JPH0841511A - Control of blast furnace and device therefor - Google Patents
Control of blast furnace and device thereforInfo
- Publication number
- JPH0841511A JPH0841511A JP20144194A JP20144194A JPH0841511A JP H0841511 A JPH0841511 A JP H0841511A JP 20144194 A JP20144194 A JP 20144194A JP 20144194 A JP20144194 A JP 20144194A JP H0841511 A JPH0841511 A JP H0841511A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- temperature
- center side
- center
- blast
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Manufacture Of Iron (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、炉内状況に応じて炉半
径方向における相対O(鉄源重量)/C(コークス重
量)を調整することにより、還元効率が向上でき、しか
も高炉状況の安定性が図れる高炉の制御方法およびその
装置に関する。BACKGROUND OF THE INVENTION The present invention can improve the reduction efficiency by adjusting the relative O (iron source weight) / C (coke weight) in the furnace radial direction according to the situation in the furnace, and can improve the reduction efficiency in the blast furnace situation. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blast furnace control method and apparatus that can achieve stability.
【0002】[0002]
【従来の技術】高炉においては、鉄原料とコークスとが
交互に装入され、炉内を上昇する高温の還元ガスにより
酸化鉄の加熱還元が行なわれている。生成された鉄は溶
融して炉低部に滴下し、炉外へ排出される。従って、装
入された鉄原料などの装入物は、還元反応と溶融の進行
に伴って徐々に降下し、その分だけ新しい装入物が炉頂
部より装入される。このような炉内装入物の降下状況や
新規装入状況は装入物の層厚分布に影響するが、層厚分
布と高炉操業状況との間には一定の関係があり、炉内の
ガス流分布や融着帯の形状にも影響を与えている。従っ
て、装入物の層厚分布状況を知ることは、炉内ガス流の
状況や融着帯の形状を決定する要素、引いては還元効率
を決定する要素でもある新規装入物の炉半径方向におけ
る装入落下位置制御を適切にするためにも重要なことで
あり、これにより高い還元効率で、安定した高炉操業の
実現を図ることが可能になる。2. Description of the Related Art In a blast furnace, iron raw materials and coke are alternately charged and iron oxide is heated and reduced by a high-temperature reducing gas rising in the furnace. The generated iron is melted, dropped into the lower part of the furnace, and discharged outside the furnace. Therefore, the charged material such as the iron raw material is gradually lowered with the progress of the reduction reaction and the melting, and a new charged material is charged from the top of the furnace accordingly. The falling condition of the furnace interior charge and the new charging condition affect the layer thickness distribution of the charge, but there is a certain relationship between the layer thickness distribution and the blast furnace operating condition, and the gas inside the furnace It also affects the flow distribution and the shape of the cohesive zone. Therefore, knowing the layer thickness distribution of the charge is a factor that determines the condition of the gas flow in the furnace and the shape of the cohesive zone, and in turn the factor that determines the reduction efficiency. This is also important for proper control of the charging / falling position in the direction, and this makes it possible to achieve stable blast furnace operation with high reduction efficiency.
【0003】ところで、従来におけるこの装入物の層厚
分布調整制御は、ベル式高炉の層厚分布手段としてのア
ーマープレートの位置調整や、ベルレス式高炉の旋回シ
ュートの旋回角度調整などにより行なわれていたが、例
えばベル式高炉のアーマープレートの調整操作と装入物
の層厚分布状況との関係はモデル実験的に知られている
だけで、実際の高炉操業における層厚分布状況は、これ
と異なる。従って、実際の操業時における装入物の層厚
分布状況の正確な把握は、装入制御の高精度化を図るた
めに必要なことであった。そこで、この装入物の層厚分
布状態を検出する方法として、例えば特開昭58−22
313号公報に記載されているように、高炉の炉頂部に
設けられた赤外線テレビカメラにより、炉内に堆積した
装入物の表面温度の温度分布パターンを測定し、その測
定されたパターンを高温域と低温域とに区分し、高低域
の面積比率の変化を検出する方法が知られている。Conventionally, the layer thickness distribution adjustment control of this charge is performed by adjusting the position of the armor plate as the layer thickness distribution means of the bell-type blast furnace and adjusting the turning angle of the turning chute of the bellless-type blast furnace. However, for example, the relationship between the adjustment operation of the armor plate of the bell-type blast furnace and the layer thickness distribution state of the charge is only known by model experiments, and the layer thickness distribution state in the actual blast furnace operation is Different from Therefore, accurate understanding of the layer thickness distribution of the charge during the actual operation was necessary in order to improve the accuracy of the charge control. Therefore, as a method for detecting the layer thickness distribution state of this charge, for example, Japanese Patent Application Laid-Open No. 58-22.
As described in Japanese Patent No. 313, an infrared television camera provided at the top of a blast furnace measures a temperature distribution pattern of the surface temperature of a charge deposited in the furnace, and measures the measured pattern at a high temperature. There is known a method of detecting a change in the area ratio of the high and low areas by dividing the area into a low temperature area and a low temperature area.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、このよ
うに赤外線テレビカメラを用いて装入物の温度分布パタ
ーンを測定し、それに基づいて装入物分布調整を行なっ
ても、あくまで、炉頂側から得られたデータに基づいた
装入物の分布調整であるので、その時々の炉内状況に応
じて変化するガス流の状況や融着帯の形状に対応できる
調整とはいえず、還元率が変動したりして、高炉操業の
安定性を維持するのに充分なものではなかった。However, even if the temperature distribution pattern of the charge is measured by using the infrared television camera and the charge distribution is adjusted based on the temperature distribution pattern as described above, the temperature distribution pattern from the top side of the furnace is the limit. Since it is the distribution adjustment of the charge based on the obtained data, it cannot be said that the adjustment is compatible with the situation of the gas flow and the shape of the cohesive zone that change depending on the situation inside the furnace at that time, and the reduction rate is Due to fluctuations, it was not enough to maintain the stability of blast furnace operation.
【0005】本発明はかかる事情に鑑みてなされたもの
で、炉内状況に応じて装入物の鉱石の落下位置を調整す
ることにより、還元効率が向上でき、しかも高炉操業の
安定性が図れる高炉の制御方法およびその装置を提供す
ることを目的とする。The present invention has been made in view of the above circumstances. By adjusting the dropping position of the ore of the charge according to the situation in the furnace, the reduction efficiency can be improved and the operation of the blast furnace can be stabilized. An object of the present invention is to provide a blast furnace control method and apparatus.
【0006】[0006]
【課題を解決するための手段】前記目的に沿う請求項1
記載の高炉の制御方法は、高炉炉腹部位置における炉芯
表面より炉中心側および炉壁側における炉内ガス温度を
求め、該温度が炉内中心側≦炉壁側となった際、炉頂か
ら装入する装入物の炉径方向の相対O/Cを調整して、
前記炉中心側温度>炉壁側温度にするように構成されて
いる。ここでいう相対O/Cとは、サウンジング装置な
どの測定手段により測定された局部的なO/Cと、全装
入物のO/Cとの比である。A method according to the above-mentioned object.
The control method of the blast furnace described is to determine the furnace gas temperature on the furnace center side and the furnace wall side from the furnace core surface at the blast furnace furnace belly position, and when the temperature is the furnace center side ≦ furnace wall side, the furnace top Adjust the relative O / C in the furnace radial direction of the charge charged from
The temperature on the furnace center side is higher than the temperature on the furnace wall side. The relative O / C as used herein is the ratio of the local O / C measured by a measuring means such as a sounding device to the O / C of all the charges.
【0007】また、請求項2記載の高炉の制御方法は、
高炉の中心線上におけるシャフト下部から炉腹部上部の
間にある高炉中心部と羽口先端とを直線で結ぶ線上を炉
芯表面位置とすると共に、炉外から先端が前記直線より
炉内側に挿出入可能にした温度測定手段を設け、該温度
測定手段で前記直線より炉中心側および炉壁側における
炉内ガス温度を求め、該温度が炉内中心側≦炉壁側とな
った際、炉頂から装入する装入物の炉径方向の相対O/
Cを調整して、前記平均温度が炉中心側>炉壁側にする
ように構成されている。なお、炉芯表面の位置はこのよ
うに推定してもよいが、挿入する温度測定手段を炉内に
挿入する際、その挿入推力を測定し、その測定推力値よ
り推定してもよい。炉壁近傍の相対O/Cの調整は、ベ
ル式高炉ではアーマープレートの調整、ベルレス高炉で
は旋回シュートの旋回角度の調整で可能となる。The control method of the blast furnace according to claim 2 is
The line that connects the center of the blast furnace and the tip of the tuyere between the lower part of the shaft and the upper part of the furnace belly on the center line of the blast furnace is defined as the furnace core surface position, and the tip is inserted into and out of the furnace from outside the line. If possible temperature measuring means is provided, the temperature of the gas in the furnace on the furnace center side and the furnace wall side from the straight line is obtained by the temperature measuring means, and when the temperature is in the furnace center side ≦ furnace wall side, the furnace top Relative O / in the furnace radial direction of the charge charged from
By adjusting C, the average temperature is set so that the furnace center side> the furnace wall side. The position of the surface of the furnace core may be estimated in this way, but the insertion thrust force may be measured when inserting the temperature measuring means to be inserted into the furnace, and estimated from the measured thrust value. The relative O / C near the furnace wall can be adjusted by adjusting the armor plate in the bell-type blast furnace and adjusting the turning angle of the turning chute in the bellless blast furnace.
【0008】さらに、請求項3記載の高炉の制御装置
は、高炉の炉中心側および炉壁側の炉内ガス温度を測定
する温度測定手段と、該温度測定手段により測定した炉
内ガス温度から前記炉中心側の平均温度と前記炉壁側の
平均温度とを求め、これらの平均温度が炉内中心側≦炉
壁側になったことを判定すると、前記炉壁近傍の相対O
/Cを低減して、前記炉中心側平均温度>炉壁側平均温
度にするように炉頂から装入する装入物の炉径方向にお
ける層厚分布調整手段の調整駆動手段に操作指令信号を
出力する制御手段とを備えるように構成されている。Further, according to a third aspect of the present invention, there is provided a control device for a blast furnace, comprising: temperature measuring means for measuring the temperature of the gas inside the furnace on the side of the furnace center and the wall of the furnace, and the temperature of the gas inside the furnace measured by the temperature measuring means. When the average temperature on the furnace center side and the average temperature on the furnace wall side are obtained and it is determined that these average temperatures are within the furnace center side ≦ the furnace wall side, the relative O near the furnace wall is determined.
/ C to reduce the average temperature on the furnace center side> the average temperature on the furnace wall side so that an operation command signal is sent to the adjustment drive means of the layer thickness distribution adjusting means in the furnace radial direction of the charge material charged from the furnace top. And a control means for outputting
【0009】[0009]
【作用】本発明者などは、融着帯の形状、炉心の通気
性、炉内ガスの関係について調査、検討した結果、先ず
炉芯の表面は、図2に示すように、高炉の中心線上にお
けるシャフト下部から炉腹部上部の間aの任意点である
高炉中心部Xと、羽口先端Yとを結んだ直線で現される
ことが判明した。この直線XYより炉中心側の点Aと炉
壁側の点Cとを結んだ線ACと、直線XYとの交点を点
Bとする。高炉の中心線上におけるシャフト下部から炉
腹部上部の間aにおける高炉中心部Xの高さ位置は各高
炉で炉芯表面位置が多少異なることからこれに合わせて
決定する。また、例えば炉壁から挿入された温度測定手
段の一例である温度検出部を挿入し、操業時におけるA
B間の複数点の平均温度Tabと、BC間の複数点の平
均温度Tbcとを実測したところ、安定した操業を行
なっている場合には、Tab>Tbcとなり、不安定
な操業を行なっている場合には、Tab<Tbcとなる
ことが判明した。すなわち、は炉芯の通気性が良好で
多量の炉内ガスが通過し、融着帯の形状が逆V字形にな
って、炉内ガス流れは周辺流となっている。一方、は
炉芯の通気性が悪くて通過する炉内ガス流量は少なく、
融着帯の形状が逆U字形となって、炉内ガス流は中心流
となっている。The present inventors investigated and examined the relationship between the shape of the cohesive zone, the air permeability of the core, and the gas inside the core. As a result, the surface of the core was first found to be on the center line of the blast furnace as shown in FIG. It was found that it is represented by a straight line connecting the blast furnace central portion X, which is an arbitrary point a between the lower portion of the shaft to the upper portion of the furnace belly, and the tuyere tip Y. A point B is an intersection of a line AC connecting a point A on the furnace center side with a point C on the furnace wall side of the straight line XY and a straight line XY. The height position of the blast furnace central portion X between the lower part of the shaft and the upper part of the furnace abdomen on the center line of the blast furnace is determined according to the fact that the core surface position of each blast furnace is slightly different. In addition, for example, a temperature detecting unit, which is an example of temperature measuring means inserted from the furnace wall, is inserted to
When the average temperature Tab at a plurality of points between B and the average temperature Tbc at a plurality of points between BC are actually measured, when stable operation is performed, Tab> Tbc, and unstable operation is performed. In this case, it was found that Tab <Tbc. That is, the gas permeability of the furnace core is good, a large amount of gas in the furnace passes, the shape of the cohesive zone becomes an inverted V shape, and the gas flow in the furnace becomes a peripheral flow. On the other hand, is because the air permeability of the furnace core is poor and the gas flow rate inside the furnace is small,
The shape of the cohesive zone is an inverted U shape, and the gas flow in the furnace is the central flow.
【0010】また、図3のBC間の平均温度−AB間の
平均温度(以下、BC−AB温度という)と、炉頂部の
炉壁近傍の相対O/Cとの関係を示すグラフから、両者
の関係はほぼ比例関係であることがわかり、相対O/C
が増減すれば、BC−AB温度も増減する。そこで、炉
中心側(XY線より炉中心側)および炉壁側(XY線よ
り炉壁側)の温度を測定し、炉中心側の平均温度と炉壁
側の平均温度との関係が、炉中心側≦炉壁側となった場
合に、例えば炉頂部から装入される装入物の全体量のO
/Cを一定にした条件の基でアーマープレートを調整
し、炉壁近傍のO/Cを低減させる、つまり炉中心側に
装入される鉱石量を増大させることにより、BC−AB
温度を低下させて、炉中心側温度>炉壁側温度とする装
入物分布調整を行なう。すなわち、炉中心側に鉱石を多
量に装入して炉内ガス流の中心流を抑制することによ
り、融着帯を逆V字形にして炉芯を流れる炉内ガス量を
増大させて、BC−AB温度を適正化する。この結果、
図4に示すように通気抵抗が低下して還元効率が向上す
ると共に出銑量が増加し、しかも高炉の操業安定性の向
上が図れる。From the graph of FIG. 3 showing the relationship between the average temperature between BC and the average temperature between AB (hereinafter referred to as BC-AB temperature) and the relative O / C near the furnace wall at the top of the furnace, It can be seen that the relationship between
If increases or decreases, the BC-AB temperature also increases or decreases. Therefore, the temperatures on the furnace center side (furnace center side from the XY line) and the furnace wall side (furnace wall side from the XY line) are measured, and the relationship between the mean temperature on the furnace center side and the mean temperature on the furnace wall side is When the center side ≦ furnace wall side, for example, O of the total amount of the charging material charged from the furnace top
By adjusting the armor plate under the condition that / C is constant, the O / C in the vicinity of the furnace wall is reduced, that is, the amount of ore charged to the center side of the furnace is increased, whereby BC-AB
The temperature is lowered to adjust the charge distribution so that the temperature of the furnace center side> the temperature of the furnace wall side. That is, by charging a large amount of ore into the center of the furnace to suppress the central flow of the gas flow in the furnace, the fusion zone is formed into an inverted V shape to increase the amount of gas in the furnace flowing through the core, and BC -Adjust the AB temperature. As a result,
As shown in FIG. 4, the ventilation resistance is reduced, the reduction efficiency is improved, the amount of tapping metal is increased, and the operation stability of the blast furnace is improved.
【0011】[0011]
【実施例】続いて、本発明を具体化した実施例につき説
明し、本発明の理解に供するが、本発明はこれらの実施
例に限定されないのは言うまでもない。EXAMPLES Next, examples embodying the present invention will be described to provide an understanding of the present invention, but it goes without saying that the present invention is not limited to these examples.
【0012】実施例1〜3 内容積5245m3 、羽口先端から炉中心線までの長さ
が6mのベル式高炉10を用い、図1に示すように、高
炉の中心線上で、羽口11から7mの高さ位置を高炉中
心部Xとし、この高炉中心部Xと羽口先端Yとを直線で
結ぶ。羽口11より5mの高さ位置から斜め下方へ25
度の角度で温度測定手段の温度検出部12を挿入し、そ
の挿入される温度検出部12の先端(検出端)が、直線
XYより炉中心側へ1mの位置を点A、直線XYと交わ
った位置を点B、炉壁側へ1m戻した位置を点Cとし、
このときの炉内温度の測定位置は、点A、B、Cと各点
間の中央の5箇所である。温度検出部12からの検出信
号は制御手段13へ送られ、制御手段13ではその検出
信号に基づいて、高炉10の炉頂部上方に配置された例
えばベル式高炉のアーマープレート14の調整駆動手段
15により炉中心側へ装入される鉱石の比率を大きくし
て炉壁近傍の相対O/Cを低下する操作指令が出され、
これによりアーマープレート14が炉内側へ移動して炉
中心側および炉壁側の平均温度が、炉中心側>炉壁側に
なるように炉壁近傍の相対O/Cの調整が行なわれる。Examples 1 to 3 The bell-type blast furnace 10 having an internal volume of 5245 m 3 and a length of 6 m from the tuyere tip to the furnace center line was used. As shown in FIG. 1, the tuyere 11 was placed on the center line of the blast furnace. The center position X of the blast furnace is located at a height of 7 m from the center position X and the tuyere tip Y is connected by a straight line. From the height of 5m from the tuyere 11 diagonally downward 25
The temperature detecting unit 12 of the temperature measuring means is inserted at an angle of degrees, and the tip (detecting end) of the inserted temperature detecting unit 12 intersects the point A and the straight line XY at a position 1 m to the furnace center side from the straight line XY. Point B, the position returned to the furnace wall side by 1 m is point C,
At this time, the furnace temperature is measured at five points A, B, C and the center between the points. A detection signal from the temperature detection unit 12 is sent to the control unit 13, and the control unit 13 adjusts and drives the armor plate 14 of, for example, a bell type blast furnace arranged above the furnace top of the blast furnace 10 based on the detection signal. By this, an operation command is issued to increase the ratio of ore charged to the center of the furnace and reduce the relative O / C in the vicinity of the furnace wall.
As a result, the armor plate 14 moves to the inside of the furnace, and the relative O / C in the vicinity of the furnace wall is adjusted so that the average temperatures on the furnace center side and the furnace wall side are greater than the furnace center side> the furnace wall side.
【0013】表1の各調整前に示す操業条件で、直線X
Yより炉中心側ABおよび炉壁側BCの各測定点におい
て、炉内ガスを測定し、それぞれの平均温度を求めた。Under the operating conditions shown in Table 1 before each adjustment, the straight line X
The furnace gas was measured at each of the measurement points on the furnace center side AB and the furnace wall side BC from Y, and the respective average temperatures were obtained.
【0014】[0014]
【表1】 [Table 1]
【0015】表1から明らかなように、実施例1〜3の
高炉操業方法では、図2の直線XYより炉中心側および
炉壁側の炉内ガスの平均温度を求め、その平均温度が、
炉中心側>炉壁側を維持するように、炉頂部において、
炉壁近傍の相対O/Cを0.7〜0.8低下させる調整
を行なったので、調整前のものに比べて、燃料比が3〜
6Kg/T-pigだけ低減し、出銑量が50〜200T/D向
上し、通気抵抗指数が0.04〜0.08低下し、ソリ
ューションロスカーボンは1〜2Kg/T-pigだけ低減し、
溶銑中シリコンが0.03〜0.04%減少した。この
結果から明らかなように、本発明は、炉内状況に応じて
炉壁近傍の相対O/Cを、直線XYより炉中心側および
炉壁側の炉内ガスの平均温度が炉中心側>炉壁側になる
ような調整を行なうことにより、還元効率や溶銑品質が
向上する。しかも、炉内ガスの平均温度が炉中心側>炉
壁側である状態を維持することにより、安定した高炉操
業が実現できる。As is clear from Table 1, in the blast furnace operating methods of Examples 1 to 3, the average temperatures of the in-furnace gas on the furnace center side and the furnace wall side were determined from the straight line XY in FIG.
At the top of the furnace, to maintain the furnace center side> furnace wall side,
Since the adjustment was made to lower the relative O / C in the vicinity of the furnace wall by 0.7 to 0.8, the fuel ratio was 3 to 10% compared to that before the adjustment.
6Kg / T-pig reduced, tapping amount improved by 50-200T / D, ventilation resistance index decreased by 0.04-0.08, solution loss carbon reduced by 1-2Kg / T-pig,
Silicon in hot metal decreased by 0.03 to 0.04%. As is apparent from these results, according to the present invention, the relative O / C in the vicinity of the furnace wall is determined according to the situation in the furnace such that the average temperature of the furnace gas on the furnace center side and the furnace wall side with respect to the straight line XY is the furnace center side> The reduction efficiency and the quality of the hot metal are improved by adjusting so that it will be on the furnace wall side. Moreover, stable blast furnace operation can be realized by maintaining the state in which the average temperature of the gas in the furnace is on the side of the center of the furnace> the side of the furnace wall.
【0016】[0016]
【発明の効果】このように、高炉の中心線上におけるシ
ャフト下部から炉腹部上部の間にある高炉中心部と、羽
口先端とを直線で結び、この直線より炉中心側および炉
壁側においてそれぞれ複数点の炉内ガスの平均温度を求
め、この平均温度が、炉中心側>炉壁側を維持するよう
に、炉頂の相対O/Cを調整するようにしたので、炉内
へ装入した鉱石の還元効率を向上でき、しかも高炉状況
の安定が図れる。As described above, the blast furnace center portion between the shaft lower portion and the furnace belly portion upper portion on the center line of the blast furnace and the tuyere tip are connected by a straight line, and on the furnace center side and the furnace wall side of the straight line, respectively. The average temperature of the gas in the furnace at a plurality of points was determined, and the relative O / C of the furnace top was adjusted so that the average temperature was kept higher than the furnace center side> the furnace wall side. It is possible to improve the reduction efficiency of the produced ore and stabilize the blast furnace condition.
【図1】本発明の一実施例に係る高炉の制御方法が適用
された高炉の概略断面図である。FIG. 1 is a schematic sectional view of a blast furnace to which a method for controlling a blast furnace according to an embodiment of the present invention is applied.
【図2】本発明の実施態様に係る高炉の制御方法が適用
された高炉の概略断面図である。FIG. 2 is a schematic sectional view of a blast furnace to which a blast furnace control method according to an embodiment of the present invention is applied.
【図3】BC間の平均温度−AB間の平均温度と、炉壁
近傍の相対O/Cとの関係を示すグラフである。FIG. 3 is a graph showing the relationship between the average temperature between BC and the average temperature between AB and the relative O / C in the vicinity of the furnace wall.
【図4】BC間の平均温度−AB間の平均温度と、通気
抵抗指数との関係を示すグラフである。FIG. 4 is a graph showing a relationship between an average temperature between BC and an average temperature between AB and a ventilation resistance index.
10 高炉 11 羽口 12 検出端 13 制御手段 14 アーマープレート 15 調整駆動手段 10 Blast Furnace 11 Tuyere 12 Detection End 13 Control Means 14 Armor Plate 15 Adjustment Driving Means
Claims (3)
中心側および炉壁側における炉内ガス温度を求め、該温
度が炉内中心側≦炉壁側となった際、炉頂から装入する
装入物の炉径方向の相対O/Cを調整して、前記炉中心
側温度>炉壁側温度にすることを特徴とする高炉の制御
方法。1. A furnace gas temperature on the furnace center side and the furnace wall side from the furnace core surface at the blast furnace furnace abdomen position is determined, and when the temperature is within the furnace center side ≦ furnace wall side, charging is performed from the furnace top. A method for controlling a blast furnace, characterized in that the relative O / C in the furnace radial direction of the charged material is adjusted so that the furnace center side temperature> furnace wall side temperature.
ら炉腹部上部の間にある高炉中心部と羽口先端とを直線
で結ぶ線上を炉芯表面位置とすると共に、炉外から先端
が前記直線より炉内側に挿出入可能にした温度測定手段
を設け、該温度測定手段で前記直線より炉中心側および
炉壁側における炉内ガス温度を求め、該温度が炉内中心
側≦炉壁側となった際、炉頂から装入する装入物の炉径
方向の相対O/Cを調整して、前記平均温度が炉中心側
>炉壁側にすることを特徴とする高炉の制御方法。2. A furnace core surface position is located on the line connecting the center of the blast furnace and the tip of the tuyere between the lower part of the shaft and the upper part of the furnace belly on the center line of the blast furnace, and the tip from outside the furnace is more than the straight line. A temperature measuring means that can be inserted into and removed from the inside of the furnace is provided, and the temperature of the gas in the furnace on the furnace center side and the furnace wall side from the straight line is obtained by the temperature measuring means, and the temperature becomes the furnace center side ≦ furnace wall side. At this time, the blast furnace control method is characterized in that the relative O / C in the furnace radial direction of the charging material charged from the furnace top is adjusted so that the average temperature is set to the furnace center side> furnace wall side.
温度を測定する温度測定手段と、該温度測定手段により
測定した炉内ガス温度から前記炉中心側の平均温度と前
記炉壁側の平均温度とを求め、これらの平均温度が炉内
中心側≦炉壁側になったことを判定すると、前記炉壁近
傍の相対O/Cを低減して、前記炉中心側平均温度>炉
壁側平均温度にするように炉頂から装入する装入物の炉
径方向における層厚分布調整手段の調整駆動手段に操作
指令信号を出力する制御手段とを備えたことを特徴とす
る高炉の制御装置。3. A temperature measuring means for measuring the temperature of the in-furnace gas on the furnace center side and the furnace wall side of the blast furnace, and an average temperature on the furnace center side and the furnace wall from the furnace gas temperature measured by the temperature measuring means. Side average temperature, and when it is determined that these average temperatures are within the furnace center side ≦ furnace wall side, the relative O / C in the vicinity of the furnace wall is reduced, and the furnace center side average temperature> And a control means for outputting an operation command signal to the adjustment drive means of the layer thickness distribution adjustment means in the furnace radial direction of the charge charged from the furnace top so that the average temperature on the furnace wall side is reached. Blast furnace controller.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20144194A JPH0841511A (en) | 1994-08-02 | 1994-08-02 | Control of blast furnace and device therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20144194A JPH0841511A (en) | 1994-08-02 | 1994-08-02 | Control of blast furnace and device therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0841511A true JPH0841511A (en) | 1996-02-13 |
Family
ID=16441146
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20144194A Withdrawn JPH0841511A (en) | 1994-08-02 | 1994-08-02 | Control of blast furnace and device therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0841511A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020066759A (en) * | 2018-10-22 | 2020-04-30 | 日本製鉄株式会社 | Blast furnace operation method |
CN114134262A (en) * | 2021-08-03 | 2022-03-04 | 武汉钢铁有限公司 | Method for identifying working state of blast furnace |
-
1994
- 1994-08-02 JP JP20144194A patent/JPH0841511A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020066759A (en) * | 2018-10-22 | 2020-04-30 | 日本製鉄株式会社 | Blast furnace operation method |
CN114134262A (en) * | 2021-08-03 | 2022-03-04 | 武汉钢铁有限公司 | Method for identifying working state of blast furnace |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0841511A (en) | Control of blast furnace and device therefor | |
JP2000256712A (en) | Method for controlling distribution of charged material in furnace opening part of blast furnace | |
JP3787240B2 (en) | How to charge the blast furnace center | |
JP3298942B2 (en) | Operation method of two-stage tuyere type smelting reduction furnace | |
JP2904599B2 (en) | Blast furnace charging method | |
JP3779815B2 (en) | Blast furnace operation method | |
JP3608485B2 (en) | Raw material charging method in bell-less blast furnace | |
JPH06271908A (en) | Method for charging raw material in multi-batches into bell-less blast furnace | |
JP2001049312A (en) | Method for charging raw material in bell-less blast furnace | |
JP3632290B2 (en) | Blast furnace operation method | |
JP3835041B2 (en) | Blast furnace raw material charging method | |
JPH09184005A (en) | Method for charging scrap into shaft melting furnace | |
KR100418978B1 (en) | Layer injection method for preventing complex layer to radial direction in blast furnace | |
JPS62243702A (en) | Controlling method for fusion zone of blast furnace | |
JP2000273508A (en) | Method for strengthening center gas flow in blast furnace | |
JP3536509B2 (en) | Blast furnace operation method for producing low Si pig | |
KR20000042525A (en) | Method of operating melting furnace | |
JPH0625368B2 (en) | Blast furnace operation method | |
JPH06306420A (en) | Operation of blast furnace | |
JP2837284B2 (en) | Method and apparatus for producing hot metal containing chromium | |
JPH02225608A (en) | Method for operating blast furnace | |
JPH0953106A (en) | Method for controlling distribution of charged material in blast furnace | |
JP2002097505A (en) | Blast furnace operating method | |
JPH06256818A (en) | Operation of blast furnace | |
JPH11117008A (en) | Charging into bell-type blast furnace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20011002 |