオン水生成器ではアルカリ性イオン水が混入すると
処理水のpHを下げるという問題点があった。
On the contrary, in the ion water generator which requires acidic ion water, there is a problem that the pH of treated water is lowered when alkaline ion water is mixed.

【0008】そこで本発明は前記従来の問題点を解決す
るもので、原水の流入量が変動してもアルカリ性イオン
水の吐出量(Qa)と酸性イオン水の吐出量(Qb)と
の比率Qa/Qbを一定にし、酸性イオン水が低流量時
にもアルカリ性イオン水にHCIO(次亜塩素酸)が混
入するのを防ぎ、原水の吐出を少量に抑え、簡便な構造
を有し、メンテナンスフリーのイオン水生成器を提供す
ることを目的とするものである。
Therefore, the present invention solves the above-mentioned problems of the prior art, and the ratio Qa between the discharge amount (Qa) of alkaline ionized water and the discharge amount (Qb) of acidic ionized water is changed even if the inflow amount of raw water changes. / Qb is kept constant, HCIO (hypochlorous acid) is prevented from being mixed into alkaline ionized water even when the flow rate of acidic ionized water is low, and the discharge of raw water is suppressed to a small amount, which has a simple structure and is maintenance-free. It is intended to provide an ionized water generator.

【0009】また本発明はアルカリ性イオン水が低流量
時に酸性イオン水に混入することがなく、原水の吐出を
少量に抑え、簡便な構造を有し、メンテナンスフリーの
イオン水生成器を提供することを目的とする。
Further, the present invention provides a maintenance-free ion water generator that does not mix alkaline ionized water with acidic ionized water at a low flow rate, suppresses discharge of raw water to a small amount, has a simple structure. With the goal.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に本発明のイオン水生成器は、陽極室に接続された給水
路に低圧域で流路抵抗が低下する特性をもつ抵抗可変流
量調節弁を設けたことを特徴とする。
In order to achieve the above object, the ion water generator of the present invention has a variable resistance flow rate control having a characteristic that the flow path resistance is reduced in a low pressure region in a water supply path connected to an anode chamber. It is characterized by having a valve.

【0011】また、さらに陰極室に接続された吐出路に
低圧域で流路抵抗が低下する特性を持つ抵抗可変流量調
節弁を設けるのが望ましい。
Further, it is desirable to further provide a resistance variable flow rate control valve having a characteristic that the flow path resistance is lowered in a low pressure region in the discharge path connected to the cathode chamber.

【0012】さらに、抵抗可変流量調節弁が中心部に流
水孔を有する絞りプレートと、絞りプレートの下方に配
置して給水された原水の水圧によって絞りプレートとの
間隙を変える流路付き可動プレートと、流路付き可動プ
レートの下限位置を設定するストッパーリングを備えて
いるのが好ましい。
Furthermore, a variable resistance flow control valve has a throttle plate having a water flow hole at its center, and a movable plate with a flow passage arranged below the throttle plate to change the gap between the throttle plate and the water pressure of the raw water supplied. It is preferable to provide a stopper ring for setting the lower limit position of the movable plate with a flow path.

【0013】さらに、流路付き可動プレートが弾力性材
からなることを特徴とする。さらに、陰極室に接続され
た給水路に低圧域で流路抵抗が低下する特性をもつ抵抗
可変流量調節弁を設けたことを特徴とする。
Further, the movable plate with the flow path is made of an elastic material. Further, the water supply passage connected to the cathode chamber is provided with a resistance variable flow rate control valve having a characteristic that the flow passage resistance decreases in a low pressure region.

【0014】[0014]

【作用】本発明のイオン水生成器は、陽極室に接続され
た給水路に低圧域で流路抵抗が低下する特性を持つ抵抗
可変流量調節弁を設けているから、原水の流入量が少な
くなっても酸性イオン水生成流路に必要量の原水を流入
させることができ、陰極室へHCIOが拡散するのを防
ぐことができる。
Since the ion water generator of the present invention is provided with the variable resistance flow control valve having the characteristic that the flow path resistance decreases in the low pressure region in the water supply passage connected to the anode chamber, the inflow of raw water is small. Even so, a required amount of raw water can be made to flow into the acidic ionized water generation flow path, and HCIO can be prevented from diffusing into the cathode chamber.

【0015】さらに、陰極室に接続された吐出路に低圧
域で流路抵抗が低下する特性を持つ抵抗可変流量調節弁
を設けているから、陰極室へHCIOが拡散することな
く、アルカリ性イオン水の吐出量を一定に制御すること
ができる。
Further, since the resistance variable flow rate control valve having the characteristic that the flow path resistance is lowered in the low pressure region is provided in the discharge passage connected to the cathode chamber, the alkaline ionized water is prevented from diffusing HCIO into the cathode chamber. The discharge amount can be controlled to be constant.

【0016】さらに、抵抗可変流量調節弁が中心部に流
水孔を有する絞りプレートと、絞りプレートの下方に配
置して給水された原水の水圧によって絞りプレートとの
間隙を変える流路付き可動プレートと、流路付き可動プ
レートの下限位置を設定するストッパーリングを備えて
いるから、低水圧域では絞り特性を小さくし、高水圧域
では絞り特性を大きくすることができる。
Further, the variable resistance flow rate control valve has a throttle plate having a water flow hole in the center thereof, and a movable plate with a flow passage arranged below the throttle plate to change the gap between the throttle plate and the water pressure of the raw water supplied. Since the stopper ring for setting the lower limit position of the movable plate with the flow path is provided, it is possible to reduce the throttle characteristic in the low water pressure range and increase the throttle characteristic in the high water pressure range.

【0017】さらに、流路付き可動プレートを弾力性材
で形成しているから、原水の水圧によって容易に絞りプ
レートに圧接でき、絞り特性を可変にして流量調節する
ことができる。
Further, since the movable plate with the flow path is made of an elastic material, it can be easily brought into pressure contact with the throttle plate by the water pressure of the raw water, and the throttle characteristic can be varied to adjust the flow rate.

【0018】さらに、陰極室に接続された給水路に低圧
域で流路抵抗が低下する特性をもつ抵抗可変流量調節弁
を設けているから、陽極室へアルカリ性イオン水が拡散
することなく、酸性イオン水の吐出量を一定に制御する
ことができる。
Furthermore, since the variable resistance flow control valve having the characteristic that the flow path resistance is lowered in the low pressure region is provided in the water supply passage connected to the cathode chamber, the alkaline ionized water does not diffuse into the anode chamber and the acid flow is prevented. The discharge amount of ionized water can be controlled to be constant.

【0019】[0019]

【実施例】以下本発明の実施例の詳細を図面に基づいて
説明する。ここではアルカリ性イオン水を生成する場合
について述べる。図1は本発明の一実施例におけるイオ
ン水生成器の概略全体図である。図2(a)は本発明の
一実施例におけるイオン水生成器の抵抗可変流量調節弁
の断面図で、図2(b)は本発明の一実施例におけるイ
オン水生成器の抵抗可変流量調節弁の動作時の断面図あ
る。図2(c)は本発明の一実施例におけるイオン水生
成器の抵抗可変流量調節弁の分解正面図である。図1に
おいて1は原水管、2は水栓、3はイオン水生成器、4
は浄水器、5は電磁弁、6は流量センサ、7は電解槽、
7aは陰極室、7bは陽極室、8は隔膜、9、10は電
極、13aは陰極室への給水路、13bは陽極室への給
水路、14はアルカリ性イオン水吐出路、15は酸性イ
オン水吐出路、17はコントローラ、18は電源部、1
9は通水スイッチである。従来例と同じ符号のものにつ
いては、基本的な動作、機能が同じであるので説明を省
略する。20は陽極室7bへの原水の給水路13bに設
けた抵抗可変流量調節弁で、21はアルカリ性イオン水
吐出路14に設けた抵抗可変流量調節弁である。抵抗可
変流量調節弁20、21は同じ構造を有しており、これ
を図2(a)、図2(b)、図2(c)に示す。ここで
図2(a)は原水流入開始時の状態を、図2(b)は原
水圧が上昇した時の状態を模擬的に表したものである。
抵抗可変流量調節弁20を設ければ通常は十分である
が、さらに抵抗可変流量調節弁21を設けると流量調節
がより効果的になる。30は絞りプレート、31は流路
付き可動プレート、32はストッパーリング、33はそ
れらを収納するケースである。ケース33の内壁に段差
を設け中心部に流水孔30aを有する円盤状の絞りプレ
ート30を固定する。次いでその四隅に流路31bを有
し、中心部に調節孔31aを設けた流路付き可動プレー
ト31を絞りプレート30の直ぐ下方に置き、ストッパ
ーリング32で流路付き可動プレート31の可動範囲の
下限位置を設定する。この下限位置は、流路付き可動プ
レート31が原水の水圧に応じて上下に移動する際、最
大流量を流すだけの間隔が絞りプレート30との間に形
成されるような位置であることが重要である。当初は重
力で流路付き可動プレート31はストッパーリング32
上にのった状態となっているが、原水が矢印の方向から
流入すると初期段階は水圧が低いため原水は流路付き可
動プレート31の調節孔31aおよび流路31bを経由
して流量調節弁から吐出する。次に流量が増えて原水の
水圧が高くなると図2(b)に示すように、流路付き可
動プレート31は水圧によって絞りプレート30に圧接
される。このため原水は流路付き可動プレート31の調
節孔31aからのみ吐出するのである。すなわち流路抵
抗が増すことになる。この状態で原水の水圧が低くなる
と再び図2(a)の状態に戻って流量調節弁から吐出が
継続できる。このようにして原水の水圧が低い低圧域で
流路抵抗が低下して吐出量を多くし、水圧が高くなれば
流路抵抗が大きくなって吐出量を抑えることができる抵
抗可変流量調節弁20,21を得ることができる。この
流量調節を効果的にするために、流路付き可動プレート
31は水圧によって圧縮変形が容易なゴムやプラスチッ
クなどの弾力性を有する材質で構成するのが望ましい。
Embodiments of the present invention will be described in detail below with reference to the drawings. Here, the case of producing alkaline ionized water will be described. FIG. 1 is a schematic overall view of an ionized water generator according to an embodiment of the present invention. FIG. 2A is a sectional view of a variable resistance flow rate control valve of an ion water generator according to an embodiment of the present invention, and FIG. 2B is a variable resistance flow rate control of an ion water generator according to an embodiment of the present invention. It is sectional drawing at the time of operation of a valve. FIG. 2C is an exploded front view of the variable resistance flow control valve of the ion water generator according to the embodiment of the present invention. In FIG. 1, 1 is a raw water pipe, 2 is a faucet, 3 is an ion water generator, 4
Is a water purifier, 5 is a solenoid valve, 6 is a flow sensor, 7 is an electrolytic cell,
7a is a cathode chamber, 7b is an anode chamber, 8 is a diaphragm, 9 and 10 are electrodes, 13a is a water supply passage to the cathode chamber, 13b is a water supply passage to the anode chamber, 14 is an alkaline ion water discharge passage, and 15 is an acidic ion. Water discharge path, 17 is a controller, 18 is a power supply unit, 1
9 is a water flow switch. The same reference numerals as those of the conventional example have the same basic operations and functions, and thus the description thereof will be omitted. Reference numeral 20 is a variable resistance flow rate control valve provided in the raw water supply path 13b to the anode chamber 7b, and 21 is a variable resistance flow rate control valve provided in the alkaline ionized water discharge path 14. The resistance variable flow rate control valves 20 and 21 have the same structure, which is shown in FIGS. 2 (a), 2 (b), and 2 (c). Here, FIG. 2A shows a state when the raw water inflow is started, and FIG. 2B shows a state when the raw water pressure rises.
Providing the resistance variable flow rate control valve 20 is usually sufficient, but providing the resistance variable flow rate control valve 21 further makes the flow rate control more effective. Reference numeral 30 is a diaphragm plate, 31 is a movable plate with a flow path, 32 is a stopper ring, and 33 is a case for housing them. A disc-shaped diaphragm plate 30 having a water flow hole 30a in the center is fixed by providing a step on the inner wall of the case 33. Next, the movable plate 31 with flow passages having the flow passages 31b at its four corners and the adjustment hole 31a provided in the center is placed immediately below the diaphragm plate 30, and the stopper ring 32 is used to set the movable range of the movable plate 31 with flow passages. Set the lower limit position. It is important that this lower limit position is a position such that when the movable plate 31 with a flow path moves up and down in accordance with the water pressure of the raw water, an interval for allowing the maximum flow rate is formed between the movable plate 31 and the throttle plate 30. Is. Initially, due to gravity, the movable plate 31 with the flow channel is the stopper ring 32.
Although it is on the upper side, when the raw water flows in from the direction of the arrow, the water pressure is low in the initial stage, so that the raw water flows through the adjusting hole 31a and the passage 31b of the movable plate 31 with the flow passage to the flow control valve. Discharge from. Next, when the flow rate increases and the water pressure of the raw water rises, as shown in FIG. 2B, the flowable movable plate 31 is pressed against the diaphragm plate 30 by water pressure. Therefore, the raw water is discharged only from the adjusting hole 31a of the movable plate 31 with the flow path. That is, the flow path resistance increases. When the water pressure of the raw water becomes low in this state, the state returns to the state shown in FIG. 2A and the discharge can be continued from the flow rate control valve. In this way, the resistance variable flow rate control valve 20 is capable of reducing the flow rate resistance and increasing the discharge amount in a low pressure region where the raw water pressure is low, and increasing the flow rate resistance and suppressing the discharge amount when the water pressure increases. , 21 can be obtained. In order to effectively control the flow rate, it is preferable that the movable plate 31 with the flow path is made of an elastic material such as rubber or plastic that is easily deformed by compression by water pressure.

【0020】つぎに、図3(a)は本発明の他の実施例
におけるイオン水生成器の抵抗可変流量調節弁の断面図
で、図3(b)は本発明の他の実施例によるイオン水生
成器の抵抗可変流量調節弁の動作時の断面図、図3
(c)は本発明の一実施例におけるイオン水生成器の抵
抗可変流量調節弁の分解正面図である。前述の実施例と
同じ符号のものについては、基本的な動作、機能が同じ
であるので説明を省略する。ここで図3(a)は原水流
入開始時の状態を、図3(b)は原水圧が上昇した時の
状態を模擬的に表したものである。31cは流路付き可
動プレート31の中心部に設けた突起物状の流量調節突
起である。原水が矢印の方向から流入するが初期段階は
水圧が低いため原水は流路付き可動プレート31に設け
られた多数の調節孔31a及び流路付き可動プレート3
1の外周部を経由して流量調節弁から吐出する。次に流
量が増えて原水の水圧が高くなると図3(b)に示すよ
うに、流路付き可動プレート31は水圧によって絞りプ
レート30に圧接され流水孔30aに流量調節突起31
cが挿入されて流水孔30aを狭くする。このため流路
付き可動プレート31の調節孔31aのみを経由し、さ
らに流水孔30aで流路面積を絞られて吐出するのであ
る。流路付き可動プレート31の圧接時期を調節するた
め、バネなどで予め流路付き可動プレート31を下方へ
付勢しておくのも好ましい。この状態で原水の水圧が低
くなると再び図3(b)の状態に戻って流量調節弁から
吐出が継続して抵抗可変流量調節弁20,21を得るこ
とができるものである。上述の抵抗可変流量調節弁2
0,21に流入する原水の水圧を変え、抵抗可変流量調
節弁20,21から吐出する原水の流量を調べ従来例と
比較して図4に示す。図4は本発明の一実施例における
原水圧と処理水吐出量の関係図である。図4において横
軸は原水圧(Mpa)を、縦軸は処理水吐出量(l/mi
n.)を示す。この従来例として示したのは流量調整用
固定絞り部16を使用した場合の例であり、本実施例と
して示したのは図2(a)、図2(b)、図2(c)の
抵抗可変流量調節弁20,21を用いた場合である。両
方とも原水圧が0.1Mpaの時に処理水吐出量が0.8
l/min.になるように調整してある。従来例は原水
圧が0.05Mpa付近からようやく処理水吐出量が0.
2l/min.程度になって処理水が吐出するのに比
べ、本実施例によるものは原水圧が0.02Mpa程度の
小さな原水圧でも処理水が吐出してくるのが分かる。さ
らに原水圧が高くなると従来例によるものは処理水吐出
量が増え続けるが、本実施例では原水圧が0.1Mpa以
上では処理水吐出量はほぼ一定に維持されている。この
ことから低圧域では流路抵抗が低下して処理水吐出量を
増加させ、高圧域では流路抵抗が大きくなって処理水吐
出量を制御できる抵抗可変流量調節弁20,21の効果
が明らかである。
Next, FIG. 3 (a) is a sectional view of a variable resistance flow control valve of an ion water generator according to another embodiment of the present invention, and FIG. 3 (b) is an ion according to another embodiment of the present invention. FIG. 3 is a sectional view of the variable resistance flow rate control valve of the water generator during operation.
(C) is an exploded front view of the variable resistance flow control valve of the ionized water generator in one Example of this invention. The same reference numerals as those in the above-described embodiment have the same basic operation and function, and thus the description thereof will be omitted. Here, FIG. 3A shows a state at the time of starting raw water inflow, and FIG. 3B shows a state when the raw water pressure rises. Reference numeral 31c is a projection-like flow rate adjusting projection provided in the center of the movable plate 31 with a flow path. Although the raw water flows in from the direction of the arrow, since the water pressure is low in the initial stage, the raw water has a large number of control holes 31a provided in the movable plate with flow path 31 and the movable plate with flow path 3
Discharge from the flow rate control valve via the outer peripheral portion of 1. Next, when the flow rate increases and the water pressure of the raw water rises, as shown in FIG. 3B, the movable plate 31 with the flow path is brought into pressure contact with the diaphragm plate 30 by the water pressure, and the flow rate adjusting projection 31 is formed in the water flow hole 30a.
c is inserted to narrow the water flow hole 30a. For this reason, only the adjustment hole 31a of the movable plate 31 with a flow path is passed through, and the flow path hole 30a further reduces the flow path area for discharge. In order to adjust the pressure contact time of the movable plate 31 with flow passages, it is also preferable to urge the movable plate 31 with flow passages downward in advance by a spring or the like. In this state, when the water pressure of the raw water becomes low, the state returns to the state shown in FIG. 3B, and the variable flow rate control valves 20 and 21 can be obtained by continuing the discharge from the flow rate control valve. The variable resistance flow rate control valve 2 described above
FIG. 4 shows the flow rate of raw water discharged from the resistance variable flow rate control valves 20 and 21 by changing the water pressure of the raw water flowing into 0 and 21 and comparing with the conventional example. FIG. 4 is a relationship diagram of the raw water pressure and the treated water discharge amount in one embodiment of the present invention. In FIG. 4, the horizontal axis represents the raw water pressure (Mpa), and the vertical axis represents the treated water discharge rate (l / mi).
n. ). This conventional example is an example in which the fixed throttle portion 16 for flow rate adjustment is used, and the present example is shown in FIGS. 2 (a), 2 (b) and 2 (c). This is the case where the variable resistance flow rate control valves 20 and 21 are used. In both cases, the discharge amount of treated water is 0.8 when the raw water pressure is 0.1 MPa.
l / min. Is adjusted so that In the conventional example, the discharge amount of treated water is finally 0.
2 l / min. It can be seen that the treated water is discharged even at a small raw water pressure of about 0.02 MPa as compared with the treated water discharged at a certain level. When the raw water pressure further increases, the treated water discharge amount of the conventional example continues to increase, but in this embodiment, the treated water discharge amount is maintained substantially constant when the raw water pressure is 0.1 Mpa or more. From this, the effect of the resistance variable flow rate control valves 20 and 21 which can control the discharge amount of treated water by decreasing the flow passage resistance in the low pressure region and increasing the discharge amount of treated water in the high pressure region is clear. Is.

【0021】つぎに、図4に用いた本実施例の抵抗可変
流量調節弁を図1のイオン水生成器3に設け20、21
としたものと、抵抗可変流量調節弁を20だけにしたも
のとの2つを用意してイオン水を生成した。原水流量を
変えたときのアルカリ性イオン水の吐出量(Qa)と酸
性イオン水の吐出量(Qb)との比率Qa/Qbの関係
を図5に示す。図5は本発明の一実施例における原水流
量とQa/Qbの関係図である。図5において横軸は原
水流量(l/min.)で縦軸はアルカリ性イオン水の
吐出量(Qa)と酸性イオン水の吐出量(Qb)との比
率Qa/Qbである。従来例は図4と同じもので流量調
整用固定絞り部16を使用した場合の例であり、Aは図
1のイオン水生成器3の陽極室7bに接続した給水路1
3bにのみ抵抗可変流量調節弁を設け20とした場合
で、Bは図1のイオン水生成器3の陽極室7bに接続し
た給水路13bと陰極室7aに接続したアルカリ性イオ
ン水吐出路14に抵抗可変流量調節弁を併設して20、
21とした場合である。従来例では原水流量が0.8l
/min.に達するとQa/Qbが7となり原水流量が
増加するにつれて次第にQa/Qbが小さくなってゆ
く。つまり原水流入の初期段階ではアルカリ性イオン水
の吐出量が酸性イオン水の吐出量に比べて圧倒的に多
い。しかしながら本発明の方法によるA、Bはともに原
水流量が0.3l/min.で既にQa/Qbが2にな
っており、陽極室7bで生成するHClOが隔膜8を通
して陰極室7aに拡散するのを防ぐに十分な酸性イオン
水の吐出量が得られている。このことにより原水流量が
0.3l/min.程度の少ない原水流量で電気分解が
開始できることになる。これによってイオン水生成器3
の運転の初期段階の無駄に捨てる原水流量を少なくで
き、またHClOの混入を十分に無くすことができる。
さらに原水流量が1l/min.から10l/min.
にまで増加してもQa/Qbがほとんど変化なく一定で
ある。このことは原水流量の変動を受けないで常に吐出
量の比率が一定のアルカリ性イオン水と酸性イオン水を
得ることができるものである。
Next, the variable resistance flow control valve of this embodiment used in FIG. 4 is provided in the ion water generator 3 of FIG.
And a variable resistance flow control valve having only 20 were prepared to generate ionized water. FIG. 5 shows the relationship of the ratio Qa / Qb between the discharge amount (Qa) of alkaline ionized water and the discharge amount (Qb) of acidic ionized water when the flow rate of raw water is changed. FIG. 5 is a relationship diagram between the raw water flow rate and Qa / Qb in one embodiment of the present invention. In FIG. 5, the horizontal axis represents the raw water flow rate (l / min.) And the vertical axis represents the ratio Qa / Qb between the discharge amount (Qa) of alkaline ionized water and the discharge amount (Qb) of acidic ionized water. The conventional example is the same as in FIG. 4 and is an example in which a fixed throttle portion 16 for flow rate adjustment is used, and A is a water supply channel 1 connected to the anode chamber 7b of the ion water generator 3 in FIG.
In the case where the variable resistance flow rate control valve is provided only on 3b, and 20 is provided, B indicates the water supply passage 13b connected to the anode chamber 7b of the ion water generator 3 of FIG. 1 and the alkaline ionized water discharge passage 14 connected to the cathode chamber 7a. 20 with a variable resistance flow control valve
The case is 21. In the conventional example, the raw water flow rate is 0.8 l
/ Min. Qa / Qb becomes 7, and Qa / Qb gradually decreases as the raw water flow rate increases. That is, in the initial stage of inflow of raw water, the discharge amount of alkaline ionized water is much larger than the discharge amount of acidic ionized water. However, the raw water flow rates of both A and B according to the method of the present invention are 0.3 l / min. Therefore, Qa / Qb has already become 2, and a discharge amount of acidic ion water sufficient to prevent HClO generated in the anode chamber 7b from diffusing through the diaphragm 8 into the cathode chamber 7a is obtained. As a result, the raw water flow rate was 0.3 l / min. The electrolysis can be started with a small amount of raw water flow. As a result, the ion water generator 3
It is possible to reduce the amount of raw water flow to be wastefully discarded in the initial stage of the operation of, and it is possible to sufficiently eliminate the inclusion of HClO.
Furthermore, the raw water flow rate is 1 l / min. To 10 l / min.
Qa / Qb is constant with almost no change even when the value is increased to. This means that it is possible to always obtain alkaline ionized water and acidic ionized water with a constant discharge amount ratio without being affected by fluctuations in the raw water flow rate.

【0022】ところで酸性イオン水を必要とするイオン
水生成器においては、陽極室と陰極室が上述した実施例
とは逆になる。この場合には陰極室に接続される給水路
と、必要に応じて陽極室に接続された吐出路に抵抗可変
流量調節弁を設ければよい。このように陰極室に接続さ
れる給水路に抵抗可変流量調節弁を用いることによっ
て、アルカリ性イオン水が酸性イオン水中に拡散してp
Hを下げるということが防げるのである。
By the way, in the ionized water generator which requires acidic ionized water, the anode chamber and the cathode chamber are opposite to those in the above-described embodiment. In this case, a variable resistance flow control valve may be provided in the water supply passage connected to the cathode chamber and, if necessary, the discharge passage connected to the anode chamber. By using the variable resistance flow rate control valve in the water supply path connected to the cathode chamber in this way, the alkaline ionized water is diffused into the acidic ionized water and p
Lowering H can be prevented.

【0023】従って本実施例の抵抗可変流量調節弁を設
けると、従来例のようにきめ細かに原水流量を調整した
り、そのための調整機構を必要とせず簡便な構造を有
し、メンテナンスフリーのイオン水生成器を得ることが
できる。このことは工業用に多量のイオン水を生成する
場合に一層効果が認められる。
Therefore, when the variable resistance flow rate control valve of the present embodiment is provided, it has a simple structure that does not require fine adjustment of the raw water flow rate as in the conventional example and does not require an adjusting mechanism therefor, and is a maintenance-free ion. A water generator can be obtained. This is more effective when producing a large amount of ionized water for industrial use.

【0024】[0024]

【発明の効果】以上から明らかなように本発明によれ
ば、陽極室に接続された給水路に低圧域で流路抵抗が低
下する特性を持つ抵抗可変流量調節弁を設けているか
ら、原水の流入量が少なくなっても酸性イオン水生成流
路に必要量の原水を流入させることができ、陰極室へH
CIOが拡散するのを防ぎ、原水流量の変動を受けない
で一定流量のイオン水が生成できる。
As is apparent from the above, according to the present invention, the feed water passage connected to the anode chamber is provided with the variable resistance flow control valve having the characteristic that the flow passage resistance decreases in the low pressure region. The required amount of raw water can be made to flow into the acidic ionized water generation flow path even if the inflow amount of H is reduced, and H
It is possible to prevent the CIO from diffusing and to generate a constant flow of ionized water without being affected by the fluctuation of the raw water flow rate.

【0025】また、陰極室に接続された吐出路に低圧域
で流路抵抗が低下する特性をもつ抵抗可変流量調節弁を
設けているから、原水流量が少なくても酸性イオン水の
必要吐出量が確保でき、陰極室へHCIOが拡散するこ
となく安全なアルカリ性イオン水を得ることができる。
Further, since the variable resistance flow rate control valve having the characteristic of decreasing the flow path resistance in the low pressure region is provided in the discharge passage connected to the cathode chamber, the required discharge amount of acidic ionized water is small even if the raw water flow rate is small. Therefore, safe alkaline ionized water can be obtained without HCIO diffusion into the cathode chamber.

【0026】さらに、抵抗可変流量調節弁が中心部に流
水孔を有する絞りプレートと、絞りプレートの下方に配
置して給水された原水の水圧によって絞りプレートとの
間隙を変える流路付き可動プレートと、流路付き可動プ
レートの下限位置を設定するストッパーリングを備えて
いるから、低水圧域及び高水圧域で自動的に抵抗可変し
て流量を調節することができ、メンテナンスフリーのイ
オン水生成器を提供することができる。
Further, the variable resistance flow rate control valve has a throttle plate having a water flow hole in the center thereof, and a movable plate with a flow passage arranged below the throttle plate to change the gap between the throttle plate and the water pressure of the raw water supplied. Since it is equipped with a stopper ring that sets the lower limit position of the movable plate with flow path, the flow rate can be adjusted by automatically varying the resistance in the low water pressure range and high water pressure range, and a maintenance-free ion water generator Can be provided.

【0027】さらに、流路付き可動プレートを弾力性材
で形成しているから、原水の水圧によって容易に絞りプ
レートに圧接でき、簡単な構造で流量調節することがで
きる。
Further, since the movable plate with the flow path is made of an elastic material, it can be easily brought into pressure contact with the throttle plate by the water pressure of the raw water, and the flow rate can be adjusted with a simple structure.

【0028】さらに、陰極室に接続された給水路に低圧
域で流路抵抗が低下する特性をもつ抵抗可変流量調節弁
を設けているから、酸性イオン水中にアルカリ性イオン
水が拡散することなく、酸性イオン水のpHを安定にし
て吐出量を一定に制御できるイオン水生成器を提供する
ことができる。
Further, since the resistance variable flow rate control valve having the characteristic that the flow passage resistance is lowered in the low pressure region is provided in the water supply passage connected to the cathode chamber, the alkaline ionized water does not diffuse into the acidic ionized water, It is possible to provide an ionized water generator capable of stabilizing the pH of acidic ionized water and controlling the discharge amount to be constant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるイオン水生成器の概
略全体図
FIG. 1 is a schematic overall view of an ion water generator according to an embodiment of the present invention.

【図2】(a)本発明の一実施例におけるイオン水生成
器の抵抗可変流量調節弁の断面図 (b)本発明の一実施例におけるイオン水生成器の抵抗
可変流量調節弁の動作時の断面図 (c)本発明の一実施例におけるイオン水生成器の抵抗
可変流量調節弁の分解正面図
FIG. 2 (a) is a sectional view of a variable resistance flow rate control valve of an ion water generator according to an embodiment of the present invention. (B) When the variable resistance flow rate control valve of an ion water generator according to an embodiment of the present invention is in operation. (C) Exploded front view of the variable resistance flow control valve of the ion water generator in one embodiment of the present invention

【図3】(a)本発明の他の実施例におけるイオン水生
成器の抵抗可変流量調節弁の断面図 (b)本発明の他の実施例によるイオン水生成器の抵抗
可変流量調節弁の動作時の断面図 (c)は本発明の一実施例におけるイオン水生成器の抵
抗可変流量調節弁の分解正面図
FIG. 3A is a cross-sectional view of a variable resistance flow control valve of an ion water generator according to another embodiment of the present invention. FIG. 3B is a sectional view of a resistance variable flow control valve of an ion water generator according to another embodiment of the present invention. Sectional view during operation (c) is an exploded front view of the resistance variable flow rate control valve of the ion water generator in one embodiment of the present invention

【図4】本発明の一実施例における原水圧と処理水吐出
量の関係図
FIG. 4 is a relational diagram of raw water pressure and treated water discharge amount in one embodiment of the present invention.

【図5】本発明の一実施例における原水流量とQa/Q
bの関係図
FIG. 5 is a raw water flow rate and Qa / Q in one embodiment of the present invention.
Relationship diagram of b

【図6】従来のイオン水生成器の概略全体図FIG. 6 is a schematic overall view of a conventional ionized water generator.

【図7】従来の原水流量と吐出量の比率の関係図FIG. 7 is a conventional relational diagram of the ratio of raw water flow rate and discharge rate.

【符号の説明】[Explanation of symbols]

1 原水管 2 水栓 3 イオン水生成器 4 浄水器 5 電磁弁 6 流量センサ 7 電解槽 7a 陰極室 7b 陽極室 8 隔膜 9、10 電極 11、12、13 給水管 13a 陰極室への給水路 13b 陽極室への給水路 14 アルカリ性イオン水吐出路 15 酸性イオン水吐出路 16 流量調整用固定絞り部 17 コントローラ 18 電源部 19 通水スイッチ 20、21 抵抗可変流量調節弁 30 絞りプレート 30a 流水孔 31 流路付き可動プレート 31a 調節孔 31b 流路 31c 流量調節突起 32 ストッパーリング 33 ケース 1 Raw Water Pipe 2 Faucet 3 Ion Water Generator 4 Water Purifier 5 Solenoid Valve 6 Flow Rate Sensor 7 Electrolyzer 7a Cathode Chamber 7b Anode Chamber 8 Septa Membrane 9, 10 Electrode 11, 12, 13 Water Supply Pipe 13a Water Supply Channel 13b to Cathode Chamber 13b Water supply path to the anode chamber 14 Alkaline ion water discharge path 15 Acidic ion water discharge path 16 Flow rate adjustment fixed throttle section 17 Controller 18 Power supply section 19 Water flow switch 20, 21 Variable resistance flow rate control valve 30 Throttle plate 30a Water flow hole 31 Flow Movable plate with passage 31a Adjustment hole 31b Flow path 31c Flow rate adjusting protrusion 32 Stopper ring 33 Case

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】隔膜によって陽極室と陰極室に区画される
とともに前記陽極室と前記陰極室のそれぞれに電極を設
けた電解槽と、前記陽極室と前記陰極室にそれぞれ接続
されて原水を供給する給水路と、前記陽極室と前記陰極
室にそれぞれ接続されて処理水を吐出する吐出路を備え
ており、前記陽極室に接続された前記給水路に低圧域で
流路抵抗が低下する特性をもつ抵抗可変流量調節弁を設
けたことを特徴とするイオン水生成器。
1. An electrolytic cell which is divided into an anode chamber and a cathode chamber by a diaphragm and has electrodes in each of the anode chamber and the cathode chamber; and raw water supplied to the anode chamber and the cathode chamber, respectively. And a discharge passage for discharging treated water, which is connected to the anode chamber and the cathode chamber, respectively, and has a characteristic that the flow passage resistance decreases in the low pressure region in the water supply passage connected to the anode chamber. An ion water generator characterized in that a variable resistance flow control valve having a valve is provided.
【請求項2】前記陰極室に接続された前記吐出路に低圧
域で流路抵抗が低下する特性をもつ抵抗可変流量調節弁
を設けたことを特徴とする請求項1記載のイオン水生成
器。
2. The ion water generator according to claim 1, wherein the discharge passage connected to the cathode chamber is provided with a variable resistance flow control valve having a characteristic that the flow passage resistance decreases in a low pressure region. .
【請求項3】前記抵抗可変流量調節弁が、中央部に流水
孔を有する絞りプレートと、前記絞りプレートの下方に
配置されるとともに給水された原水の水圧によって前記
絞りプレートとの間隙を変える流路付き可動プレート
と、前記流路付き可動プレートの下限位置を設定するス
トッパーリングを備えていることを特徴とする請求項1
または2記載のイオン水生成器。
3. The variable resistance flow rate control valve, wherein a throttle plate having a water flow hole in a central portion thereof and a flow varying a gap between the throttle plate and a throttle plate disposed below the throttle plate and being supplied with the raw water. A movable plate with a passage, and a stopper ring for setting a lower limit position of the movable plate with a passage are provided.
Alternatively, the ionized water generator described in 2.
【請求項4】前記流路付き可動プレートが弾力性材から
なることを特徴とする請求項1〜3のいずれかに記載の
イオン水生成器。
4. The ionized water generator according to claim 1, wherein the movable plate with a flow path is made of an elastic material.
【請求項5】隔膜によって陽極室と陰極室に区画される
とともに前記陽極室と前記陰極室のそれぞれに電極を設
けた電解槽と、前記陽極室と前記陰極室にそれぞれ接続
されて原水を供給する給水路と、前記陽極室と前記陰極
室にそれぞれ接続されて処理水を吐出する吐出路を備え
ており、前記陰極室に接続された前記給水路に低圧域で
流路抵抗が低下する特性をもつ抵抗可変流量調節弁を設
けたことを特徴とするイオン水生成器。
5. An electrolytic cell, which is divided into an anode chamber and a cathode chamber by a diaphragm and has electrodes provided in each of the anode chamber and the cathode chamber, and is connected to each of the anode chamber and the cathode chamber to supply raw water. A water supply passage for discharging the treated water, which is connected to the anode chamber and the cathode chamber, respectively, and has a characteristic that the flow passage resistance decreases in the low pressure region in the water supply passage connected to the cathode chamber. An ion water generator characterized in that a variable resistance flow control valve having a valve is provided.
JP19141894A 1994-08-15 1994-08-15 Ion water maker Pending JPH0857480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19141894A JPH0857480A (en) 1994-08-15 1994-08-15 Ion water maker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19141894A JPH0857480A (en) 1994-08-15 1994-08-15 Ion water maker

Publications (1)

Publication Number Publication Date
JPH0857480A true JPH0857480A (en) 1996-03-05

Family

ID=16274287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19141894A Pending JPH0857480A (en) 1994-08-15 1994-08-15 Ion water maker

Country Status (1)

Country Link
JP (1) JPH0857480A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011255356A (en) * 2010-06-11 2011-12-22 Panasonic Electric Works Co Ltd Electrolytic water generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011255356A (en) * 2010-06-11 2011-12-22 Panasonic Electric Works Co Ltd Electrolytic water generator

Similar Documents

Publication Publication Date Title
KR101027538B1 (en) A equipment of electrolytic sterilizing water, manufacturing system and method thereof
JP2008086885A (en) Electrolytic water generator
JP4031877B2 (en) Hypochlorous acid aqueous solution generator
TWI732958B (en) Electrolyzed water generator
JPH0857480A (en) Ion water maker
JP4000415B2 (en) Solid polymer water electrolyzer
JPS59189988A (en) Controlling mechanism for volume of water in continuous water electrolysis unit
JP2002079250A (en) Hypochlorous acid water making apparatus
JP2005324117A (en) Alkali ion water generator
JP2000202449A (en) Alkaline ionized water producer
JPH06312189A (en) Electrolytic sterilized water making apparatus
KR101054266B1 (en) A equipment of electrolytic sterilizing water, manufacturing system and method thereof
JPH07155764A (en) Device for producing acidic ionized water
KR20020029660A (en) device for fixed or a breakaway of clean water filter for water ionizing apparatus
KR100725658B1 (en) Sterilizing system of drinking water using silver electrolysis
JPH0871560A (en) Equipment and method for generating ionic water
JPH07185552A (en) Continuous electrolytic water generator
CN214457047U (en) Electrolyzed water generating device
JP4936423B2 (en) Electrolyzed water generating device and sink equipped with the same
JPH07155762A (en) Device for producing electrolyzed water
JPH10174971A (en) Electrolytic water-making apparatus
WO2023145505A1 (en) Generation device
JP3905583B2 (en) Ionized water generator with pH adjusting substance addition tank
JP3637114B2 (en) Electrolyzed water generator
JP6885776B2 (en) Electrolyzed water generator