JPH0837144A - Method and apparatus for pattern transfer exposure - Google Patents
Method and apparatus for pattern transfer exposureInfo
- Publication number
- JPH0837144A JPH0837144A JP17264794A JP17264794A JPH0837144A JP H0837144 A JPH0837144 A JP H0837144A JP 17264794 A JP17264794 A JP 17264794A JP 17264794 A JP17264794 A JP 17264794A JP H0837144 A JPH0837144 A JP H0837144A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- stage
- exposure
- mask substrate
- pattern transfer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electron Beam Exposure (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体集積回路(以下
集積回路と略す)の製造方法及びその製造装置に係わる
ものであって、集積回路パターン(以下パターンと略
す)をパターン転写基板(以下マスク基板で説明する)
上の感光性レジスト(以下レジストと略す)に露光焼付
けを行う露光方法及びその露光装置に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor integrated circuit (hereinafter abbreviated as an integrated circuit) and a manufacturing apparatus therefor, in which an integrated circuit pattern (hereinafter abbreviated as a pattern) is transferred to a pattern transfer substrate (hereinafter referred to as a pattern transfer substrate). Explain with mask substrate)
The present invention relates to an exposure method and an exposure apparatus for exposing and exposing the above photosensitive resist (hereinafter abbreviated as resist).
【0002】[0002]
【従来の技術】従来、集積回路を製作するに当たり、エ
ッチングまたはイオン注入などその用途に合わせて数種
類の組合せよりなるパターンを有するマスク(レチク
ル)を、順次ステッパー等の縮小露光装置でレジストを
介して露光焼付けを繰り返すことにより半導体基板上
に、そのパターン転写を行う、いわゆるフォトリソグラ
フィー法によるパターン形成方法が用いられている。従
って同一の半導体基板に複数のパターンを重ね合わせる
ため、その重ね合わせ誤差を極力小さくする必要があ
る。2. Description of the Related Art Conventionally, when manufacturing an integrated circuit, a mask (reticle) having a pattern consisting of several kinds of combinations according to its use such as etching or ion implantation is sequentially passed through a resist by a reduction exposure apparatus such as a stepper. A pattern forming method by a so-called photolithography method is used in which a pattern is transferred onto a semiconductor substrate by repeating exposure and baking. Therefore, since a plurality of patterns are superposed on the same semiconductor substrate, it is necessary to minimize the superposition error.
【0003】特に、近年の集積回路のますますの集積度
の向上に伴い、デバイス素子そのものが微細化し、また
パターン自身もそれに合わせて微細化され、パターン
も、より高精度な重ね合わせ精度が要求されるようにな
ってきた。この重ね合わせの誤差を生じる原因は、主に
縮小露光装置に起因するもの、マスク基板に起因するも
の、フォトマスクに起因するものに分類される。In particular, with the recent increase in the degree of integration of integrated circuits, the device elements themselves are miniaturized, and the patterns themselves are miniaturized accordingly, so that the patterns are required to have higher precision in overlay. It has started to be done. The causes of the overlay error are mainly classified into those caused by the reduction exposure apparatus, those caused by the mask substrate, and those caused by the photomask.
【0004】第1の縮小露光装置に関しては、縮小露光
装置そのものの重ね合わせのための機械的位置精度の向
上の他、重ね合わせマークの読み取り方式の改良等が採
り入れられている。一方、縮小露光装置のユーザ側にお
いてはロット単位ごとに特定号機を専用機として指定
し、特定号機に有する特有のロット間の誤差を防止する
ことなど種々の工夫が行われ、この問題に対処してい
る。Regarding the first reduction exposure apparatus, in addition to the improvement of the mechanical position accuracy for superposition of the reduction exposure apparatus itself, the improvement of the method of reading the registration mark is adopted. On the other hand, on the user side of the reduction exposure apparatus, various measures have been taken to address this problem, such as designating a specific machine as a dedicated machine for each lot unit and preventing the error between lots peculiar to the specific machine. ing.
【0005】また、第2のマスク基板に関しては、重ね
合わせマークの形状劣化が生じないようにプロセスフロ
ーや読み取りマークの位置あるいはレイヤー等の工夫が
行われている他、RSA{ Rear Surface Alignment
法; S.Katagiri, et al., the6th international Mic
roProcess conf., B-8-6,(1993)}のようにマスク基板
裏面に重ね合わせマークを配置する方法も提案されてい
る。その他の方法としてチップレベリング機能を露光装
置に持たせ、マスク基板の反りの影響を最小限に抑える
ことも行われている。Further, regarding the second mask substrate, in addition to devising the process flow, the position of the reading mark, the layer, etc., so that the shape of the overlay mark does not deteriorate, RSA {Rear Surface Alignment
Law; S.Katagiri, et al., The6th international Mic
There is also proposed a method of arranging overlay marks on the back surface of a mask substrate, as in roProcess conf., B-8-6, (1993)}. As another method, the exposure apparatus is provided with a chip leveling function to minimize the influence of the warp of the mask substrate.
【0006】最後の第3のフォトマスクに関しては、フ
ォトマスクの作製時に起こるものと、フォトマスクを用
いて露光装置によりパターン露光焼付け時に起こるもの
とがある。前者は、電子線描画装置内にマスク基板をロ
ードし、真空引きをした断熱膨張によるマスク基板の温
度低下によるものが大きい。この温度変化を抑えるため
には特開昭60−171725号公報に、電子線描画処理室の手
前のロードロック室に加熱装置を設けることにより温度
制御する方法が提案されている。Regarding the final third photomask, there are one that occurs when the photomask is manufactured and one that occurs when pattern exposure printing is performed by an exposure device using the photomask. The former is largely due to the temperature drop of the mask substrate due to adiabatic expansion in which the mask substrate is loaded into the electron beam drawing apparatus and evacuated. In order to suppress this temperature change, Japanese Patent Application Laid-Open No. 60-171725 proposes a method of controlling the temperature by providing a heating device in the load lock chamber in front of the electron beam drawing processing chamber.
【0007】また後者は、使用環境における温度の不安
定が原因であり、これを回避するための方法として特開
昭53−98782 号公報にマスク基板またはウエハーの温度
コントロールを行う方法が提案されている。なお本技術
は特にX線リソグラフィーのように高エネルギー照射を
行う場合のマスクの温度上昇を抑えるにも有効な方法で
ある。The latter is caused by temperature instability in the use environment, and as a method for avoiding this, a method of controlling the temperature of the mask substrate or wafer is proposed in Japanese Patent Laid-Open No. 53-98782. There is. The present technique is also an effective method for suppressing the temperature rise of the mask particularly when high energy irradiation is performed as in X-ray lithography.
【0008】また本発明と同様の目的の特開昭60−1717
25号公報に開示されている方法は予備室内の試料を加熱
する機構を備えた有効な方法ではあるが、露光時の温度
変化までを考慮したものではない。即ち、この方法では
電子照射エネルギーによって生じた温度上昇によるマス
ク基板の膨張の影響を補正することはできない。前記に
示した重ね合わせ誤差の原因のうち、第1の縮小露光装
置に起因する誤差は、縮小露光装置そのものの位置合わ
せ精度が向上し、非常に小さく無視しうる程度である。Further, JP-A-60-1717 for the same purpose as the present invention.
The method disclosed in Japanese Patent No. 25 is an effective method provided with a mechanism for heating a sample in a preliminary chamber, but it does not take into consideration temperature change during exposure. That is, this method cannot correct the influence of the expansion of the mask substrate due to the temperature rise caused by the electron irradiation energy. Among the causes of the overlay error described above, the error caused by the first reduction exposure apparatus is very small and can be ignored because the alignment accuracy of the reduction exposure apparatus itself is improved.
【0009】例えば、市販の縮小露光装置NSR2005
{ニコン(株)製}を用いて、アクティブレイヤーに重
ね合わせマークにとり、同じアクティブレイヤーに重ね
合わせてみたところ、重ね合わせ誤差は3σ=0.05μm
以下であった。これは測定誤差に近い値であり、現在の
集積回路の作製にあたり、縮小露光装置そのものの影響
は非常に小さい。For example, a commercially available reduction exposure apparatus NSR2005
When using {Nikon Corp.} as an overlay mark on the active layer and overlaying on the same active layer, overlay error is 3σ = 0.05 μm
It was below. This is a value close to the measurement error, and the influence of the reduction exposure apparatus itself is very small in the production of the current integrated circuit.
【0010】また、第2のマスク基板に起因する重ね合
わせ誤差の低減は今のところ非常に困難な問題である。
製造工程が進むにつれマスク基板そのものが反ったり、
エッチングされた重ね合わせマークの側壁が粗くなっ
て、マーク読み取り困難になることは必然的に起こりう
ることだからである。第3のフォトマスクに起因する重
ね合わせ誤差は、現状では最も効率よく低減できうる問
題である。Further, it is a very difficult problem at present to reduce the overlay error caused by the second mask substrate.
The mask substrate itself may warp as the manufacturing process progresses,
This is because it is inevitable that the side wall of the etched overlay mark becomes rough and it becomes difficult to read the mark. The overlay error caused by the third photomask is a problem that can be most efficiently reduced at present.
【0011】[0011]
【発明が解決しようとする課題】本発明は、前記の第3
のフォトマスクに起因する重ね合わせ温度を低減するも
のであり、マスク基板作製時のパターン転写露光などに
よるマスク基板の温度変化によって起こる転写パターン
の位置ずれ誤差をより低減させることを目的とする。The present invention is based on the above-mentioned third aspect.
The object of the present invention is to reduce the overlay temperature due to the photomask of (1) and further reduce the positional deviation error of the transfer pattern caused by the temperature change of the mask substrate due to the pattern transfer exposure at the time of manufacturing the mask substrate.
【0012】露光時に生ずる温度上昇によってマスク基
板が、どの程度影響を受けるかを具体的な実例を採り上
げ以下に説明する。先ず、5倍縮小型露光装置を例にと
って、転写露光によるパターンの位置ずれを一定の許容
値内に抑えるために、最大限許容される露光による温度
変化ΔTを算出する。The extent to which the mask substrate is affected by the temperature rise that occurs during exposure will be described below by taking a concrete example. First, taking a 5 × reduction type exposure apparatus as an example, the maximum allowable temperature change ΔT due to exposure is calculated in order to suppress the positional deviation of the pattern due to transfer exposure within a certain allowable value.
【0013】露光エリアを20mmとし、露光時の最大位置
ずれを0.05μm以下、即ちマスク(レチクル)上では0.
25μm以内に設定するものとする。石英ガラス製のマス
ク基板を使用した場合その線膨張係数は 5.0E−7/K
であるから電子線描画中の温度変化ΔTは、0.05E−6
(m)*5≧ 5.0E−7(/K)*ΔT(K)*20E−
3(m)*5によりΔT≦5Kとなる。The exposure area is set to 20 mm, and the maximum positional deviation at the time of exposure is 0.05 μm or less, that is, 0 on the mask (reticle).
It should be set within 25 μm. When a quartz glass mask substrate is used, its linear expansion coefficient is 5.0E-7 / K
Therefore, the temperature change ΔT during electron beam writing is 0.05E-6.
(M) * 5 ≧ 5.0E-7 (/ K) * ΔT (K) * 20E-
By 3 (m) * 5, ΔT ≦ 5K.
【0014】従って、露光時の位置ずれを0.05μm以下
にしようとするときには温度上昇を5K以下に抑える必
要がある。この温度上昇の低減の要求は、集積回路のチ
ップサイズが大きくなるにつれ、また素子が微細化する
につれて厳しくなり、T.Matsusaka et al., the 6th i
nternational MicroProcess conference, PC−3(1993)
にも、近い将来 0.1K以下に抑えることが必要であると
の見解が提示されている。Therefore, it is necessary to suppress the temperature rise to 5 K or less when the positional deviation during exposure is to be 0.05 μm or less. The requirement for reducing the temperature rise becomes stricter as the chip size of the integrated circuit becomes larger and as the device becomes finer. T. Matsusaka et al., The 6th i
nternational MicroProcess conference, PC-3 (1993)
However, there is a view that it will be necessary to keep it below 0.1K in the near future.
【0015】また、重ね合わせて使用する数種類の組合
せよりなるマスクを従来の露光方法で作製した場合、上
記の温度の不安定に起因するパターンの位置ずれが、複
数のマスク基板にそれぞれ存在し、全体として位置ずれ
は増幅される。従って、この組合せマスクパターンを同
一のマスク基板上に順次、重ね合わせて転写露光した場
合、その位置ずれは重畳して、更に増幅されてマスク基
板上に転写露光されることになり、集積回路の作製上、
その微細化に益々不利になる。Further, when a mask made up of several kinds of combinations to be used in superposition is manufactured by the conventional exposure method, the positional deviation of the pattern due to the unstable temperature exists on each of the plurality of mask substrates. The displacement is amplified as a whole. Therefore, when the combined mask patterns are sequentially transferred and exposed on the same mask substrate, the positional deviations are superimposed and further amplified and transferred and exposed on the mask substrate. In production
It becomes more and more disadvantageous to the miniaturization.
【0016】描画露光中の温度上昇を5インチ平方のマ
スク基板を例に見積もると以下のようになる。照射エネ
ルギーは平均して10μAの電子ビームを10kVで2時間照
射したとすると10(μA)*10(kV)*7200(sec) =72
0(joule)のジュール熱量をマスク基板が受けたことにな
る。また、温度上昇はマスク基板が比熱0.2cal/(gK)、
比重 4.0、厚さ2mmの石英ガラスでできているとする
と、 720/4.1855(cal) =ΔT(K)* 0.2{ cal/(gK)}
*12.5 (cm) *12.5 (cm) *0.2(cm) * 4.0 より温度上昇ΔTは 6.9Kと見積もられる。The temperature rise during drawing exposure is estimated as follows using a 5 inch square mask substrate as an example. The irradiation energy is 10 (μA) * 10 (kV) * 7200 (sec) = 72, assuming that an electron beam of 10 μA on average is irradiated for 2 hours at 10 kV.
The mask substrate has received Joule heat of 0 (joule). In addition, the temperature rise of the mask substrate is 0.2cal / (gK),
If it is made of quartz glass with a specific gravity of 4.0 and a thickness of 2 mm, then 720 / 4.1855 (cal) = ΔT (K) * 0.2 {cal / (gK)}
* 12.5 (cm) * 12.5 (cm) * 0.2 (cm) * 4.0 The temperature rise ΔT is estimated to be 6.9K.
【0017】従って、従来の電子線描画露光方法では、
たとえ放熱の影響を考慮したとしても上記に示す条件
(ΔT≦ 0.1K)よりは、かなり大きな温度上昇が見込
まれ今後の集積回路の微細化上、大きな障害の要因とな
りうる。以上、マスク基板作製に関する課題として述べ
てきたが、半導体基板に直接電子線描画する場合も同様
の課題が存在する。Therefore, in the conventional electron beam drawing exposure method,
Even if the influence of heat radiation is taken into consideration, a considerably large temperature rise is expected under the above condition (ΔT ≦ 0.1K), which may be a major obstacle to miniaturization of integrated circuits in the future. Although the above has been described as a problem relating to mask substrate fabrication, the same problem also exists in the case of direct electron beam drawing on a semiconductor substrate.
【0018】そこで本発明は、フォトマスクに起因する
重ね合わせ誤差を極力低減させ、より精度の高いマスク
基板を作製するため、電子線描画露光処理時に生ずるマ
スク基板の温度上昇ΔTを 0.1K以下に抑え、前期問題
点を解決し露光時の温度の不安定を防止する方法とその
露光装置を提供することを目的とするものである。Therefore, according to the present invention, in order to reduce the overlay error caused by the photomask as much as possible and to manufacture a mask substrate with higher accuracy, the temperature rise ΔT of the mask substrate during the electron beam drawing exposure process is set to 0.1 K or less. It is an object of the present invention to provide a method for suppressing the above-mentioned problems, preventing the instability of the temperature during exposure, and an exposure apparatus therefor.
【0019】[0019]
【課題を解決するための手段】本発明は、電子線描画
装置によりパターン転写露光を行う際、感光性レジスト
を塗布したパターン転写基板を載置するステージに温度
調節自在な冷媒を循環させ、かつ冷媒の温度を調節し、
露光開始時から露光終了時までパターン転写基板の温度
を一定に保持したままパターン転写露光を行うことを特
徴とするパターン転写露光方法であり、同一品種の集
積回路を作製するための、重ね合わせて使用する一式の
マスクを露光するに際し、パターン転写基板を載置する
ステージに温度調節自在な冷媒を循環させ、かつ冷媒の
温度を調節し、その全マスクを一定温度に保持したまま
パターン転写露光することを特徴とするマスク作製方法
であり、また電子線描画装置において、パターン転写
基板を載置するステージに冷媒用配管を配設し、かつ冷
媒の温度を自在に調節する機構を備えたことを特徴とす
る露光装置である。According to the present invention, when pattern transfer exposure is performed by an electron beam drawing apparatus, a temperature-adjustable cooling medium is circulated through a stage on which a pattern transfer substrate coated with a photosensitive resist is placed, and Adjust the temperature of the refrigerant,
It is a pattern transfer exposure method characterized by performing pattern transfer exposure while keeping the temperature of the pattern transfer substrate constant from the start of exposure to the end of exposure. When exposing a set of masks to be used, a temperature-adjustable cooling medium is circulated through the stage on which the pattern transfer substrate is placed, and the temperature of the cooling medium is adjusted so that pattern transfer exposure is performed while keeping all the masks at a constant temperature. And a mechanism for arranging a coolant pipe on the stage on which the pattern transfer substrate is mounted and for freely adjusting the temperature of the coolant in the electron beam drawing apparatus. It is a characteristic exposure apparatus.
【0020】[0020]
【作用】本発明によれば、電子線描画装置でパターン転
写露光するマスク基板を載置するステージに温度調節自
在な冷媒を循環させているため、ステージの温度、即
ち、マスク基板を一定の温度に保持したまま、パターン
露光開始時から露光終了時までの温度を常に一定の温度
に保持できる。従って、電子線照射エネルギーによって
生じた温度上昇によるマスク基板の膨張の影響を補正す
ることができる。According to the present invention, since the temperature-adjustable coolant is circulated through the stage on which the mask substrate for pattern transfer exposure is placed in the electron beam drawing apparatus, the temperature of the stage, that is, the mask substrate is kept at a constant temperature. The temperature from the start of the pattern exposure to the end of the pattern exposure can be maintained at a constant temperature while maintaining the temperature. Therefore, the influence of the expansion of the mask substrate due to the temperature rise caused by the electron beam irradiation energy can be corrected.
【0021】従って、従来方法よりも精度の高い転写露
光されたパターンを有するマスク基板を作製することが
できる。また同一品種の集積回路を作製するための重ね
合わせて使用する一式の複数のフォトマスクの作製に関
し、全てのマスクを同一温度で露光作製したフォトマス
クを使用し、同一のウエハー上に順次転写露光すれば各
マスク間の相乗効果による位置ずれの増幅も生じない。Therefore, it is possible to manufacture a mask substrate having a transferred and exposed pattern with higher accuracy than the conventional method. In addition, regarding the production of a set of multiple photomasks that are used in superposition to produce the same type of integrated circuit, all the masks were exposed at the same temperature. If so, amplification of positional deviation due to the synergistic effect between the masks does not occur.
【0022】[0022]
【実施例】本発明の実施例を図面を参照して説明する。
図2は本発明による電子線描画装置全体の概略を示した
横断面図である。マスク基板1はゲートバルブ3を開
き、ロードロック室2へ搬入される。その後、ゲートバ
ルブ3を閉じ、ロードロック室2は真空ポンプで排気さ
れる。このとき空気分子はロードロック室2から排除さ
れるため、理想的には断熱膨張せず、マスク基板1の温
度低下は生じない。An embodiment of the present invention will be described with reference to the drawings.
FIG. 2 is a cross-sectional view showing the outline of the entire electron beam drawing apparatus according to the present invention. The mask substrate 1 opens the gate valve 3 and is carried into the load lock chamber 2. After that, the gate valve 3 is closed and the load lock chamber 2 is evacuated by the vacuum pump. At this time, since air molecules are removed from the load lock chamber 2, ideally, adiabatic expansion does not occur and the temperature of the mask substrate 1 does not drop.
【0023】しかし、排気は瞬時に行われるものではな
く、その排気過程において断熱膨張が起こり、実際には
マスク基板1は冷却される。冷却されたマスク基板1は
真空中においては気体との熱交換がないため、主として
マスク基板1とステージ4との接触による熱伝導のみに
より、熱交換が行われ、徐々にステージ4の温度に近づ
いていく。However, the exhaust is not performed instantaneously, and adiabatic expansion occurs during the exhaust process, and the mask substrate 1 is actually cooled. Since the cooled mask substrate 1 does not exchange heat with gas in a vacuum, heat is exchanged mainly by heat conduction due to contact between the mask substrate 1 and the stage 4, and the temperature of the stage 4 gradually approaches. To go.
【0024】なお、マスク基板1は、ゲートバルブ13を
介してステージ4へと移され、メカニカルクランプ5に
よりステージ4へ固定される。本実施例では図3に示す
ように、マスク基板1とステージ4の間にスペース14を
設け、そこに熱伝導率の高いHeガス17を充填している。
この技術はドライエッチングでは頻繁に使われる技術で
あり、固体接触のみでは不十分なステージとの熱伝達を
ガス接触により補填するものである。The mask substrate 1 is transferred to the stage 4 via the gate valve 13 and fixed to the stage 4 by the mechanical clamp 5. In this embodiment, as shown in FIG. 3, a space 14 is provided between the mask substrate 1 and the stage 4 and filled with He gas 17 having a high thermal conductivity.
This technique is frequently used in dry etching, and compensates for heat transfer with the stage, which is insufficient with solid contact alone, by gas contact.
【0025】ステージ4は冷媒15により20℃に温度調節
されている。この時のステージの温度が室温と大きく違
うと精密な温度調節が難しかったり、アンロードの際に
室温に戻るために温度上昇で歪みが生じたりするため、
ステージの温度が室温とできるだけ近いほうがよい。ま
た、ステージ4は転写露光時に自由にXY軸方向に可動
できるようにするため、冷媒を通す配管6及び熱伝導気
体用配管7はベロー状のフレキシブルチューブで構成さ
れている。このフレキシブルチューブの材質はステンレ
ス等の金属でもよいし、あるいはテフロン等などの樹脂
でもよい。The temperature of the stage 4 is adjusted to 20 ° C. by the refrigerant 15. If the temperature of the stage at this time is significantly different from room temperature, it is difficult to precisely control the temperature, or the temperature rises to cause distortion when returning to room temperature.
The stage temperature should be as close as possible to room temperature. Further, in order to allow the stage 4 to freely move in the XY axis directions during transfer exposure, the pipe 6 for passing the refrigerant and the pipe for heat transfer gas 7 are made of bellows-shaped flexible tubes. The material of the flexible tube may be metal such as stainless steel or resin such as Teflon.
【0026】更に、ステージ4の位置の制御精度の向上
のため、これらのフレキシブルチューブを用いることな
く、図4に示すように冷却したHeガスをマスク基板1の
裏面に接するスペース14に直接供給する方法を用いても
よい。あるいはまた冷却用レーザーを用いてもよい。本
発明方法と従来方法による電子線描画露光装置での露光
時のマスク基板の温度変化を図1に示した。Further, in order to improve the control accuracy of the position of the stage 4, as shown in FIG. 4, cooled He gas is directly supplied to the space 14 in contact with the back surface of the mask substrate 1 without using these flexible tubes. Any method may be used. Alternatively, a cooling laser may be used. FIG. 1 shows the temperature change of the mask substrate at the time of exposure by the electron beam drawing exposure apparatus according to the method of the present invention and the conventional method.
【0027】図1(a)は本発明方法を用いた時のマス
ク基板の温度変化を、図1(b)は従来方法を用いた時
のマスク基板の温度変化を示すものである。まず従来方
法による電子線描画露光した場合、図1(b)に示すよ
うに室温25℃のロードロック室へ搬入後、真空に引き始
めるとロードロック室内で断熱膨張が生じ、マスク基板
が15℃まで低下し、その後23℃位に回復した1時間後
に、電子線描画露光開始する。電子線照射エネルギーに
よりマスク基板が徐々に温度上昇し、2時間後の電子線
描画露光終了時にマスク基板は27℃にまで上昇する。FIG. 1A shows the temperature change of the mask substrate when the method of the present invention is used, and FIG. 1B shows the temperature change of the mask substrate when the conventional method is used. First, in the case of electron beam drawing exposure according to the conventional method, as shown in FIG. 1 (b), after being carried into a load lock chamber at room temperature of 25 ° C., when a vacuum is started, adiabatic expansion occurs in the load lock chamber and the mask substrate is heated to 15 ° C. Then, 1 hour after recovering to about 23 ° C., electron beam drawing exposure is started. The temperature of the mask substrate gradually rises due to the electron beam irradiation energy, and the temperature of the mask substrate rises to 27 ° C. at the end of the electron beam drawing exposure after 2 hours.
【0028】従って、電子線描画の露光開始時から電子
線描画の露光終了時までのマスク基板の膨張は5インチ
平方、マスク基板の場合、有効エリアを 100mm平方とす
ると転写パターンの最大位置ずれは、5.0E−6(/
K)*100(mm) *4(K)/5=4E−4(mm)= 0.4μ
mとなる。Therefore, the expansion of the mask substrate from the start of the exposure of the electron beam drawing to the end of the exposure of the electron beam drawing is 5 inches square, and in the case of the mask substrate, if the effective area is 100 mm square, the maximum displacement of the transfer pattern is , 5.0E-6 (/
K) * 100 (mm) * 4 (K) / 5 = 4E-4 (mm) = 0.4μ
m.
【0029】一方、本発明による電子線描画露光した場
合、真空に引き始めるとマスク基板の温度は従来方法と
同様に15℃まで低下する。その後、マスク基板を載置す
るステージは20℃位になり、冷媒の働きでステージ、マ
スク基板の温度が電子線描画露光開始時から電子線描画
露光終了時まで20℃に保持される。従って、本発明によ
る場合は上記の従来方法によるマスク基板の熱膨張によ
る転写パターンの位置ずれという問題を生ずることはな
い。On the other hand, when the electron beam drawing exposure according to the present invention is started, the temperature of the mask substrate is lowered to 15 ° C. as in the conventional method when the vacuum is started. After that, the stage on which the mask substrate is placed reaches about 20 ° C., and the temperature of the stage and the mask substrate is kept at 20 ° C. by the action of the coolant from the start of the electron beam drawing exposure to the end of the electron beam drawing exposure. Therefore, according to the present invention, the problem of positional displacement of the transfer pattern due to the thermal expansion of the mask substrate by the above-mentioned conventional method does not occur.
【0030】なお、本発明では冷媒の働きにより冷却す
ることにより露光時のステージの温度、即ちパターン転
写基板の温度を一定に保持する方法を示したが、パター
ン転写基板の温度を一定にする方法として加熱温調保持
は以下の理由で不適当である。加熱の場合は室温より十
分高い温度まで加熱する必要があるが、その場合、感光
レジストの解像力は低下し、処理室の真空劣化に伴うビ
ームスポットの増大等が生じるからである。In the present invention, the method of keeping the temperature of the stage at the time of exposure, that is, the temperature of the pattern transfer substrate constant by cooling by the action of the cooling medium has been shown. However, the method of keeping the temperature of the pattern transfer substrate constant. As a result, maintaining the heating temperature is not suitable for the following reasons. This is because in the case of heating, it is necessary to heat to a temperature sufficiently higher than room temperature, in which case the resolution of the photosensitive resist is lowered and the beam spot is increased due to the vacuum deterioration of the processing chamber.
【0031】[0031]
【発明の効果】本発明は、電子線描画露光するマスク基
板を載置するステージに冷媒を循環させ、かつステージ
温度を一定に保持する機能を設け、パターン露光時の高
エネルギー粒子照射による温度を補正し、パターン露光
開始時から終了時までマスク基板の温度を常に一定の温
度に維持させるため、寸法精度の高いマスク基板を作製
することができる。According to the present invention, the stage for mounting a mask substrate to be subjected to electron beam drawing exposure is provided with a function of circulating a cooling medium and keeping the stage temperature constant. Since the correction is performed and the temperature of the mask substrate is always maintained at a constant temperature from the start to the end of the pattern exposure, the mask substrate with high dimensional accuracy can be manufactured.
【0032】結果として、同一品種の集積回路を作製す
るための数種類の組合せよりなる集積回路用パターンを
有する複数のフォトマスクの相互の位置合わせ精度も向
上し、より微細化した集積回路の作製にも容易に対応で
きるようになった。As a result, the mutual alignment accuracy of a plurality of photomasks having an integrated circuit pattern composed of several kinds of combinations for manufacturing integrated circuits of the same type is also improved, and a more miniaturized integrated circuit is manufactured. Can now easily cope.
【図1】(a)は本発明の方法による電子線描画時にお
けるマスク基板の温度を示す特性図である。(b)は従
来のの方法による電子線描画時におけるマスク基板の温
度を示す特性図である。FIG. 1A is a characteristic diagram showing the temperature of a mask substrate during electron beam writing by the method of the present invention. (B) is a characteristic diagram showing the temperature of the mask substrate at the time of electron beam drawing by the conventional method.
【図2】本発明の実施例に係わるステージを用いた電子
線描画装置の概略横断面図である。FIG. 2 is a schematic cross-sectional view of an electron beam drawing apparatus using a stage according to an embodiment of the present invention.
【図3】本発明の実施例に係わるステージの横断面図で
ある。FIG. 3 is a cross-sectional view of a stage according to an embodiment of the present invention.
【図4】本発明の実施例に係わる他のステージの横断面
図である。FIG. 4 is a cross-sectional view of another stage according to the embodiment of the present invention.
1 マスク基板 2 ロードロック室 3 ゲートバルブ 4 ステージ 5 メカニカルクランプ 6 冷媒用配管 7 熱伝導気体用配管 8 電子銃 9 ストップバルブ 10 クロム 11 感光性レジスト 12 Oリング 13 ゲートバルブ 14 スペース 15 冷媒 16 N2 ガス 17 Heガス1 Mask Substrate 2 Load Lock Chamber 3 Gate Valve 4 Stage 5 Mechanical Clamp 6 Refrigerant Pipe 7 Heat Transfer Gas Pipe 8 Electron Gun 9 Stop Valve 10 Chrome 11 Photosensitive Resist 12 O Ring 13 Gate Valve 14 Space 15 Refrigerant 16 N 2 Gas 17 He gas
Claims (3)
を行う際に、感光性レジストを塗布したパターン転写基
板を載置するステージに温度調節自在な冷媒を循環さ
せ、かつ冷媒の温度を調節し、露光開始時から露光終了
時までパターン転写基板の温度を一定に保持したままパ
ターン転写露光を行うことを特徴とするパターン転写露
光方法。1. When performing pattern transfer exposure by an electron beam drawing apparatus, a temperature-adjustable refrigerant is circulated through a stage on which a pattern transfer substrate coated with a photosensitive resist is placed, and the temperature of the refrigerant is adjusted, A pattern transfer exposure method comprising performing pattern transfer exposure while maintaining the temperature of the pattern transfer substrate constant from the start of exposure to the end of exposure.
重ね合わせて使用する一式のマスクを露光するに際し、
パターン転写基板を載置するステージに温度調節自在な
冷媒を循環させ、かつ冷媒の温度を調節し、その全マス
クを一定温度に保持したままパターン転写露光すること
を特徴とするマスク作製方法。2. For manufacturing integrated circuits of the same type,
When exposing a set of masks to be used by overlapping,
A mask manufacturing method characterized in that a temperature-adjustable cooling medium is circulated through a stage on which a pattern transfer substrate is placed, the temperature of the cooling medium is adjusted, and pattern transfer exposure is performed while keeping all masks at a constant temperature.
基板を載置するステージに冷媒用配管を配設し、かつ冷
媒の温度を自在に調節する機構を備えたことを特徴とす
る露光装置。3. An electron beam drawing apparatus, characterized in that a coolant pipe is disposed on a stage on which a pattern transfer substrate is mounted, and a mechanism for freely adjusting the temperature of the coolant is provided.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17264794A JPH0837144A (en) | 1994-07-25 | 1994-07-25 | Method and apparatus for pattern transfer exposure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17264794A JPH0837144A (en) | 1994-07-25 | 1994-07-25 | Method and apparatus for pattern transfer exposure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0837144A true JPH0837144A (en) | 1996-02-06 |
Family
ID=15945769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17264794A Pending JPH0837144A (en) | 1994-07-25 | 1994-07-25 | Method and apparatus for pattern transfer exposure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0837144A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100286209B1 (en) * | 1998-04-23 | 2001-03-15 | 미다라이 후지오 | Stage system with driving mechanism, and exposure apparatus having the same |
WO2005096101A1 (en) * | 2004-03-30 | 2005-10-13 | Pioneer Corporation | Exposure equipment |
KR20130090539A (en) * | 2012-02-06 | 2013-08-14 | 엘지전자 주식회사 | Ion implanting apparatus |
-
1994
- 1994-07-25 JP JP17264794A patent/JPH0837144A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100286209B1 (en) * | 1998-04-23 | 2001-03-15 | 미다라이 후지오 | Stage system with driving mechanism, and exposure apparatus having the same |
WO2005096101A1 (en) * | 2004-03-30 | 2005-10-13 | Pioneer Corporation | Exposure equipment |
KR20130090539A (en) * | 2012-02-06 | 2013-08-14 | 엘지전자 주식회사 | Ion implanting apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7972765B2 (en) | Pattern forming method and a semiconductor device manufacturing method | |
EP0320297A2 (en) | Method of temperature control of a wafer on a chuck | |
US20120120379A1 (en) | System and method for controlling the distortion of a reticle | |
JP2000243684A (en) | Aligner and device manufacture | |
US20080304025A1 (en) | Apparatus and method for immersion lithography | |
Tojo et al. | Advanced electron-beam writing system EX-11 for next-generation mask fabrication | |
JPH0837144A (en) | Method and apparatus for pattern transfer exposure | |
US7867403B2 (en) | Temperature control method for photolithographic substrate | |
JP3187581B2 (en) | X-ray apparatus, X-ray exposure apparatus, and semiconductor device manufacturing method | |
JPH07142356A (en) | Resist pattern forming method and resist pattern forming system used therefor | |
JP2010003905A (en) | Substrate processing apparatus and substrate processing system | |
US6559927B1 (en) | Gap adjusting method in exposure apparatus | |
JP2001075294A (en) | Method and device for detecting surface position, method and device for aligining, method of manufacturing aligner and method of manufacturing semiconductor device | |
JP2003195476A (en) | Pattern forming device and its method | |
JPH11135407A (en) | Method for exposure and aligner | |
JP2007096347A (en) | Rotation compensating device of processed substrate, processing device of resist film, method for compensating rotation of processed substrate, method for processing resist film | |
JPH05315222A (en) | Alignment method | |
JP3526162B2 (en) | Substrate holding device and exposure device | |
JP2001217177A (en) | Aligner and exposure method | |
JP2001023890A (en) | Aligner and manufacture of device using the same | |
JP2005123651A (en) | Resist film processing apparatus and method of forming resist pattern | |
JPH10209036A (en) | Method and apparatus for exposure | |
JP4095211B2 (en) | Exposure apparatus and device manufacturing method | |
JP4202962B2 (en) | Substrate processing method and semiconductor device manufacturing method | |
JP2876406B2 (en) | Exposure apparatus and exposure method |