JPH0850063A - Calorimeter system - Google Patents
Calorimeter systemInfo
- Publication number
- JPH0850063A JPH0850063A JP6184638A JP18463894A JPH0850063A JP H0850063 A JPH0850063 A JP H0850063A JP 6184638 A JP6184638 A JP 6184638A JP 18463894 A JP18463894 A JP 18463894A JP H0850063 A JPH0850063 A JP H0850063A
- Authority
- JP
- Japan
- Prior art keywords
- ice
- flow
- upstream
- ice slurry
- downstream
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、カロリーメータシステ
ムに関し、より詳細には、氷スラリーを熱媒体とした熱
交換器内で消費された熱量を、超音波が氷スラリー内を
伝播する伝播時間をパラメータとして算出された氷の濃
度と氷スラリー流量に基づいて求めるカロリーメータシ
ステムに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a calorimeter system, and more particularly to a propagation time in which ultrasonic waves propagate the amount of heat consumed in a heat exchanger using ice slurry as a heat medium in the ice slurry. The present invention relates to a calorimeter system which is calculated on the basis of the ice concentration and the ice slurry flow rate calculated by using as a parameter.
【0002】[0002]
【従来の技術】地域冷暖房は、通常、冷暖房装置が設置
されたエネルギーセンタからの熱源を熱源センタに供給
し、更に熱源センタの熱源を需要家に供給するシステム
により行われている。地域冷暖房では、暖房の熱源とし
て温水や蒸気が使用され、冷房の熱源として従来は、冷
水が使用されていた。冷水を用いた従来の冷房では、熱
媒体として約7℃の冷水を用いて、これを熱交換器に供
給し、冷水が熱交換器から流出するときは、交換された
熱量により加熱され、約13℃に昇温した水として回収
されていた。2. Description of the Related Art District heating and cooling is usually performed by a system that supplies a heat source from an energy center in which a cooling and heating device is installed to a heat source center and further supplies the heat source of the heat source center to a customer. In district heating and cooling, hot water or steam is used as a heat source for heating, and cold water is conventionally used as a heat source for cooling. In a conventional cooling system using cold water, cold water of about 7 ° C. is used as a heat medium, which is supplied to a heat exchanger, and when the cold water flows out of the heat exchanger, it is heated by the amount of heat exchanged, It was recovered as water heated to 13 ° C.
【0003】このような地域冷暖房の冷水を用いた従来
の冷房は、冷媒としての水の熱交換器前後の温度差が小
さいため、冷熱量を大きくするためには冷水の流量を大
きくする必要が生じ、流速の制限から冷水配管が大口径
となり、設備費が高価となるという問題が生じていた。
このため、冷房の冷熱源を冷水だけでなく、水と氷の共
融混合液(氷スラリー)を用いることが試みられてい
る。In the conventional cooling using the cold water for such district cooling and heating, since the temperature difference before and after the heat exchanger of water as a refrigerant is small, it is necessary to increase the flow rate of the cold water in order to increase the amount of cold heat. As a result, due to the limitation of the flow velocity, the cold water pipe has a large diameter, which causes a problem that the equipment cost becomes expensive.
Therefore, it has been attempted to use not only cold water but also a eutectic mixture of water and ice (ice slurry) as a cooling heat source for cooling.
【0004】氷の融解潜熱は、水の比熱に比べてはるか
に大きいため冷房の効率が良く、氷スラリーを搬送する
配管を小口径のものとすることができるという利点はあ
るが、反面、氷が冷水管内に付着することがなく氷スラ
リーを効率よく搬送することや冷熱量を測定するために
氷スラリー中の氷濃度を知る必要がある等の他の課題が
生ずる。Since the latent heat of melting of ice is much larger than the specific heat of water, the cooling efficiency is good, and the pipe for carrying the ice slurry has the advantage of having a small diameter. Other problems such as efficiently transporting the ice slurry without adhering to the inside of the cold water pipe and knowing the ice concentration in the ice slurry in order to measure the amount of cold heat occur.
【0005】従来、氷濃度を測定するための手段として
は、氷スラリーを収容した所定体積の容器の底部に作用
する圧力を測定し、圧力の関数として氷濃度を測定する
方法や、コリオリ流量計を用いて氷スラリーの密度を測
定する方法等があり、更に、超音波を利用した方法等数
多くの方法がある。Conventionally, as a means for measuring the ice concentration, a method of measuring the pressure acting on the bottom of a container having a predetermined volume containing ice slurry and measuring the ice concentration as a function of the pressure, or a Coriolis flowmeter There is a method of measuring the density of the ice slurry by using, and there are many methods such as a method using ultrasonic waves.
【0006】特開平5−340862号公報には、氷ス
ラリーが流れる氷蓄熱槽と熱交換器との間に氷濃度測定
装置を取り付け、この氷濃度測定装置により測定された
氷スラリー中の氷濃度(IPF:Ice Packing Facto
r)信号によりIPFが一定値となるように氷蓄熱槽か
ら流出した氷スラリーに水を混合してIPFを一定にす
る技術が開示されている。上記氷濃度測定装置は、容器
内の氷スラリーが一定レベルに達したときの静圧の大き
さを氷スラリーが導入される容器の底面に作用する静圧
を圧力計より測定し、IPFを求める方式である。In JP-A-5-340862, an ice concentration measuring device is attached between an ice heat storage tank in which the ice slurry flows and a heat exchanger, and the ice concentration in the ice slurry measured by the ice concentration measuring device is attached. (IPF: Ice Packing Facto
r) A technique is disclosed in which the IPF is kept constant by mixing water with the ice slurry flowing out from the ice heat storage tank so that the IPF becomes a constant value by a signal. The ice concentration measuring device obtains the IPF by measuring the static pressure acting on the bottom surface of the container, into which the ice slurry is introduced, with a pressure gauge to determine the magnitude of the static pressure when the ice slurry in the container reaches a certain level. It is a method.
【0007】また、本出願人は、先に、氷スラリーを熱
媒体とした熱交換器の冷熱量を測定するカロリーメータ
を提案した。このカロリーメータは、熱交換器の上下流
側に氷スラリーの密度を測定できるコリオリ質量流量計
を設け、熱交換器内で融解した氷の質量を算出して、こ
れに氷の融解潜熱を乗算して単位時間当りの交換冷熱量
を計測する原理によるものである。Further, the present applicant has previously proposed a calorimeter for measuring the amount of cold heat of a heat exchanger using ice slurry as a heat medium. This calorimeter is equipped with a Coriolis mass flowmeter that can measure the density of ice slurry on the upstream and downstream sides of the heat exchanger, calculates the mass of ice melted in the heat exchanger, and multiplies this by the latent heat of melting of ice. This is based on the principle of measuring the amount of cold exchange heat per unit time.
【0008】[0008]
【発明が解決しようとする課題】特開平5−34086
2号公報によるIPFの測定方式は、氷濃度測定装置の
圧力計信号に基づいて氷スラリーが流れる流管内のIP
F濃度を一定となるように氷スラリー中の水量を制御す
る方式に関するものであるが、この方式では長大な容器
と圧力計とからなる氷濃度測定装置の付加要素を必要と
するので装置が大形となる。また、この装置を用いて熱
交換器による交換冷熱量を測定するためには、更に、熱
交換器下流側に他の氷濃度測定装置を設置し、熱交換器
で溶解した氷の質量を算出することが必要となるので、
更に、装置が大形となるという問題点があった。[Patent Document 1] Japanese Patent Application Laid-Open No. 5-34086
The IPF measurement method according to Japanese Patent Laid-Open No. 2 is based on the pressure gauge signal of the ice concentration measuring device, and the IP in the flow tube through which the ice slurry flows.
The present invention relates to a method of controlling the amount of water in the ice slurry so that the F concentration becomes constant. However, this method requires an additional element of an ice concentration measuring device consisting of a long container and a pressure gauge, so that the device is large. Be in shape. In addition, in order to measure the amount of cold exchange by the heat exchanger using this device, another ice concentration measuring device is installed downstream of the heat exchanger, and the mass of ice melted in the heat exchanger is calculated. Because it is necessary to
Further, there is a problem that the device becomes large.
【0009】また、氷スラリーの密度をコリオリ流量計
により測定する方法は、測定装置全体が小形で、冷熱量
を高精度で計測することが可能となる。しかし、地域冷
房では、氷スラリーを流す配管径が大口径となり、例え
ば、管径が200mm以上となったときは、装着される
コリオリ流量計は大形となり、コリオリ流量計を地域冷
房用に使用することは不適当である。Further, in the method of measuring the density of the ice slurry by the Coriolis flowmeter, the whole measuring device is small, and the amount of cold heat can be measured with high accuracy. However, in district cooling, the diameter of the pipe through which the ice slurry flows becomes large. For example, when the pipe diameter is 200 mm or more, the Coriolis flowmeter attached becomes large and the Coriolis flowmeter is used for district cooling. It is inappropriate to do so.
【0010】本発明は、上述した実情に鑑みてなされた
もので、構成が簡単、小形で、流れ抵抗がないIPF測
定装置を提供し、更にこのIPF測定装置を熱交換器の
上下流側に配設して構造が簡単小形で安価な冷熱用のカ
ロリーメータシステムを提供することを目的としてい
る。The present invention has been made in view of the above-mentioned circumstances, and provides an IPF measuring device having a simple structure, a small size, and no flow resistance. Further, the IPF measuring device is provided on the upstream and downstream sides of a heat exchanger. It is an object of the present invention to provide a calorie meter system for cooling and arranging, which is simple in structure, small in size, and inexpensive.
【0011】[0011]
【課題を解決するための手段】本発明は、上記目的を達
成するために、(1)氷スラリーを熱媒体とする熱交換
器と、該熱交換器の上流側および下流側に接続され氷ス
ラリーが流れる上流側流管および下流側流管と、該上流
側流管および下流側流管各々の管壁に、流管軸に対し所
定角度傾斜して装着された上流側および下流側超音波送
受波器と、該上流側および下流側超音波送受波器間の氷
スラリーを伝播する超音波の伝播時間から、各々上流側
流管および下流側流管を流れる氷スラリーの濃度と流量
とを算出し、前記氷スラリーの濃度と流量および予め知
られた氷の密度および潜熱に基づいて、前記熱交換器で
消費した熱量を算出する演算器とからなること、更に
は、(2)前記(1)において、前記上流側および下流
側超音波送受波器を複数対有することを特徴とするもの
である。In order to achieve the above object, the present invention provides (1) a heat exchanger using ice slurry as a heat medium, and ice connected to the upstream side and the downstream side of the heat exchanger. An upstream flow pipe and a downstream flow pipe through which the slurry flows, and upstream and downstream ultrasonic waves mounted on the respective pipe walls of the upstream flow pipe and the downstream flow pipe at a predetermined angle with respect to the flow pipe axis. From the propagation time of the ultrasonic waves propagating in the ice slurry between the transducer and the upstream and downstream ultrasonic transducers, the concentration and flow rate of the ice slurry flowing in the upstream flow pipe and the downstream flow pipe, respectively, And a calculator for calculating the amount of heat consumed by the heat exchanger based on the concentration and flow rate of the ice slurry and the ice density and latent heat known in advance, and (2) above ( In 1), the upstream and downstream ultrasonic transducers It is characterized in that it has several pairs.
【0012】[0012]
【作用】氷スラリーが流れる流管に超音波の伝播時間差
法による超音波流量計測装置を設ける。氷スラリーの温
度は一定(0℃)であり、0℃での水および氷内での音
速は既知であるから、超音波流量計測装置により検知さ
れた音速から氷濃度が求められる。氷濃度が求まると、
0℃の氷の密度は一定であるから、超音波流量計装置内
で測定された氷スラリーの流量から氷の質量流量を算出
することができる。このような超音波流量計装置を熱交
換器の上下流に取り付けることにより熱交換器で消費さ
れた冷熱量を氷の融解熱量として求められる。[Operation] An ultrasonic flow rate measuring device by an ultrasonic propagation time difference method is provided in a flow tube through which ice slurry flows. Since the temperature of the ice slurry is constant (0 ° C.), and the sound velocity in water and ice at 0 ° C. is known, the ice concentration can be obtained from the sound velocity detected by the ultrasonic flow rate measuring device. Once the ice concentration is determined,
Since the density of ice at 0 ° C. is constant, the mass flow rate of ice can be calculated from the flow rate of ice slurry measured in the ultrasonic flow meter device. By mounting such an ultrasonic flow meter device on the upstream and downstream of the heat exchanger, the amount of cold heat consumed in the heat exchanger can be obtained as the amount of heat of melting ice.
【0013】[0013]
実施例1(請求項1に対応) 図1は、本発明によるカロリーメータシステムの一実施
例を説明するためのブロック図であり、図中、1は上流
側流管、2は下流側流管、3は熱交換器、4は演算器、
5,6および7,8は超音波送受波器、9,10は氷ス
ラリーである。Embodiment 1 (corresponding to claim 1) FIG. 1 is a block diagram for explaining an embodiment of a calorimeter system according to the present invention, in which 1 is an upstream flow pipe and 2 is a downstream flow pipe. 3 is a heat exchanger, 4 is a calculator,
5, 6 and 7, 8 are ultrasonic wave transceivers, and 9, 10 are ice slurries.
【0014】図1に示したカロリーメータシステムは、
熱交換器3の上流側には、氷スラリー9が流れる断面積
Aの上流側流管1が、下流側には、氷スラリー10が流
れる断面積Aの下流側流管2が各々接続され、上流側流
管1および下流側流管2には、流管軸O−Oに対して角
度φをもって取り付けられた対をなす超音波送受波器
5,6および7,8が間隔Lを隔てて装着されている。
超音波送受波器5,6および7,8は演算器4に接続さ
れている。The calorimeter system shown in FIG.
The upstream flow pipe 1 having a cross-sectional area A through which the ice slurry 9 flows is connected to the upstream side of the heat exchanger 3, and the downstream flow pipe 2 having a cross-sectional area A through which the ice slurry 10 flows is connected to the downstream side. In the upstream flow pipe 1 and the downstream flow pipe 2, a pair of ultrasonic wave transmitters / receivers 5, 6 and 7, 8 attached at an angle φ with respect to the flow pipe axis OO are separated by a distance L. It is installed.
The ultrasonic wave transmitters / receivers 5, 6 and 7, 8 are connected to the arithmetic unit 4.
【0015】次に、上述した構成のカロリーメータシス
テムによるカロリー測定の原理を説明する。氷スラリー
9が流れる上流側流管1と、上流側測定管1に装着され
た超音波送受波器5,6は、伝播時間差法による上流側
超音波流量計が構成されている。同様に、氷スラリー1
0が流れる下流側流管2と、下流側測定管2に装着され
た超音波送受波器とは伝播時間差法による下流側超音波
流量計が構成されている。Next, the principle of calorie measurement by the calorimeter system having the above configuration will be described. The upstream flow tube 1 through which the ice slurry 9 flows and the ultrasonic wave transmitters / receivers 5 and 6 mounted on the upstream measurement tube 1 constitute an upstream ultrasonic flow meter by the propagation time difference method. Similarly, ice slurry 1
The downstream flow pipe 2 in which 0 flows and the ultrasonic wave transmitter / receiver mounted on the downstream measurement pipe 2 constitute a downstream ultrasonic flow meter by the propagation time difference method.
【0016】演算器4には、各々、対をなす超音波送受
波器5,6に超音波を送受波し、上流側流管1内を流れ
る氷スラリー9中を伝播する超音波の音速C1および体
積流量Q1を計測し、更に、超音波送受波器7,8に超
音波を送受波し、下流側流管2内を流れる氷スラリー1
0中を伝播する超音波の音速C2および体積流量Q2を計
測する流速流量計測手段および以下に述べる冷熱量演算
手段を有している。In the computing unit 4, ultrasonic waves are transmitted to and received from the ultrasonic wave transmitters / receivers 5 and 6 forming a pair, and the sound velocity C of ultrasonic waves propagating in the ice slurry 9 flowing in the upstream flow tube 1 is transmitted. 1 and the volumetric flow rate Q 1 are measured, and ultrasonic waves are further transmitted / received to / from the ultrasonic wave transmitters / receivers 7 and 8, and the ice slurry 1 flowing in the downstream flow pipe 2
It has a flow velocity flow rate measuring means for measuring the sound velocity C 2 and volume flow rate Q 2 of the ultrasonic waves propagating in the zero and a cold heat amount calculating means described below.
【0017】伝播時間差法による伝播時間差の測定は周
知である。例えば、上流側流管1についてみると、氷ス
ラリー9の流速をV、氷スラリー9中の音速をC1とす
ると流速Vと順方向の超音波送受波器5→6間の超音波
伝播時間T5.6および流速Vと逆方向の超音波送受波器
6→5の超音波伝播時間T6.5は次式で与えられる。Measuring propagation time differences by the propagation time difference method is well known. For example, looking at the upstream flow tube 1, assuming that the flow velocity of the ice slurry 9 is V and the sound velocity in the ice slurry 9 is C 1 , the flow velocity V and the ultrasonic propagation time between the ultrasonic transducers 5 → 6 in the forward direction. T 5. 6 and the flow velocity V and the opposite direction of the ultrasonic wave propagation time of the ultrasonic transducer 6 → 5 T 6. 5 is given by the following equation.
【0018】[0018]
【数1】 [Equation 1]
【0019】次に、演算器4の動作を説明する。 (I)上流側流管1を流れる氷スラリー9の氷のすべて
が熱交換器3で融解せず、下流側流管2に氷スラリー1
0の流れを形成する場合。氷スラリー9中の氷濃度をx
1%、氷スラリー10中の氷濃度をx2%とすると、上流
側流管1内の音速C1、下流側流管2内の音速C2、 0℃における氷内の音速Ci(=3,230m/s)…既
知 0℃における水内の音速Cw(=1,402m/s)…既
知 とすると、Next, the operation of the arithmetic unit 4 will be described. (I) Not all of the ice in the ice slurry 9 flowing through the upstream flow tube 1 is melted in the heat exchanger 3, and the ice slurry 1 flows through the downstream flow tube 2
When forming a stream of zero. X the ice concentration in the ice slurry 9
1% when the ice concentration in the ice slurry 10 to 2% x, the speed of sound upstream flow pipe acoustic velocity C 1 in 1, the ice in the sound velocity C 2, 0 ° C. the downstream flow pipe 2 C i (= 3,230 m / s) ... known Sound velocity in water at 0 ° C. C w (= 1,402 m / s) ...
【0020】[0020]
【数2】 [Equation 2]
【0021】(3)式により求めた上流側流管1内の流
速をV1とし、上流側流管1および下流側流管2の断面
積をAとすると、体積流量Q1は Q1=AV1 …(9) 同様に、下流側流管2内の流速をV2とすると、体積流
量Q2は Q2=AV2 …(10) である。0℃における氷の密度を917kg/m3とし
たときの上流側流管1内を流れる氷の質量流量QMi1お
よび下流側流管2内を流れる氷の質量流量QMi2は次式
で求められる。Assuming that the flow velocity in the upstream flow tube 1 obtained by the equation (3) is V 1 and the cross-sectional area of the upstream flow tube 1 and the downstream flow tube 2 is A, the volume flow rate Q 1 is Q 1 = AV 1 (9) Similarly, when the flow velocity in the downstream flow pipe 2 is V 2 , the volumetric flow rate Q 2 is Q 2 = AV 2 (10). When the ice density at 0 ° C. is 917 kg / m 3 , the mass flow rate Q Mi1 of ice flowing in the upstream flow tube 1 and the mass flow rate Q Mi2 of ice flowing in the downstream flow tube 2 are calculated by the following equations. .
【0022】[0022]
【数3】 (Equation 3)
【0023】(11),(12)式より、熱交換器3で
消費された時間当りの冷熱量E1は、氷の潜熱を79.7
kcal/kgとして、 E1=(QMi1−QMi2)×79.7=731(Q1x1−Q2x2)(kcal/h)…(13) により、演算器4により求めることができる。 (II)上流側流管1を流れる氷スラリー9の氷のすべて
が熱交換器3で融解し、下流側流量2にT2℃(0℃<
T2<30℃)の水として流れる場合。T2℃の水の温度
C2は C2=1.402+aT2−bT2 2(m/s)(a,bに定数)…(14) Q2=AC2 …(15) であらわされる。従って、熱交換器3で消費される時間
当りの冷熱量E2は、水の比熱を4.186kcal/kgとす
ると、(13),(14),(15)より、 E2=731Q1x1+4.186Q2T2(kcal/h) …(16) であらわされ、(16)式に従って演算器4で冷熱量が
演算される。From equations (11) and (12), the amount of cold heat E 1 consumed in the heat exchanger 3 per hour is 79.7 times the latent heat of ice.
As kcal / kg, E 1 = (Q Mi1 −Q Mi2 ) × 79.7 = 731 (Q 1 x 1 −Q 2 x 2 ) (kcal / h) (13) it can. (II) All the ice in the ice slurry 9 flowing through the upstream flow tube 1 is melted in the heat exchanger 3, and the downstream flow rate 2 becomes T 2 ° C (0 ° C <0 ° C
When flowing as water with T 2 <30 ° C. The temperature C 2 of water at T 2 ° C is represented by C 2 = 1.402 + aT 2 −bT 2 2 (m / s) (a and b are constants) (14) Q 2 = AC 2 (15). Therefore, when the specific heat of water is 4.186 kcal / kg, the amount of cold heat E 2 consumed in the heat exchanger 3 is E 2 = 731Q 1 x from (13), (14), (15) It is represented by 1 + 4.186Q 2 T 2 (kcal / h) (16), and the calorific value is calculated by the calculator 4 according to the equation (16).
【0024】実施例1のカロリーメータシステムによれ
ば、氷スラリー9が流れる上流側流管1および氷スラリ
ー10が流れる下流側流管2は、共に超音波送受波器
5,6および7,8を有する簡単な構造であり、しか
も、超音波送受波器5,6および7,8は上、下流側流
管1,2内に突出することがないので流管内には氷スラ
リーの流れに対して障害となるものはなく、簡単で信頼
性の高い、特に大口径、流管用として好適なカロリーメ
ータを提供することができる。According to the calorimeter system of the first embodiment, the upstream flow pipe 1 through which the ice slurry 9 flows and the downstream flow pipe 2 through which the ice slurry 10 flows are both ultrasonic transducers 5, 6 and 7, 8. In addition, the ultrasonic wave transmitters / receivers 5, 6 and 7, 8 do not project into the upper and lower flow pipes 1 and 2, so that the flow of ice slurry against It is possible to provide a calorimeter which is simple and highly reliable, and which is particularly suitable for a large diameter and a flow tube.
【0025】実施例2(請求項2に対応) 上流側流管1が大口径の場合、相対的に流管内の流体、
摩擦抵抗が小さいので、上流側流管1内を流れる氷スラ
リー9の流れは、上流側流管1の上流側配管形状の影響
を受け易く、必ずしも氷濃度は均一でない。超音波によ
る流速計測は、流管内の超音波送受波器5,6間を結ぶ
線上における超音波の伝播時間に基づいて行われるもの
であるから、上流側流管1内の流速分布が流管軸に関し
非対称であったり、旋回成分があると流速計測精度が低
下する。下流側流管2の場合は上流側は熱交換器3が設
けられているので流速分布が軸非対称になり易く、高精
度の流速計測は困難である。また、氷濃度が均一でない
場合は、一組だけの送受波器による音速計測だけでは氷
濃度の算出結果が必ずしも平均値をあらわすことにはな
らない。Embodiment 2 (corresponding to claim 2) When the upstream flow pipe 1 has a large diameter, the fluid in the flow pipe is relatively large,
Since the frictional resistance is small, the flow of the ice slurry 9 flowing in the upstream flow pipe 1 is easily affected by the shape of the upstream pipe of the upstream flow pipe 1, and the ice concentration is not always uniform. Since the flow velocity measurement by ultrasonic waves is performed based on the propagation time of the ultrasonic waves on the line connecting the ultrasonic transducers 5 and 6 in the flow tube, the flow velocity distribution in the upstream flow tube 1 is If the axis is asymmetrical or there is a swirl component, the flow velocity measurement accuracy will decrease. In the case of the downstream flow pipe 2, since the heat exchanger 3 is provided on the upstream side, the flow velocity distribution is likely to be axially asymmetric, and it is difficult to measure the flow velocity with high accuracy. Further, when the ice concentration is not uniform, the calculation result of the ice concentration does not always show the average value only by the sound velocity measurement by only one set of the transducers.
【0026】実施例2は、流速計測において流速分布の
影響を受けないように、また、氷濃度が均一でない状態
でも平均氷濃度を算出するために流管に複数対の超音波
送受波器を装着して、複数の流速計測値および氷濃度値
を平均化し、精度を高めるものである。In the second embodiment, a plurality of pairs of ultrasonic transducers are provided in the flow tube so as not to be influenced by the flow velocity distribution in the flow velocity measurement and to calculate the average ice concentration even when the ice concentration is not uniform. It is attached to average a plurality of flow velocity measurement values and ice concentration values to improve accuracy.
【0027】図2は、実施例2を説明するための図1に
示した矢視A−A線断面図であり、図中、11,12お
よび13,14は各々対をなす超音波送受波器であり、
図1と同様の作用をする部分には、図1と同じ参照番号
を付してある。FIG. 2 is a sectional view taken along the line A--A shown in FIG. 1 for explaining the second embodiment. In the figure, 11, 12 and 13, 14 are ultrasonic wave transmitting / receiving pairs. A vessel,
The same reference numerals as those in FIG. 1 are attached to the portions having the same functions as those in FIG.
【0028】図2に示した超音波送受波器11,12お
よび13,14は、図1に示した超音波送受波器5,6
に対して上流側流管1の断面を等分割するように各々流
管軸に対し、超音波送受波器5,6と同様に角度φ傾斜
して装着されたもので、図示の場合、各々60°の角度
をもっている。The ultrasonic wave transmitters / receivers 11, 12 and 13, 14 shown in FIG. 2 are the ultrasonic wave transmitters / receivers 5, 6 shown in FIG.
In contrast to the ultrasonic wave transmitters / receivers 5 and 6, the upstream flow tube 1 and the ultrasonic wave transducers 5 and 6 are mounted so as to equally divide the cross section of the upstream flow tube 1. It has an angle of 60 °.
【0029】上流側流管1内を流れる氷スラリー9の流
速は、超音波送受波器5,6と11,12および13,
14の上記(4)式による時間差法に基づいて計測され
た流速を平均して求められる。これらの演算は演算器4
によって行なわれる。同様に下流側流管2についても複
数対の超音波送受波器が装着される。また、氷濃度の算
出においても、複数対で計測された氷濃度を平均するこ
とによって平均化された氷濃度が求められる。The flow velocity of the ice slurry 9 flowing in the upstream flow pipe 1 is such that the ultrasonic wave transmitters / receivers 5, 6 and 11, 12 and 13,
It is calculated by averaging the flow velocities measured based on the time difference method according to the above equation (4) of 14. These operations are performed by the calculator 4
Done by Similarly, a plurality of pairs of ultrasonic transducers are attached to the downstream flow tube 2. Also in the calculation of the ice concentration, the averaged ice concentration is obtained by averaging the ice concentrations measured in a plurality of pairs.
【0030】実施例2によると、流管内の氷スラリーの
流れが非対称流れであっても高精度の流速計測および氷
濃度計測が可能となる。従って、カロリー演算精度も向
上する。According to the second embodiment, it is possible to measure the flow velocity and the ice concentration with high accuracy even if the flow of the ice slurry in the flow tube is an asymmetric flow. Therefore, the calorie calculation accuracy is also improved.
【0031】[0031]
【発明の効果】以上の説明から明らかなように、本発明
によると、以下のような効果がある。 (1)請求項1に対応する効果:氷スラリー中の氷の濃
度を構造が簡単な超音波流量計で求め、熱交流器で消費
された熱量を熱交換器で融解した氷の質量に相当する熱
量として算出するものであるから、一組の簡単な超音波
流量計を有するだけである。従って、特に大口径流管に
好適な構造が簡単で安価なカロリーメータシステムとす
ることができる。 (2)請求項2に対応する効果:氷スラリーが流れる流
管に、流管断面を複数に分割するように複数対の超音波
送受波器を装着し、各々の超音波送受波器で計測された
流速および氷濃度を平均するので、流速分布影響を受け
ない流速を計測し、且つ、氷濃度が均一でない場合でも
平均氷濃度を計測することが可能となる。As is apparent from the above description, the present invention has the following effects. (1) Effect corresponding to claim 1: The concentration of ice in the ice slurry is determined by an ultrasonic flow meter having a simple structure, and the amount of heat consumed by the heat exchanger corresponds to the mass of ice melted by the heat exchanger. Since it is calculated as the amount of heat to be generated, it has only one set of simple ultrasonic flowmeters. Therefore, a calorimeter system with a simple structure and a low cost can be provided, which is particularly suitable for a large-diameter flow pipe. (2) Effect corresponding to claim 2: A plurality of pairs of ultrasonic wave transmitters / receivers are attached to the flow tube through which the ice slurry flows so as to divide the flow tube cross section into a plurality of sections, and measurement is performed with each ultrasonic wave transmitter / receiver. Since the calculated flow velocity and ice concentration are averaged, it is possible to measure the flow velocity that is not affected by the flow velocity distribution, and to measure the average ice concentration even when the ice concentration is not uniform.
【図1】 本発明によるカロリーメータシステムの一実
施例を説明するためのブロック図である。FIG. 1 is a block diagram illustrating an embodiment of a calorimeter system according to the present invention.
【図2】 実施例2を説明するための図1に示した矢視
A−A線断面図である。FIG. 2 is a sectional view taken along the line AA of FIG. 1 for explaining a second embodiment.
1…上流側流管、2…下流側流管、3…熱交換器、4…
演算器、5,6および7,8…超音波送受波器、9,1
0…氷スラリー、11,12および13,14…各々対
をなす超音波送受波器。DESCRIPTION OF SYMBOLS 1 ... Upstream flow pipe, 2 ... Downstream flow pipe, 3 ... Heat exchanger, 4 ...
Arithmetic unit, 5, 6 and 7, 8 ... Ultrasonic wave transceiver, 9, 1
0 ... Ice slurry, 11, 12 and 13, 14 ... Each pair of ultrasonic transducers.
Claims (2)
該熱交換器の上流側および下流側に接続され氷スラリー
が流れる上流側流管および下流側流管と、該上流側流管
および下流側流管各々の管壁に、流管軸に対し所定角度
傾斜して装着された上流側および下流側超音波送受波器
と、該上流側および下流側超音波送受波器間の氷スラリ
ーを伝播する超音波の伝播時間から、各々上流側流管お
よび下流側流管を流れる氷スラリーの濃度と流量とを算
出し、前記氷スラリーの濃度と流量および予め知られた
氷の密度および潜熱に基づいて、前記熱交換器で消費し
た熱量を算出する演算器とからなることを特徴とするカ
ロリーメータシステム。1. A heat exchanger using ice slurry as a heat medium,
The upstream flow pipe and the downstream flow pipe connected to the upstream side and the downstream side of the heat exchanger, through which the ice slurry flows, and the pipe wall of each of the upstream flow pipe and the downstream flow pipe have a predetermined size with respect to the flow pipe axis. From the upstream and downstream ultrasonic wave transmitters / receivers mounted at an angle and the propagation time of ultrasonic waves propagating in the ice slurry between the upstream and downstream ultrasonic wave transmitters / receivers, the upstream flow tube and Calculation of calculating the concentration and flow rate of the ice slurry flowing through the downstream flow tube, and calculating the amount of heat consumed by the heat exchanger based on the concentration and flow rate of the ice slurry and the previously known ice density and latent heat. A calorimeter system characterized by consisting of a vessel.
を複数対有することを特徴とする請求項1に記載のカロ
リーメータシステム。2. The calorimeter system according to claim 1, wherein a plurality of pairs of the upstream and downstream ultrasonic wave transmitters / receivers are provided.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6184638A JPH0850063A (en) | 1994-08-05 | 1994-08-05 | Calorimeter system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6184638A JPH0850063A (en) | 1994-08-05 | 1994-08-05 | Calorimeter system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0850063A true JPH0850063A (en) | 1996-02-20 |
Family
ID=16156739
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6184638A Pending JPH0850063A (en) | 1994-08-05 | 1994-08-05 | Calorimeter system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0850063A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102839494A (en) * | 2012-10-08 | 2012-12-26 | 福建省晋江市佶龙机械工业有限公司 | Warp knitting machine with hairness removal function |
DE102011087215A1 (en) * | 2011-11-28 | 2013-05-29 | Endress + Hauser Flowtec Ag | Method for measuring heat quantity with an ultrasonic flowmeter |
-
1994
- 1994-08-05 JP JP6184638A patent/JPH0850063A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011087215A1 (en) * | 2011-11-28 | 2013-05-29 | Endress + Hauser Flowtec Ag | Method for measuring heat quantity with an ultrasonic flowmeter |
CN102839494A (en) * | 2012-10-08 | 2012-12-26 | 福建省晋江市佶龙机械工业有限公司 | Warp knitting machine with hairness removal function |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2702666C (en) | A method and system for detecting deposit buildup within an ultrasonic flow meter | |
US9689735B2 (en) | Vibratory flowmeter friction compensation | |
JPH07218307A (en) | Method and device for measuring ultrasonic flow rate | |
US7831400B2 (en) | Diagnostic apparatus and methods for a coriolis flow meter | |
US4300400A (en) | Acoustic flowmeter with Reynolds number compensation | |
US3807228A (en) | Ultrasonic velocity and mass flowmeter | |
US10330509B2 (en) | Method and arrangement for an ultrasound clamp-on flow measurement and circuit arrangement for control of an ultrasound clamp-on flow measurement | |
JP2895704B2 (en) | Ultrasonic flow meter | |
US20090019945A1 (en) | Ultrasonic Flowmaster | |
US4432243A (en) | Flow calculator with velocity curve fitting circuit means | |
JP2002520583A (en) | Multi-code flow meter | |
JP2006078362A (en) | Coaxial-type doppler ultrasonic current meter | |
JPH0850063A (en) | Calorimeter system | |
RU2396518C2 (en) | Method and device for acoustic measurement of gas flow rate | |
JP2008014834A (en) | Ultrasonic flowmeter | |
CN212083156U (en) | Content measuring device for gas-liquid two-phase flow | |
JP3103264B2 (en) | Ultrasonic flow meter | |
KR100989896B1 (en) | Non-intrusive ultrasonic flowmeter | |
JPH07139982A (en) | Ultrasonic flowmeter | |
JPH01134213A (en) | Flowmeter | |
JPS5834765B2 (en) | Karman vortex current meter | |
JPH063384B2 (en) | Ultrasonic flow meter | |
JPS6040916A (en) | Correcting method of temperature-change error of ultrasonic wave flow speed and flow rate meter | |
JPH07260711A (en) | Measuring device of concentration of ice in ice slurry and calorimeter | |
JPH0324607B2 (en) |