[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0837011A - Fuel cell base board in hollow flat plate form - Google Patents

Fuel cell base board in hollow flat plate form

Info

Publication number
JPH0837011A
JPH0837011A JP6172850A JP17285094A JPH0837011A JP H0837011 A JPH0837011 A JP H0837011A JP 6172850 A JP6172850 A JP 6172850A JP 17285094 A JP17285094 A JP 17285094A JP H0837011 A JPH0837011 A JP H0837011A
Authority
JP
Japan
Prior art keywords
fuel cell
substrate
flat plate
hollow flat
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6172850A
Other languages
Japanese (ja)
Inventor
Masaya Takahashi
雅也 高橋
Toshio Matsushima
敏雄 松島
Daisuke Ikeda
大助 池田
Katsumi Manabe
勝己 真鍋
Himeko Kanekawa
姫子 金川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6172850A priority Critical patent/JPH0837011A/en
Publication of JPH0837011A publication Critical patent/JPH0837011A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a fuel cell base board in the form of hollow flat plate equipped with a heightned mechanical strength while characteristics including a high gastightness are maintained by covering a gas passage formed from a porous support with an electrode material. CONSTITUTION:A plurality of oxidator gas passages 11 are provided in a porous support 9, which, is covered with an electrode material 10. A fuel cell base board in the form of hollow flat plate produced in this manner is equipped with an enhanced mechanical strength and also can be given such characteristics required of an electrode material as electric conductivity, reactivity, etc. Thus a fuel cell base board with a high mechanical strength can be fabricated while a high gas-tightness, etc., is maintained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質型燃料電池
に使用する、電極材料および多孔質支持体からなる、内
部にガス流路を有する中空平板状燃料電池基板に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hollow flat plate type fuel cell substrate for use in a solid oxide fuel cell, which is composed of an electrode material and a porous support and has a gas passage therein.

【0002】[0002]

【従来の技術】燃料電池は、酸化剤と燃料の2種類のガ
スを酸化剤極と燃料極に供給して発電を行なうものの総
称であり、ここで述べる固体電解質型燃料電池は、構成
材料の全てに固体物質を使用したもので、具体的には以
下のようなセラミックスが主材料として挙げられる。
2. Description of the Related Art A fuel cell is a general term for generating electric power by supplying two kinds of gases, an oxidant and a fuel, to an oxidant electrode and a fuel electrode. The solid oxide fuel cell described here is composed of constituent materials. A solid substance is used for all, and specifically, the following ceramics are listed as main materials.

【0003】電解質 ;イットリア安定化ジルコニア
(以下、YSZ) 燃料極 ;ニッケルジコニアサーメット(以下、Ni−
YSZ) 酸化剤極;ランタンマンガナイト(以下、LSM) この燃料電池の発電セル一個の基本構成は、電解質の両
面に2つの電極を配置したものであるが、このセルの出
力電圧は開路電圧でも1V足らずである。従って、実用
的な出力を得るためには、このようなセルを多層積層し
た構造とする必要がある。複数のセルを積層して構成し
た固体電解質型燃料電池の構造の例を、図7に示す。図
において、1は固体電解質、2は燃料極、3は酸化剤
極、4はインタコネクタ、5は燃料ガス流路、6は酸化
剤ガス流路、7は単位セルである。このような構造の固
体電解質型燃料電池に、燃料ガスおよび酸化剤ガスを供
給することで、所定の電気出力を取り出すことができ
る。この構造の固体電解質型燃料電池における発電にお
いては、供給された各ガスが各々の反応面に有効に行き
渡るとともに、電極の端部等から周辺部へのリークが起
こらないように積層する必要がある。しかし、図7に示
したような構造の固体電解質型燃料電池では実際の積層
において各単位セル7とインタコネクタ4の間の気密性
の確保が極めて難しいという問題がある。これは、先に
述べたような全ての構成部材が可とう性や圧縮時の変形
性が無いセラミックスで形成されているため、接合面に
おいてガス気密性を得ることは極めて困難であることに
よる。このような問題点の解決は、部材の平坦性を極め
て向上させたとしても難しいことである上に、実際に固
体電解質型燃料電池の発電セルを焼結法で作製した場合
には、反り等の発生が避けられないことを考慮すると殆
ど実現不可能である。また、図7に示した方式の場合、
導電率が最も小さい構成部材である電解質の厚みが増加
すると、電池の内部抵抗が高くなり、セルの発電特性が
悪化するため、電解質の厚みを低減する必要がある。し
かし、電解質の厚みを薄くした場合には単位セル7の強
度が低下するため、単位セル7とインタコネクタ4との
間での気密性を高めるために電池上下から大きな圧力を
かけると、単位セルが破壊されてしまう恐れがある。
Electrolyte; Yttria-stabilized zirconia (hereinafter, YSZ) fuel electrode; Nickel zirconia cermet (hereinafter, Ni-
YSZ) Oxidizer electrode; lanthanum manganite (hereinafter, LSM) The basic structure of one power generation cell of this fuel cell is that two electrodes are arranged on both sides of the electrolyte, but the output voltage of this cell is also open circuit voltage. It is less than 1V. Therefore, in order to obtain a practical output, it is necessary to have a structure in which such cells are laminated in multiple layers. FIG. 7 shows an example of the structure of a solid oxide fuel cell composed of a plurality of stacked cells. In the figure, 1 is a solid electrolyte, 2 is a fuel electrode, 3 is an oxidizer electrode, 4 is an interconnector, 5 is a fuel gas channel, 6 is an oxidant gas channel, and 7 is a unit cell. By supplying the fuel gas and the oxidant gas to the solid oxide fuel cell having such a structure, a predetermined electric output can be obtained. In the power generation in the solid oxide fuel cell having this structure, it is necessary to stack the gases so that the supplied gases can effectively spread to the respective reaction surfaces and that leakage from the ends of the electrodes does not occur in the periphery. . However, in the solid oxide fuel cell having the structure shown in FIG. 7, it is extremely difficult to secure the airtightness between each unit cell 7 and the interconnector 4 in the actual stacking. This is because it is extremely difficult to obtain gas tightness at the joint surface because all the above-mentioned constituent members are made of ceramics that are not flexible or deformable during compression. It is difficult to solve such a problem even if the flatness of the member is extremely improved. In addition, when the power generation cell of the solid oxide fuel cell is actually manufactured by the sintering method, there is a warp or the like. Considering that the occurrence of is unavoidable, it is almost impossible to realize. In the case of the method shown in FIG.
When the thickness of the electrolyte, which is the component having the smallest electrical conductivity, increases, the internal resistance of the battery increases and the power generation characteristics of the cell deteriorate, so it is necessary to reduce the thickness of the electrolyte. However, when the thickness of the electrolyte is reduced, the strength of the unit cell 7 decreases. Therefore, if a large pressure is applied from above and below the battery in order to improve the airtightness between the unit cell 7 and the interconnector 4, the unit cell 7 May be destroyed.

【0004】そこで、このような積層時にガス気密性を
確保することが困難であるという問題を解決する一つの
方法として、図8に示すように予めどちらか一方の電極
材料で内部にガス流路を備えた中空状の基板(中空平板
状酸化剤極)3’を作製し、これに発電部を形成させる
方式が考えられている(特開平05−36417)。図
中、他の図の同一部分に相当するものは同一符号を付し
てその説明を省略する。このような方式では、基板3’
のガス流路壁面が電極として作用するため、この基板
3’を電極として反応するガスは単位セル7とインタコ
ネクタ4を組み合わせて形成された流路ではなく、基板
3’内に設けられた流路を流れる。従って、基板の両端
部にガスシールを施すだけでガスの気密性が確保され、
シール性を大幅に改善することができる。さらに、ガス
気密性を高めるために電池上下から大きな圧力をかける
必要が無くなるため、寿命的にも優れた特性を得ること
が出来る。
[0004] Therefore, as one method of solving the problem that it is difficult to ensure the gas tightness when such a laminated, the gas flow path inside the one electrode material in which either 8 A method has been proposed in which a hollow substrate (hollow flat plate-shaped oxidizer electrode) 3'having the above is prepared and a power generation section is formed on the hollow substrate 3 '(Japanese Patent Laid-Open No. 05-36417). In the figures, those parts corresponding to the same parts in the other figures are designated by the same reference numerals, and a description thereof will be omitted. In such a system, the substrate 3 '
Since the wall surface of the gas flow path of 1 acts as an electrode, the gas that reacts using this substrate 3'as an electrode is not the flow path formed by combining the unit cell 7 and the interconnector 4, but the flow provided in the substrate 3 '. Flow through the road. Therefore, the gas-tightness can be secured simply by applying gas seals to both ends of the substrate,
The sealability can be greatly improved. Further, since it is not necessary to apply a large pressure from above and below the battery in order to enhance the gas tightness, it is possible to obtain excellent characteristics in terms of life.

【0005】[0005]

【発明が解決しようとする課題】しかし、固体電解質型
燃料電池の電極に要求される機能としては、電気伝導性
が高いこと、電極反応が行なわれる電解質と電極との界
面の面積が広いこと、ガス透過性が高いこと、機械的あ
るいは熱的強度が強いことなど、非常に多くの機能が挙
げられる。特に、電解質と電極との界面の面積が広く、
かつガス透過性が高い電極を作製するためには、電極の
多孔性を高める必要があるが、多孔性を高めることは、
基板の機械的な強度を弱めることになり、燃料電池の信
頼性や耐久性を低下させる原因となる。従って、これら
要求されるすべての条件をみたす基板を単一の電極材料
で作製することは非常に困難であった。
However, the functions required for the electrodes of the solid oxide fuel cell are that they have high electrical conductivity and that the area of the interface between the electrolyte and the electrodes where the electrode reaction takes place is large. It has many functions such as high gas permeability and high mechanical or thermal strength. In particular, the area of the interface between the electrolyte and the electrode is wide,
In addition, in order to produce an electrode having high gas permeability, it is necessary to increase the porosity of the electrode.
This weakens the mechanical strength of the substrate, which causes the reliability and durability of the fuel cell to deteriorate. Therefore, it was very difficult to manufacture a substrate satisfying all of these required conditions with a single electrode material.

【0006】本発明は上記の事情に鑑みてなされたもの
で、電解質と電極との界面の面積が広く、ガス透過性が
高く、なおかつ機械的強度の高い、電極材料をその構成
材の少なくとも一部に用いた中空平板状燃料電池基板を
提供することを目的とする。
The present invention has been made in view of the above circumstances. An electrode material having a large interface area between the electrolyte and the electrode, high gas permeability, and high mechanical strength is used as at least one of the constituent materials. It is an object of the present invention to provide a hollow flat plate fuel cell substrate used for a part.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明の中空平板状燃料電池基板は、固体電解質型燃
料電池に使用される、内部に複数の流路が配置された中
空平板状の基板であって、流路を形成する多孔質支持体
を基板内部に有し、該多孔質支持体上を電極材料で被覆
した構造であることを特徴とするものである。
In order to achieve the above object, a hollow flat plate fuel cell substrate of the present invention is used in a solid oxide fuel cell, and is a hollow flat plate having a plurality of flow passages arranged therein. The substrate of (1) has a structure in which a porous support that forms a flow channel is provided inside the substrate, and the porous support is coated with an electrode material.

【0008】又、本発明の中空平板状燃料電池基板は、
上記多孔質支持体として、内部に複数の流路を有する平
板状の支持体を用い、該支持体にはその上面から下面ま
で貫通し、かつ流路とは交わらない貫通孔を少なくとも
1個以上有し、該貫通孔には電極材料が充填された構造
であることを特徴とするものである。
Further, the hollow flat plate type fuel cell substrate of the present invention comprises:
As the porous support, a flat plate-like support having a plurality of flow paths inside is used, and at least one through hole penetrating from the upper surface to the lower surface of the support and not intersecting the flow paths is used. It has a structure in which the through hole is filled with an electrode material.

【0009】又、本発明の中空平板状燃料電池基板は、
上記多孔質支持体として筒状の形状でその両端に開口部
を有する支持体を複数用い、該支持体の両端が燃料電池
基板の端面に露出していることを特徴とするものであ
る。
The hollow flat plate type fuel cell substrate of the present invention comprises:
As the porous support, a plurality of supports each having a tubular shape and having openings at both ends thereof are used, and both ends of the support are exposed at the end surface of the fuel cell substrate.

【0010】又、本発明の中空平板状燃料電池基板は、
上記多孔質支持体の形状が筒状の部材を組み合わせた櫛
形状であり、該櫛形状支持体の端部の少なくとも2カ所
以上に開口部を有し、かつ、該開口部が基板の1箇所の
端面に露出した形状であることを特徴とするものであ
る。
The hollow flat plate type fuel cell substrate of the present invention comprises:
The shape of the porous support is a comb shape in which tubular members are combined, and an opening is provided at least at two or more locations on the end of the comb support, and the opening is at one location on the substrate. It is characterized in that it has a shape exposed at the end face of the.

【0011】又、本発明の中空平板状燃料電池基板は、
基板内に複数配置した支持体間で前記電極材料が基板上
面から下面まで連続した構造となっていることを特徴と
するものである。
The hollow flat plate type fuel cell substrate of the present invention comprises:
It is characterized in that the electrode material has a structure in which the upper surface and the lower surface of the substrate are continuous between a plurality of supports arranged in the substrate.

【0012】[0012]

【作用】上記手段により本発明の中空平板状燃料電池基
板にあっては、以下の作用を有する。請求項1記載の発
明では、電極材料に比べて機械的強度が高い材料により
作製した多孔質支持体を燃料電池基板内部に配置するこ
とにより基板の機械的強度を高め、一方、電極として要
求される電気伝導性や反応性に関しては、電極材料によ
り表面を被覆することにより要求される特性を基板に付
与することが可能となる。従って、これまでの電極材料
のみにより構成された中空平板状電池基板に比べて、高
いガス気密性などの特性を維持しつつ、機械的強度を高
めた基板を作製することが可能となる。
With the above means, the hollow flat plate type fuel cell substrate of the present invention has the following actions. In the invention according to claim 1, the porous support made of a material having a higher mechanical strength than the electrode material is disposed inside the fuel cell substrate to enhance the mechanical strength of the substrate, while it is required as an electrode. With respect to electric conductivity and reactivity, it is possible to impart the required characteristics to the substrate by coating the surface with an electrode material. Therefore, it becomes possible to manufacture a substrate having improved mechanical strength while maintaining characteristics such as high gas-tightness as compared with the conventional hollow flat battery substrate composed of only electrode materials.

【0013】また、請求項2記載の発明では、平板状の
多孔質支持体を用いることにより、基板全面の強度を高
めるとともに、支持体に少なくとも一つ以上の貫通孔を
配し、該貫通孔中に電極材料を充填することにより、基
板側面のみでなく貫通孔を通じても基板上面と下面との
電気的な接続がなされるようにしたため、多孔質支持体
を有しつつ、電気抵抗の小さな基板を作製することが可
能となる。
According to the second aspect of the present invention, by using the flat plate-shaped porous support, the strength of the entire surface of the substrate is increased, and at least one or more through holes are provided in the support, and the through holes are provided. By filling the inside with the electrode material, the electrical connection between the upper surface and the lower surface of the substrate is made not only through the side surface of the substrate but also through the through holes, so that the substrate having the porous support has a small electric resistance. Can be manufactured.

【0014】また、請求項3記載の発明では、多孔質支
持体を単純な筒形とする事により支持体の製作を容易に
する。また、請求項4記載の発明では、ガス流路を基板
内で折り返したことにより、基板におけるガス流入口と
流出口とを基板の1箇所の端面に設けることが可能とな
る。その結果、本基板上に電極及びインターコネクタを
形成したセルをスタック化する場合の電池容器のガス流
路とセルとの接続部が1カ所のみとなり、スタック化を
行う上で工作が困難なガスシール部を1カ所のみとする
事が可能となり、燃料電池の信頼性や耐久性を向上させ
ることが可能となる。
According to the third aspect of the invention, the support is made easy by forming the porous support into a simple cylindrical shape. Further, in the invention according to claim 4, since the gas flow path is folded back in the substrate, the gas inlet and the outlet in the substrate can be provided at one end face of the substrate. As a result, when stacking cells with electrodes and interconnectors formed on this substrate, there is only one connection between the gas flow path of the battery container and the cells, and gas that is difficult to work in stacking. It is possible to have only one seal portion, and it is possible to improve the reliability and durability of the fuel cell.

【0015】また、請求項5記載の発明では、基板内に
配置した支持体と支持体との間の部分において電極材料
が基板上面から下面まで連続した構造とする事により、
電池動作時に基板の上面と下面との間に流れる電流に対
する抵抗を減少することが可能となり、より出力の高い
燃料電池を構成することが可能となる。
Further, in the invention according to claim 5, the electrode material has a structure in which the upper surface and the lower surface of the substrate are continuous in a portion between the supports arranged in the substrate.
It is possible to reduce the resistance to the current flowing between the upper surface and the lower surface of the substrate during the operation of the cell, and it is possible to configure a fuel cell having a higher output.

【0016】[0016]

【実施例】以下に図面を参照して本発明を実施例により
詳細に説明する。なお、本発明は以下の実施例にのみ限
定されるものではない。 [実施例1]図1は本発明の一実施例による中空平板状
燃料電池基板の外観を示した斜視図であり、図2は図1
のX−X’面に沿う断面の斜視図である。図中、9は多
孔質支持体、10は電極材料、11はガス流路、12は
貫通孔を示す。支持体9の原料にはカルシアを15モル
%添加したカルシア安定化ジルコニア(以下CSZ)
を、電極材料10としては固体電解質型燃料電池の酸化
剤極材料として一般的に広く使用されている、ペロブス
カイト構造を持つLa0.8Sr0.2MnO3の粒径
1〜3μmの粉末を使用した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings with reference to the drawings. The present invention is not limited to the following examples. [Embodiment 1] FIG. 1 is a perspective view showing the appearance of a hollow flat plate type fuel cell substrate according to an embodiment of the present invention, and FIG.
3 is a perspective view of a cross section taken along the line XX ′ in FIG. In the figure, 9 is a porous support, 10 is an electrode material, 11 is a gas flow path, and 12 is a through hole. Calcia-stabilized zirconia (hereinafter CSZ) containing 15 mol% of calcia was used as a raw material for the support 9.
As the electrode material 10, a powder of La0.8Sr0.2MnO3 having a perovskite structure and having a particle diameter of 1 to 3 μm, which is generally widely used as an oxidizer electrode material of a solid oxide fuel cell, was used.

【0017】支持体9は押し出し成形体を焼結する事に
より作製した。押し出し成形に使用する粘土状の材料は
CSZの原料粉末100に対し、バインダであるメチル
セルロース系水溶性高分子を約5、水10(重量ベース
の混合比)を添加した後、原料混練機によって混練する
ことにより作製した。このように作製した材料を真空押
し出し成形機を用い、内部を流路が貫通した平板状の押
し出し成形体とした。乾燥を行なった後、貫通孔12を
切り抜き、次いで400℃で4時間加熱することにより
脱脂を行い、その後、1600℃、4時間加熱を行い焼
結した。焼結後の中空平板状支持体の大きさは、例えば
幅100mmで長さは150mm,厚みは5mmであ
る。
The support 9 was produced by sintering an extruded body. The clay-like material used for extrusion molding is a mixture of 100 parts of CSZ raw material powder, about 5 parts of methylcellulose water-soluble polymer as a binder, and 10 parts of water (mixing ratio on a weight basis), and then kneaded by a raw material kneader. It was produced by Using the vacuum extrusion molding machine, the material produced in this way was made into a flat plate extrusion molding having a flow passage penetrating the inside thereof. After drying, the through holes 12 were cut out, and then degreased by heating at 400 ° C. for 4 hours, and thereafter, heating was performed at 1600 ° C. for 4 hours to sinter. The size of the hollow flat plate-shaped support after sintering is, for example, 100 mm in width, 150 mm in length and 5 mm in thickness.

【0018】以上の工程で作製した中空平板状支持体9
を電極材料10により被覆した。被覆はスラリー塗布、
焼結によって行った。スラリーを作製する原料粉末とし
ては電極材料であるLa0.8Sr0.2MnO3粉末
を用い、ポリエチレングリコールとエタノールを重量比
で20%ずつ添加してスラリーを得た。支持体9上にス
ラリーを塗布し、乾燥させた後、収縮により電極材料1
0が陥没した支持体9の貫通孔12の部分にスラリーを
塗布し、乾燥を行うことにより基板表面の平坦性を高め
た。次に400℃、4時間加熱することにより脱脂した
後、1300℃、2時間の焼き付けを行うことで被覆部
を形成した。
Hollow flat plate-shaped support 9 produced by the above steps
Was coated with electrode material 10. Coating is slurry coating,
It was done by sintering. La0.8Sr0.2MnO3 powder, which is an electrode material, was used as a raw material powder for preparing a slurry, and polyethylene glycol and ethanol were added at 20% by weight ratio to obtain a slurry. The slurry is applied onto the support 9 and dried, and then the electrode material 1 is contracted by contraction.
The flatness of the substrate surface was improved by applying the slurry to the portion of the through hole 12 of the support body 9 in which 0 was depressed and drying it. Next, the coating part was formed by degreasing by heating at 400 ° C. for 4 hours and then baking at 1300 ° C. for 2 hours.

【0019】このようにして作製した中空平板状燃料電
池基板の曲げ強度を測定したところ、約17MPaであ
った。従来の電極材料により形成した基板の曲げ強度
が、おおよそ6MPaであったことから、基板内部に平
板状多孔質支持体9を配したことにより、基板の曲げ強
度が3倍近く増加したことになる。
The bending strength of the thus manufactured hollow flat plate fuel cell substrate was measured and found to be about 17 MPa. Since the bending strength of the substrate formed of the conventional electrode material was about 6 MPa, by disposing the flat plate-shaped porous support member 9 inside the substrate, the bending strength of the substrate increased nearly three times. .

【0020】[実施例2]図3は本発明の他の実施例に
よる中空平板状燃料電池基板の外観を示した斜視図であ
り、図4は図3のX−X’面に沿う断面の斜視図であ
る。図中、他の図の同一部分に相当するものは同一符号
を付してその説明を省略する。本実施例で用いた円筒形
支持体9は、実施例1と同一の原料を用い、実施例1と
同様に押し出し成形体を焼結する事により作製した。焼
結後の1本の支持体9の大きさは、例えば外径4mm長
さ150mmである。
[Embodiment 2] FIG. 3 is a perspective view showing an outer appearance of a hollow flat plate type fuel cell substrate according to another embodiment of the present invention, and FIG. 4 is a cross-sectional view taken along the line XX 'of FIG. It is a perspective view. In the figures, those parts corresponding to the same parts in the other figures are designated by the same reference numerals, and a description thereof will be omitted. The cylindrical support 9 used in this example was produced by using the same raw material as in Example 1 and sintering an extruded body in the same manner as in Example 1. The size of one support 9 after sintering is, for example, an outer diameter of 4 mm and a length of 150 mm.

【0021】電極材料10による被覆はプレス法により
行った。先ず、酸化剤電極の原料粉末100に対し、バ
インダであるメチルセルロース系水溶性高分子を約5、
水10(重量ベースの混合比)を添加した後、原料混練
機によって混練し、粘土状の電極材料10を作製した。
このように作製した電極材料10を、ステンレス製の長
方形の枠の中に厚さ4mm程度に平らに敷き、その上
に、焼成した支持体9を所定の間隔に並べ、その上に粘
土状の電極材料10を再び4mm程度の厚さに乗せ、さ
らに長方形の枠の内寸に合わせたステンレス製のシリン
ダーを乗せ、プレス機により上下から10Kgの圧力で
圧縮して基板を形成した。この後、実施例1と同様な条
件で脱脂、焼結を行うことで基板を作製した。
The coating with the electrode material 10 was performed by a pressing method. First, with respect to the raw material powder 100 for the oxidizer electrode, about 5 parts of the methylcellulose-based water-soluble polymer, which is the binder,
After adding water 10 (mixing ratio on a weight basis), the raw material kneader was kneaded to prepare a clay-like electrode material 10.
The electrode material 10 produced in this manner is laid flat in a rectangular frame made of stainless steel to a thickness of about 4 mm, and the fired supports 9 are arranged at a predetermined interval thereon, and a clay-like material is formed thereon. The electrode material 10 was placed again with a thickness of about 4 mm, a stainless steel cylinder fitted to the inner dimensions of a rectangular frame was placed thereon, and the substrate was formed by compressing from above and below with a press machine at a pressure of 10 kg. Then, a substrate was prepared by performing degreasing and sintering under the same conditions as in Example 1.

【0022】このようにして作製した中空平板状燃料電
池基板の曲げ強度を測定したところ、約11MPaであ
った。 [実施例3]図5は本発明のさらに他の実施例による中
空平板状燃料電池基板の外観を示した斜視図であり、図
6は図5のX−X’面に沿う断面の斜視図である。図
中、他の図の同一部分に相当するものは同一符号を付し
てその説明を省略する。櫛形状支持体9は以下に示した
手順により作製した。まず、実施例1と同一の原料を用
い、押し出し成形により円筒形の部材を形成する。乾燥
させた後、所定の長さに切りだした一本の円筒形部材の
両端を押し出し成形に用いた粘土状の材料で封止する。
さらに、両端を封止した部材の、櫛の歯に相当する円筒
形部材を接着する部分に、円筒内の空洞部が現れるよう
に切りかきを設ける。次に、上記円筒形部材の切りかき
部分と、所定の長さに切った円筒形部材の一端とに水を
つけ、各部材中のバインダーをわずかに溶かしてから、
これらの部分を接着する。さらに接着部を粘土状の部材
により補強した。この様にして櫛形状の形状とした後、
再び乾燥を行い、次に、実施例1と同様の条件で脱脂、
焼結を行った。
The bending strength of the thus manufactured hollow flat fuel cell substrate was about 11 MPa. [Embodiment 3] FIG. 5 is a perspective view showing an outer appearance of a hollow flat plate type fuel cell substrate according to still another embodiment of the present invention, and FIG. 6 is a perspective view of a cross section taken along the plane XX 'of FIG. Is. In the figures, those parts corresponding to the same parts in the other figures are designated by the same reference numerals, and a description thereof will be omitted. The comb-shaped support 9 was produced by the procedure shown below. First, using the same raw material as in Example 1, a cylindrical member is formed by extrusion molding. After drying, one end of a single cylindrical member cut into a predetermined length is sealed with the clay-like material used for extrusion molding.
Further, a cutout is provided in a portion of the member whose both ends are sealed to which the cylindrical member corresponding to the teeth of the comb is bonded so that the hollow portion in the cylinder appears. Next, water is applied to the cut portion of the cylindrical member and one end of the cylindrical member cut into a predetermined length to slightly dissolve the binder in each member,
Glue these parts together. Further, the bonded portion was reinforced with a clay-like member. After making a comb shape like this,
It is dried again, and then degreased under the same conditions as in Example 1,
Sintering was performed.

【0023】電極材料10による被覆は実施例2と同様
にプレス法により行った。このようにして作製した中空
平板状燃料電池基板の曲げ強度を測定したところ、約1
1MPaであった。
The coating with the electrode material 10 was carried out by the pressing method as in Example 2. The bending strength of the hollow flat-plate fuel cell substrate produced in this way was measured to be about 1
It was 1 MPa.

【0024】なお、前述した実施例においては、支持体
9の被覆材料として酸素極材料を用いたが、燃料極材料
を用いてもかまわない。また、多孔質支持体9の材料と
してはCSZの他に、YSZ、アルミナ、マグネシア、
セリア等が挙げられる。さらに、基板内のガス流路の断
面形状として、実施例1では四角形を、実施例2及び3
では円形の形状としたが、三角形や六角形等の他の多角
形や楕円形等の断面形状でもかまわない。また、基板形
状はセル容器等の形状に合わせて、上記実施例において
用いた直方体以外の形状としてもかまわない。
In the above-mentioned embodiment, the oxygen electrode material is used as the coating material for the support 9, but a fuel electrode material may be used. Further, as the material of the porous support 9, in addition to CSZ, YSZ, alumina, magnesia,
Examples include ceria. Furthermore, as the cross-sectional shape of the gas flow path in the substrate, a square is used in the first embodiment, and a square shape is used in the second and third embodiments.
In the above, the circular shape is used, but other polygonal shapes such as a triangle and a hexagon, and an elliptical sectional shape may be used. Further, the shape of the substrate may be a shape other than the rectangular parallelepiped used in the above-mentioned embodiment, depending on the shape of the cell container or the like.

【0025】[0025]

【発明の効果】以上述べたように本発明によれば、次の
ような効果がある。即ち、請求項1記載の中空平板状燃
料電池基板によれば、多孔質支持体により形成されたガ
ス流路を電極材料で被覆することにより、従来の中空平
板状燃料電池基板の長所であるガスシールの容易さなど
の特徴を損ねること無く、基板強度を高めることが可能
となった。この結果、中空平板状固体電解質型燃料電池
の信頼性や耐久性が高められ、なおかつ燃料電池セルの
大型化による燃料電池の高出力化が容易になり、産業上
からも極めて大きな効果を得ることが出来る。
As described above, the present invention has the following effects. That is, according to the hollow flat plate type fuel cell substrate according to claim 1, the gas flow path formed by the porous support is covered with the electrode material, which is an advantage of the conventional hollow flat plate type fuel cell substrate. It has become possible to increase the strength of the substrate without damaging features such as ease of sealing. As a result, the reliability and durability of the hollow flat plate solid oxide fuel cell are improved, and the output of the fuel cell can be easily increased by increasing the size of the fuel cell, and an extremely large effect can be obtained industrially. Can be done.

【0026】また、請求項2記載の中空平板状燃料電池
基板によれば、請求項1記載の中空平板状燃料電池基板
と同様の効果を奏するとともに、平板状の多孔質支持体
を採用することにより基板全面における強度を高め、一
方、支持体に貫通孔を設けてその内部に電極材料を充填
することにより、基板上面と下面との間に流れる電流
を、基板側面のみならず、基板の貫通孔の部分に流すこ
とができ、電池の内部抵抗の増加を抑制することが可能
となった。
Further, according to the hollow flat plate fuel cell substrate of the second aspect, the same effect as that of the hollow flat plate fuel cell substrate of the first aspect is obtained, and a flat plate-shaped porous support is adopted. By increasing the strength of the entire surface of the substrate by forming a through hole in the support and filling the inside with an electrode material, the current flowing between the upper surface and the lower surface of the substrate can be transmitted not only through the side surface of the substrate but also through the substrate. It was possible to flow into the holes, and it became possible to suppress an increase in internal resistance of the battery.

【0027】また、請求項3記載の中空平板状燃料電池
基板によれば、請求項1記載の中空平板状燃料電池基板
と同様の効果を奏するとともに、多孔質支持体の形状を
単純な筒形状とすることにより、支持体および支持体を
有する基板の作製を容易にすることが可能となった。
According to the hollow flat plate fuel cell substrate of the third aspect, the same effect as that of the hollow flat plate fuel cell substrate of the first aspect is obtained, and the porous support has a simple tubular shape. By making it possible to facilitate the production of the support and the substrate having the support.

【0028】また、請求項4記載の中空平板状燃料電池
基板によれば、請求項1記載の中空平板状燃料電池基板
と同様の効果を奏するとともに、基板内でガス流路を折
り返し、基板の一筒所の端面のみにガス流路の開口部を
設けたことにより、本発明の基板を用いて作製した単位
発電セルにより燃料電池を組み立てる際、燃料電池容器
のガス流路と単位発電セルのガス流路との接続部を1筒
所とする事が可能となった。この結果、ガスシールが必
要な部分が単位発電セル一個当たりこの一筒所のみとな
り、燃料電池スタックの組立が容易になるとともに、電
池の信頼性や耐久性をより高めることが可能となった。
Further, according to the hollow flat plate type fuel cell substrate of the fourth aspect, the same effect as that of the hollow flat plate type fuel cell substrate of the first aspect can be obtained, and the gas flow path is folded back in the substrate to form the substrate. When the fuel cell is assembled with the unit power generation cell manufactured using the substrate of the present invention by providing the gas flow path opening only on the end face of the single cylinder, the gas flow path of the fuel cell container and the unit power generation cell It has become possible to connect the gas flow passage to one cylinder. As a result, the portion where the gas seal is required is only this one cylinder per unit power generation cell, which facilitates the assembly of the fuel cell stack and further enhances the reliability and durability of the cell.

【0029】また、請求項5記載の中空平板状燃料電池
基板によれば、基板内に配置した支持体と支持体との間
の部分において電極材料が基板上面から下面まで連続し
た構造とする事により、電池動作時に基板の上面と下面
との間に流れる電流に対する抵抗を減少することが可能
となり、より出力の高い燃料電池を構成することが可能
となった。
Further, according to the hollow flat plate type fuel cell substrate of the present invention, the electrode material is continuous from the upper surface to the lower surface of the substrate in the portion between the supports arranged in the substrate. As a result, it is possible to reduce the resistance to the current flowing between the upper surface and the lower surface of the substrate during the operation of the cell, and it is possible to construct a fuel cell having a higher output.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による中空平板状燃料電池基板の一実施
例の外観を示した斜視図である。
FIG. 1 is a perspective view showing the appearance of an embodiment of a hollow flat plate fuel cell substrate according to the present invention.

【図2】図1に示す実施例の中空平板状燃料電池基板の
X−X’面に沿う断面の斜視図である。
FIG. 2 is a perspective view of a cross section taken along the plane XX ′ of the hollow flat plate fuel cell substrate of the embodiment shown in FIG.

【図3】本発明による中空平板状燃料電池基板の他の実
施例の外観を示した斜視図である。
FIG. 3 is a perspective view showing an appearance of another embodiment of the hollow flat plate type fuel cell substrate according to the present invention.

【図4】図3に示す実施例の中空平板状燃料電池基板の
X−X’面に沿う断面の斜視図である。
FIG. 4 is a perspective view of a cross section taken along the plane XX ′ of the hollow flat plate fuel cell substrate of the embodiment shown in FIG.

【図5】本発明による中空平板状燃料電池基板のさらに
他の実施例の外観を示した斜視図である。
FIG. 5 is a perspective view showing the appearance of yet another embodiment of the hollow flat plate type fuel cell substrate according to the present invention.

【図6】図5に示す実施例の中空平板状燃料電池基板の
X−X’面に沿う断面の斜視図である。
6 is a perspective view of a cross section taken along the line XX ′ of the hollow flat plate fuel cell substrate of the embodiment shown in FIG.

【図7】従来の固体電解質型燃料電池の組立状態の分解
斜視図である。
FIG. 7 is an exploded perspective view of an assembled state of a conventional solid oxide fuel cell.

【図8】従来の内部にガス流路を有する基板を用いた固
体電解質型燃料電池の斜視図である。
FIG. 8 is a perspective view of a conventional solid oxide fuel cell using a substrate having a gas channel inside.

【符号の説明】[Explanation of symbols]

1…電解質、2…燃料極、3…酸化剤極、3’…基板
(中空平板状酸化剤極)、4…インタコネクタ、5…燃
料ガス流路、6…酸化剤ガス流路、7…単セル、8…緻
密膜、9…多孔質支持体、10…電極材料、11…ガス
流路、12…貫通孔。
1 ... Electrolyte, 2 ... Fuel electrode, 3 ... Oxidizer electrode, 3 '... Substrate (hollow flat plate oxidizer electrode), 4 ... Interconnector, 5 ... Fuel gas flow path, 6 ... Oxidant gas flow path, 7 ... Single cell, 8 ... Dense film, 9 ... Porous support, 10 ... Electrode material, 11 ... Gas flow path, 12 ... Through hole.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 真鍋 勝己 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 (72)発明者 金川 姫子 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Katsumi Manabe 1-6, Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation (72) Himeko Kanagawa 1-6-1, Uchisaiwaicho, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質型燃料電池に使用される、内
部に複数の流路が配置された中空平板状の基板であっ
て、流路を形成する多孔質支持体を基板内部に有し、該
多孔質支持体上を電極材料で被覆した構造であることを
特徴とする中空平板状燃料電池基板。
1. A hollow flat plate-shaped substrate for use in a solid oxide fuel cell in which a plurality of channels are arranged, the substrate having a porous support for forming channels, A hollow flat plate fuel cell substrate having a structure in which the porous support is covered with an electrode material.
【請求項2】 上記多孔質支持体として、内部に複数の
流路を有する平板状の支持体を用い、該支持体にはその
上面から下面まで貫通し、かつ流路とは交わらない貫通
孔を少なくとも1個以上有し、該貫通孔には電極材料が
充填された構造であることを特徴とする請求項1記載の
中空平板状燃料電池基板。
2. A flat plate-shaped support having a plurality of flow channels therein is used as the porous support, and the support has a through hole that penetrates from the upper surface to the lower surface and does not intersect the flow channels. 2. The hollow flat plate type fuel cell substrate according to claim 1, which has at least one of the above, and has a structure in which the through hole is filled with an electrode material.
【請求項3】 上記多孔質支持体として筒状の形状でそ
の両端に開口部を有する支持体を複数用い、該支持体の
両端が燃料電池基板の端面に露出していることを特徴と
する請求項1記載の中空平板状燃料電池基板。
3. A plurality of supports having a cylindrical shape and having openings at both ends thereof are used as the porous support, and both ends of the support are exposed at an end face of a fuel cell substrate. The hollow flat plate type fuel cell substrate according to claim 1.
【請求項4】 上記多孔質支持体の形状が筒状の部材を
組み合わせた櫛形状であり、該櫛形状支持体の端部の少
なくとも2カ所以上に開口部を有し、かつ、該開口部が
基板の1箇所の端面に露出した形状であることを特徴と
する請求項1記載の中空平板状燃料電池基板。
4. The porous support has a comb shape in which tubular members are combined, and has openings at least at two or more end portions of the comb support, and the openings are provided. 2. The hollow flat plate type fuel cell substrate according to claim 1, wherein is a shape exposed at one end surface of the substrate.
【請求項5】 基板内に複数配置した支持体間で前記電
極材料が基板上面から下面まで連続した構造となってい
ることを特徴とする請求項3または4記載の中空平板状
燃料電池基板。
5. The hollow flat plate type fuel cell substrate according to claim 3, wherein the electrode material has a structure in which a plurality of supports are arranged in the substrate and the electrode material is continuous from the upper surface to the lower surface of the substrate.
JP6172850A 1994-07-25 1994-07-25 Fuel cell base board in hollow flat plate form Pending JPH0837011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6172850A JPH0837011A (en) 1994-07-25 1994-07-25 Fuel cell base board in hollow flat plate form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6172850A JPH0837011A (en) 1994-07-25 1994-07-25 Fuel cell base board in hollow flat plate form

Publications (1)

Publication Number Publication Date
JPH0837011A true JPH0837011A (en) 1996-02-06

Family

ID=15949466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6172850A Pending JPH0837011A (en) 1994-07-25 1994-07-25 Fuel cell base board in hollow flat plate form

Country Status (1)

Country Link
JP (1) JPH0837011A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1122806A1 (en) 2000-02-02 2001-08-08 Haldor Topsoe A/S Solid oxide fuel cell
JP2007095384A (en) * 2005-09-27 2007-04-12 Kyocera Corp Fuel battery cell and fuel battery
JP2008059793A (en) * 2006-08-29 2008-03-13 Kyocera Corp Fuel cell and horizontal-stripe type cell therefor
US7449214B2 (en) 2002-03-27 2008-11-11 Haldor Topsoe A/S Process for the preparation of solid oxide fuel cell
US9147890B2 (en) 2010-05-11 2015-09-29 Ford Global Technologies, Llc Fuel cell with embedded flow field

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1122806A1 (en) 2000-02-02 2001-08-08 Haldor Topsoe A/S Solid oxide fuel cell
US6783880B2 (en) 2000-02-02 2004-08-31 Haldor Topsoe A/S Porous planar electrode support in a solid oxide fuel cell
US7449214B2 (en) 2002-03-27 2008-11-11 Haldor Topsoe A/S Process for the preparation of solid oxide fuel cell
JP2007095384A (en) * 2005-09-27 2007-04-12 Kyocera Corp Fuel battery cell and fuel battery
JP2008059793A (en) * 2006-08-29 2008-03-13 Kyocera Corp Fuel cell and horizontal-stripe type cell therefor
US9147890B2 (en) 2010-05-11 2015-09-29 Ford Global Technologies, Llc Fuel cell with embedded flow field

Similar Documents

Publication Publication Date Title
KR101083701B1 (en) Reversible Solid Oxide Fuel Cell Stack and Method for Preparing Same
JP3215650B2 (en) Electrochemical cell, method for producing the same, and electrochemical device
JP3064167B2 (en) Solid electrolyte fuel cell
JP2009507356A (en) Ceramic membrane with integral seal and support, and electrochemical cell and electrochemical cell stack structure including the same
JP3102809B2 (en) Hollow thin plate solid electrolyte fuel cell
JP3495654B2 (en) Cell tube seal structure
WO2012086420A1 (en) Junction for electrically connecting power generation units of solid oxide fuel cell
US6096451A (en) Solid-electrolyte fuel cell
JP2013012397A (en) Solid oxide fuel cell and fuel cell module
JP2004265734A (en) Fuel battery cell
JP5105840B2 (en) Flat fuel cell interconnector and method for manufacturing the same, flat fuel cell, flat fuel cell stack and method for manufacturing the same
JP4798947B2 (en) Fuel cell, cell stack and fuel cell
JPH01197972A (en) Plate shaped solid electrolyte type fuel cell
JP5362605B2 (en) Solid oxide fuel cell
JP3166888B2 (en) Solid oxide fuel cell stack
JPH0837011A (en) Fuel cell base board in hollow flat plate form
JPH06349516A (en) Stack for solid electrolyte type fuel cell
KR101180844B1 (en) Contact arrangement and method for assembling a fuel cell stack from at least one contact arrangement
JP2826243B2 (en) Solid oxide fuel cell and method of manufacturing the same
JPH09180732A (en) Solid electrolyte fuel cell board and method for manufacturing cell using the board
CN113488689B (en) Solid oxide fuel cell stack and method for preparing the same
JP3966950B2 (en) Electrochemical cell support, electrochemical cell and production method thereof
JP3063952B2 (en) Hollow flat solid electrolyte fuel cell
JPH07130385A (en) Cylindrical lateral band type solid electrolyte electrolytic cell
JP2980921B2 (en) Flat solid electrolyte fuel cell