JPH0834645A - Portland cement for centrifugal forming, hydraulic compound and production of its hardened body - Google Patents
Portland cement for centrifugal forming, hydraulic compound and production of its hardened bodyInfo
- Publication number
- JPH0834645A JPH0834645A JP19352694A JP19352694A JPH0834645A JP H0834645 A JPH0834645 A JP H0834645A JP 19352694 A JP19352694 A JP 19352694A JP 19352694 A JP19352694 A JP 19352694A JP H0834645 A JPH0834645 A JP H0834645A
- Authority
- JP
- Japan
- Prior art keywords
- binder
- weight
- aggregate
- hydraulic
- sieve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011398 Portland cement Substances 0.000 title claims abstract description 32
- 150000001875 compounds Chemical class 0.000 title claims description 16
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 58
- 239000011230 binding agent Substances 0.000 claims abstract description 54
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 23
- 238000006703 hydration reaction Methods 0.000 claims abstract description 14
- 230000036571 hydration Effects 0.000 claims abstract description 13
- RAFRTSDUWORDLA-UHFFFAOYSA-N phenyl 3-chloropropanoate Chemical compound ClCCC(=O)OC1=CC=CC=C1 RAFRTSDUWORDLA-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims abstract description 6
- 239000002245 particle Substances 0.000 claims description 28
- 238000000465 moulding Methods 0.000 claims description 27
- 239000000843 powder Substances 0.000 claims description 11
- 239000002253 acid Substances 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 3
- 239000004576 sand Substances 0.000 abstract description 3
- 239000012779 reinforcing material Substances 0.000 abstract description 2
- 238000001723 curing Methods 0.000 description 23
- 239000000047 product Substances 0.000 description 22
- 230000000694 effects Effects 0.000 description 12
- 239000004567 concrete Substances 0.000 description 9
- 239000004568 cement Substances 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 238000004898 kneading Methods 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000002893 slag Substances 0.000 description 4
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 238000007873 sieving Methods 0.000 description 3
- 229910021487 silica fume Inorganic materials 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229920000877 Melamine resin Polymers 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000011372 high-strength concrete Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- ATVJXMYDOSMEPO-UHFFFAOYSA-N 3-prop-2-enoxyprop-1-ene Chemical compound C=CCOCC=C ATVJXMYDOSMEPO-UHFFFAOYSA-N 0.000 description 1
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- LFYJSSARVMHQJB-QIXNEVBVSA-N bakuchiol Chemical compound CC(C)=CCC[C@@](C)(C=C)\C=C\C1=CC=C(O)C=C1 LFYJSSARVMHQJB-QIXNEVBVSA-N 0.000 description 1
- QXJJQWWVWRCVQT-UHFFFAOYSA-K calcium;sodium;phosphate Chemical compound [Na+].[Ca+2].[O-]P([O-])([O-])=O QXJJQWWVWRCVQT-UHFFFAOYSA-K 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 150000001990 dicarboxylic acid derivatives Chemical class 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/04—Portland cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/02—Portland cement
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/56—Compositions suited for fabrication of pipes, e.g. by centrifugal casting, or for coating concrete pipes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、遠心力成形用ポルト
ランドセメント及び水硬性配合物並びにその硬化体の製
造方法、特に高強度なコンクリートポールやコンクリー
トパイル等の遠心力成形品を製造するための遠心力成形
用ポルトランドセメント及び水硬性配合物並びにその硬
化体の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a Portland cement for centrifugal force forming, a hydraulic compound, and a cured product thereof, and particularly for producing centrifugally molded articles such as high-strength concrete poles and concrete piles. The present invention relates to a Portland cement for centrifugal molding, a hydraulic compound, and a method for producing a cured product thereof.
【0002】[0002]
【従来の技術】従来、800kgf/cm2 を越える高
強度コンクリートポールやコンクリートパイル等の遠心
力成形品は、オートクレーブによる高圧高温養生、或い
は、硫酸カルシウムの無水塩(高強度混和材)を配合し
たコンクリートを調整し、遠心力成形後蒸圧蒸気養生す
ることにより製造されている(特公昭57−40105
号公報)。このような遠心力成形品において、高強度を
得ようとする場合、水/結合材重量比の低減を図ること
が不可欠であり、前記公報では、高強度混和材の使用と
共に、花王社「マイティ」(商品名)や昭和電工社「メ
ルメント」(商品名)等のナフタレンスルホン酸系やメ
ラミンスルホン酸系の高性能減水剤を用いることによ
り、水/結合材重量比の低減(水セメント比29〜34
%)を可能とし、材令1日程度で800kgf/cm2
以上の高強度PCコンクリート杭が得られている。 2. Description of the Related Art Conventionally, centrifugal force molded articles such as high strength concrete poles and concrete piles exceeding 800 kgf / cm 2 are cured under high pressure and high temperature by an autoclave or an anhydrous salt of calcium sulfate (high strength admixture) is blended. It is manufactured by adjusting concrete, steaming and curing it after centrifugal molding (Japanese Patent Publication No. S57-40105).
Issue). In order to obtain high strength in such a centrifugal force molded product, it is indispensable to reduce the water / binder weight ratio. (Trade name) and Showa Denko KK “Melment” (trade name), etc., the use of naphthalene sulfonic acid-based or melamine sulfonic acid-based high-performance water reducing agents reduces the water / binder weight ratio (water cement ratio 29 ~ 34
%) Is possible, and 800 kgf / cm 2 in about 1 day
The above high-strength PC concrete piles have been obtained.
【0003】しかしながら、前記高強度遠心力成形品
は、高価な高強度混和材を併用して得られるものであ
り、さらに水/結合材重量比を低減し、超高強度硬化体
を得ようとする場合、一般に使用される普通ポルトラン
ドセメントや早強ポルトランドセメントでは、特に、水
/結合材重量比を0.25以下、細骨材/結合材重量比
を0.20以上にもすると、著しい固練り状態や遠心力
による材料分離が大きくなったり、あるいは、経時的に
急速に流動性を失う現象が現れる等、良好な作業性と十
分な作業時間を確保することができなかった。However, the high-strength centrifugal molded product is obtained by using an expensive high-strength admixture together, and further, the water / binder weight ratio is reduced to obtain an ultra-high-strength cured product. In the case of ordinary Portland cement and early-strength Portland cement that are generally used, especially when the water / binder weight ratio is 0.25 or less and the fine aggregate / binder weight ratio is 0.20 or more, the solid content is significantly increased. It was not possible to secure good workability and sufficient work time, for example, the material separation due to the kneading state or centrifugal force became large, or the phenomenon of fluidity rapidly disappearing with time appeared.
【0004】一方、製造コストは高くなるものの、高圧
高温養生を行うことにより高強度硬化体を得る事ができ
るが、高圧蒸気養生により得られる最終強度は20℃水
中養生を行う場合の7〜8割り程度にすぎないことなど
もあり、やはり無水石膏やシリカヒューム等の高価な高
強度混和材を使用しなければ1200Kgf/cm2 以上の圧
縮強度を得るのは実質的に困難であった。On the other hand, although the manufacturing cost is high, a high-strength cured product can be obtained by performing high-pressure high-temperature curing, but the final strength obtained by high-pressure steam curing is 7 to 8 when performing water curing at 20 ° C. However, it is practically difficult to obtain a compressive strength of 1200 Kgf / cm 2 or more unless expensive high-strength admixtures such as anhydrous gypsum and silica fume are used.
【0005】[0005]
【発明が解決しようとする課題】このように、高強度遠
心力成形品は、高価な高強度混和材を必要とし、しかも
高性能減水剤の添加だけでは、0.25以下の超低水/
結合材重量比での減水、流動化作用が十分でなく、通常
の遠心成形作業で超高強度硬化体を得るには限度があ
る。As described above, a high-strength centrifugal force molded product requires an expensive high-strength admixture, and when only a high-performance water reducing agent is added, an ultra-low water content of 0.25 or less can be obtained.
The water-reducing and fluidizing actions in the weight ratio of the binder are not sufficient, and there is a limit in obtaining an ultra-high-strength cured product by a normal centrifugal molding operation.
【0006】従って、この発明の目的は、高強度混和材
を用いることなしに、しかも水/結合材重量比が0.2
5以下のような超低水/結合材比においても、良好な作
業性と十分な作業時間を確保することができ、通常の遠
心力成形作業で、高強度硬化体を得ることができる遠心
力成形用ポルトランドセメント及び水硬性配合物並びに
その硬化体の製造方法を提供することにある。It is therefore an object of the present invention to use a water / binder weight ratio of 0.2 without the use of high strength admixtures.
Centrifugal force capable of obtaining a high-strength cured product by ensuring normal workability and sufficient work time even at an ultra-low water / binder ratio of 5 or less, and by ordinary centrifugal force molding work. It is intended to provide a method for producing Portland cement for molding, a hydraulic compound, and a cured product thereof.
【0007】[0007]
【課題を解決するための手段】上述の目的を達成するた
めに、この発明の遠心力成形用ポルトランドセメントに
よれば、水硬率2.20以上で、ブレーン比表面積40
00cm2 /g以上、30μm篩上残分値15〜25重量
%に調整したこと(請求項1)を特徴とし、又この発明
の遠心力成形用水硬性配合物によれば、結合材、骨材、
高性能減水剤、及び水を含み、結合材が水硬率2.20
以上で、ブレーン比表面積4000cm2/g以上、30
μm篩上残分値15〜25重量%に調整したポルトラン
ドセメントであること(請求項2)、結合材、骨材、高
性能減水剤、及び水を含み、結合材が水硬率2.20以
上で、ブレーン比表面積4000cm2 /g以上、30μ
m篩上残分値15〜25重量%に調整したポルトランド
セメント80重量部以上と、ブレーン比表面積1000
0cm2 /g以上の超微粉末20重量部以下からなること
(請求項3)、骨材が0.15mmの篩を通過する粒子
が5重量%以下となるように粒度調整した細骨材を含
み、細骨材/結合材重量比が0.20以上であること
(請求項4)、細骨材が球状骨材であること(請求項
5)、高性能減水剤がポリカルボン酸系の高性能減水剤
であること(請求項6)、水/結合材重量比が0.10
〜0.25であること(請求項7)、100重量部に対
して、2.0重量%以下の水和促進剤を含むこと(請求
項8)、水和促進剤が亜硝酸カルシウムであること(請
求項9)を特徴とする。To achieve the above object, according to the Portland cement for centrifugal molding of the present invention, the hydraulic modulus is 2.20 or more and the Blaine specific surface area is 40.
According to the hydraulic composition for centrifugal molding of the present invention, the binder and the aggregate are characterized in that the residual value on the sieve of 00 cm 2 / g or more and the 30 μm sieve is adjusted to 15 to 25% by weight. ,
Contains a high-performance water reducing agent and water, and the binder has a hydraulic modulus of 2.20.
With the above, the Blaine specific surface area of 4000 cm 2 / g or more, 30
It is Portland cement adjusted to a residual value on the sieving sieve of 15 to 25% by weight (claim 2), contains a binder, an aggregate, a high-performance water reducing agent, and water, and the binder has a hydraulic modulus of 2.20. With the above, the Blaine specific surface area of 4000 cm 2 / g or more, 30μ
80 parts by weight or more of Portland cement adjusted to a residual value on the sieve of 15 to 25% by weight, and a Blaine specific surface area of 1000
Fine aggregate of which particle size is adjusted so that the amount of particles passing through a sieve having a diameter of 0.15 mm is 5% by weight or less, comprising 20 parts by weight or less of ultrafine powder of 0 cm 2 / g or more (claim 3). The fine aggregate / binder weight ratio is 0.20 or more (Claim 4), the fine aggregate is a spherical aggregate (Claim 5), and the high-performance water reducing agent is a polycarboxylic acid type. It is a high-performance water reducing agent (Claim 6) and has a water / binder weight ratio of 0.10.
Is 0.25 (claim 7), contains 2.0% by weight or less of a hydration accelerator with respect to 100 parts by weight (claim 8), and the hydration accelerator is calcium nitrite. (Claim 9).
【0008】さらに、この発明の遠心力成形水硬性硬化
体の製造方法によれば、結合材、骨材、高性能減水剤、
及び水を含む水硬性配合物を遠心成形するに当たり、結
合材として水硬率2.20以上で、ブレーン比表面積4
000cm2 /g以上、30μm篩上残分値15〜25
重量%に調整したポルトランドセメントを用いることこ
と(請求項10)、結合材が水硬率2.20以上で、ブ
レーン比表面積4000cm2 /g以上、30μm篩上
残分値15〜25重量%に調整したポルトランドセメン
ト80重量部以上と、ブレーン比表面積10000cm
2 /g以上の超微粉末20重量部以下からなること(請
求項11)、遠心成形した後、蒸気養生若しくは蒸気養
生及びオートクレーブ養生を行うこと(請求項12)、
水/結合材重量比が0.10〜0.25で練り混ぜ、遠
心成形すること(請求項13)、骨材が0.15mmの
篩を通過する粒子が5重量%以下となるように粒度調整
した細骨材を含み、細骨材/結合材重量比が0.20以
上であること(請求項14)、細骨材が球状骨材である
こと(請求項15)、水硬性配合物が、結合材100重
量部に対して、2.0重量%以下の水和促進剤を含むこ
と(請求項16)、水和促進剤が亜硝酸カルシウムであ
ること(請求項17)を特徴とする。以下、この発明を
詳しく説明する。Furthermore, according to the method for producing a centrifugally formed hydraulically cured product of the present invention, a binder, an aggregate, a high-performance water reducing agent,
When centrifugally molding a hydraulic composition containing water and water, the binder has a hydraulic modulus of 2.20 or more and a Blaine specific surface area of 4
000 cm 2 / g or more, residual value on sieve of 30 μm 15 to 25
Use of Portland cement adjusted to 10% by weight (claim 10), the binder has a hydraulic modulus of 2.20 or more, a Blaine specific surface area of 4000 cm 2 / g or more, and a residual value on the 30 μm sieve of 15 to 25% by weight. 80 parts by weight or more of adjusted Portland cement and a Blaine specific surface area of 10000 cm
20 parts by weight or less of 2 / g or more of ultrafine powder (claim 11), steam curing or steam curing and autoclave curing after centrifugal molding (claim 12),
Kneading with a water / binder weight ratio of 0.10 to 0.25 and centrifuging (claim 13), so that the particle size of the aggregate that passes through a 0.15 mm sieve is 5% by weight or less. The adjusted fine aggregate, the fine aggregate / bonding material weight ratio is 0.20 or more (claim 14), the fine aggregate is spherical aggregate (claim 15), and the hydraulic compound. Contains 2.0% by weight or less of a hydration accelerator with respect to 100 parts by weight of the binder (claim 16), and the hydration accelerator is calcium nitrite (claim 17). To do. Hereinafter, the present invention will be described in detail.
【0009】この発明おいて、結合材は、普通、早強、
超早強、中庸熱、耐硫酸塩、白色などの各種ポルトラン
ドセメントを使用することが出来るが、短期材令におけ
る水和反応性、流動性及び強度発現性を考慮し、水硬率
2.20以上で、ブレーン比表面積4000cm2 /g以
上、エア・ジェット式ふるい装置による30μm篩上残
分値が15〜25重量%になるように調整したポルトラ
ンドセメントが好適に使用できる。水硬率2.20及び
ブレーン比表面積4000cm2 /gを下回ると、短期
材令おいて十分な強度発現性が得られない。また、30
μm篩上残分値は、流動性及び強度発現性の両面を考慮
したものであり、30μmの篩上に残る粒子の量が15
重量%を下回ると、十分な流動性が得られず、これが2
5重量%を越えると、強度発現性が低下すると共に粗大
なセメント粒子が細骨材中の微粒分と干渉するために流
動性が低下する。In the present invention, the binder is a normal, early strength,
Various portland cements such as super early strength, moderate heat, sulfate resistance, white, etc. can be used, but in consideration of hydration reactivity, fluidity and strength development in a short-term age, the water hardness is 2.20. Thus, Portland cement adjusted so that the Blaine specific surface area is 4000 cm 2 / g or more and the residual value on the 30 μm sieve by the air jet type sieving device is 15 to 25% by weight can be preferably used. If the hydraulic modulus is less than 2.20 and the Blaine specific surface area is less than 4000 cm 2 / g, sufficient strength development cannot be obtained in a short-term age. Also, 30
The residual value on the μm sieve is in consideration of both fluidity and strength development, and the amount of particles remaining on the 30 μm sieve is 15
Below the weight%, sufficient fluidity cannot be obtained, which is 2
When it exceeds 5% by weight, strength development is lowered and coarse cement particles interfere with fine particles in the fine aggregate, so that fluidity is lowered.
【0010】このようなポルトランドセメントにおい
て、30μm篩上残分値の調整に加えて、数1によって
得られる粒度分布指数値(DI値)が0.5以下、好ま
しくは0.3以下になるように粒度分布をさらに調整す
ることにより、極めて流動性に優れ、超低水/結合材比
の実現を可能とし、より高強度の遠心力成形品を得るこ
とができる。In such Portland cement, in addition to the adjustment of the residual value on the 30 μm sieve, the particle size distribution index value (DI value) obtained by Equation 1 is 0.5 or less, preferably 0.3 or less. By further adjusting the particle size distribution, it is possible to obtain a centrifugally molded product having an extremely excellent fluidity, an ultra-low water / binder ratio, and a higher strength.
【0011】[0011]
【数1】 [Equation 1]
【0012】数1において、D10、D50及びD90は、そ
れぞれ篩上残分が10重量%、50重量%及び90重量
%となる粒子径を表し、これらの粒子径は10、15、
20、30、40、50、63及び80μmの電蝕網ふ
るいを用いてエア・ジェット式ふるい装置により測定し
た各篩上残分(重量%)値間をロジン−ラムラ(Ros
in−Rammler)式によって補完して得られる粒
度分布から算出される。数1は、流動性に対する粒度分
布の広がりの最適値からの偏りを表わすもので、式中の
変数D90は水和反応性に大きく影響するセメント粒子中
の微粒部分の量を代表し、変数D10は後述する骨材との
相互作用により流動性に強く影響する粗粒部分の量を代
表する。このDI値を前述したように0.5以下、好ま
しくは0.3以下となるように分級機等で粒度分布を調
整する。In the formula 1, D 10 , D 50 and D 90 represent particle diameters such that the residue on the sieve becomes 10% by weight, 50% by weight and 90% by weight, respectively, and these particle diameters are 10, 15,
Rosin-Ramula (Ros) was measured between the residual values (% by weight) on each sieve measured by an air-jet type sieving apparatus using 20, 30, 40, 50, 63 and 80 μm electrolytic mesh screens.
in-Rammler) formula is used to calculate the particle size distribution. Formula 1 represents the deviation from the optimum value of the spread of the particle size distribution with respect to fluidity, and the variable D 90 in the formula represents the amount of the fine particle portion in the cement particles that greatly affects the hydration reactivity, and is a variable. D 10 represents the amount of the coarse-grained portion that strongly affects the fluidity due to the interaction with the aggregate described later. As described above, the particle size distribution is adjusted with a classifier or the like so that the DI value becomes 0.5 or less, preferably 0.3 or less.
【0013】上述した結合材は、ポルトランドセメント
の20重量部以下をブレーン比表面積10000cm2
/g以上の超微粉末に置換して用いることができる。超
微粉末は、ベアリング効果により流動性を高めると共
に、マイクロフィラー効果によって水硬性硬化体を緻密
にし強度発現に大きく寄与する。超微粉末は、ブレーン
比表面積が10000cm2 /gを下回ると、ベアリン
グ効果及びマイクロフィラー効果が十分に得られない
が、ブレーン比表面積が10000cm2 /g以上であ
れば、特に形状や成分等に制限されることなく使用で
き、例えば、シリカヒューム、アエロジル、炭酸カルシ
ウム、高炉スラグ、フライアッシュ等が好適に用いられ
る。ポルトランドセメントに対する超微粉末の置換量
は、20重量部を越えると流動性の低下を招いて好まし
くなく、5重量部を下回るとほとんど効果が得られな
い。The above-mentioned binder is made of 20 parts by weight or less of Portland cement and has a Blaine specific surface area of 10,000 cm 2
It can be used by replacing it with an ultrafine powder having an amount of / g or more. The ultrafine powder enhances the fluidity by the bearing effect and makes the hydraulically hardened body dense by the microfiller effect, which greatly contributes to the strength development. When the Blaine specific surface area is less than 10000 cm 2 / g, the ultrafine powder cannot sufficiently obtain the bearing effect and the microfiller effect, but when the Blaine specific surface area is 10000 cm 2 / g or more, the shape and components are It can be used without limitation, and for example, silica fume, aerosil, calcium carbonate, blast furnace slag, fly ash and the like are preferably used. If the substitution amount of the ultrafine powder for Portland cement exceeds 20 parts by weight, the fluidity is lowered, which is not preferable, and if it is less than 5 parts by weight, almost no effect is obtained.
【0014】次に骨材は、通常のモルタル、コンクリー
トに使用されている砂、砂利、砕石等の普通骨材をはじ
めとして、鉄、ステンレス等の金属骨材、アルミナ等の
セラミックス骨材、膨張頁岩などの軽量骨材等、各種骨
材の種類を問う事なく利用可能であるが、特にコンクリ
ートの流動性を考慮し、骨材中の細骨材は、0.15m
mの篩を通過する粒子が5重量%以下となるように粒度
調整したものが望ましい。この様に粒度調整すること
で、細骨材粒子とセメント中の粗粒分とが干渉すること
を防いで、良好な流動性が得られる。Next, aggregates include ordinary aggregates such as sand, gravel, and crushed stone used for ordinary mortar and concrete, metal aggregates such as iron and stainless steel, ceramic aggregates such as alumina, and expanded aggregates. It can be used regardless of the type of various aggregates such as lightweight aggregates such as shale. However, considering the fluidity of concrete, the fine aggregate in the aggregate is 0.15m.
It is desirable that the particle size is adjusted so that the particles passing through the m sieve are 5% by weight or less. By adjusting the particle size in this way, it is possible to prevent the fine aggregate particles from interfering with the coarse particles in the cement and obtain good fluidity.
【0015】さらに骨材は、上述した粒度調整にあた
り、球状骨材を細骨材として用いることにより、流動性
を著しく向上させることが可能となり非常に好ましいも
のとなる。ここでいう球状骨材とは、通常、金属やセラ
ミックスを溶融後、気圧によって飛散させ冷却して得ら
れる物が多く、その形状は丸みを帯びた球状若しくはそ
れに近いもので、骨材を構成する成分的な制限はない。
この種の球状骨材としては、転炉スラグや高炉スラグの
急冷品、鉄球、ステンレス球、ガラス球、アルミナやジ
ルコンムライト等のセラミックス球等が好適に使用で
き、細骨材/結合材重量比が0.20以上になるように
して用いる。Further, in the aggregate, when spherical aggregates are used as fine aggregates in the above-mentioned particle size adjustment, the fluidity can be remarkably improved, which is very preferable. The spherical aggregate here is usually one obtained by melting metal or ceramics, then scattering and cooling by atmospheric pressure and cooling, and its shape is a rounded spherical shape or something close to it, which constitutes the aggregate. There are no component restrictions.
As this type of spherical aggregate, quenching products of converter slag and blast furnace slag, iron spheres, stainless spheres, glass spheres, ceramic spheres such as alumina and zircon mullite can be preferably used, and fine aggregate / bonding material weight It is used so that the ratio becomes 0.20 or more.
【0016】次に、この発明で使用する高性能減水剤
は、花王社「マイティ−150」(商品名)、昭和電工
社「メルメント」(商品名)、ポゾリス物産社「NL−
4000」(商品名)等ナフタレンスルホン酸系、メラ
ミンスルホン酸系、リグニンスルホン酸系等、各種公知
のものが使用できるが、中でもポリカルボン酸及び/又
はポリカルボン酸塩を主成分とするとするポリカルボン
酸系高性能減水剤は、0.25以下の超低水/結合材重
量比での減水、流動化作用が極めて良好であり、特に前
述の水硬率0.20以上に調整したポルトランドセメン
トとの適合性に優れており、短期材令における水和反応
性を損うことなく、減水性、流動性を著しく改善する作
用をする。Next, the high-performance water reducing agent used in the present invention includes Kaosha's "Mighty-150" (trade name), Showa Denko's "Melment" (trade name), and Pozoris Bussan's "NL-".
Various known materials such as naphthalene sulfonic acid-based, melamine sulfonic acid-based, lignin sulfonic acid-based, etc. can be used, among others, among which polycarboxylic acid and / or polycarboxylic acid salt as a main component. The carboxylic acid-based high-performance water reducing agent has extremely excellent water reducing and fluidizing effects at an ultra-low water / binder weight ratio of 0.25 or less, and in particular, Portland cement adjusted to have a hydraulic modulus of 0.20 or more as described above. It has excellent compatibility with and has the effect of significantly improving water reduction and fluidity without impairing hydration reactivity in short-term age.
【0017】ポリカルボン酸系の高性能減水剤として
は、カルボキシル基を含有する重合性単量体又はその無
水物の1種又は2種以上の重合物、又はカルボキシル基
を含有する重合性単量体又はその無水物の1種又は2種
以上と他の重合性単量体との重合物又はそれらの塩で平
均分子量が500〜50000の化合物が好適に用いら
れる。具体的には、ポリアクリル酸塩、ポリメタクリル
酸塩、アクリル酸とアリルエーテルとのコポリマー、α
−オレフインとエチレン性不飽和ジカルボン酸とのコポ
リマー、その部分エステル化物、部分アミド化物、部分
イミド化物などの水溶性塩等が例示され、現在市販され
ている代表的なものとして、(株)エヌ・エム・ビー社
製のSP−8シリーズ、竹本油脂(株)社製のHP−1
1シリーズ、日本ゼオン(株)社製のワーク500、デ
ンカグレース(株)社製の100PHX等が好適に使用
されるが、これらに限定されるものではない。Examples of the polycarboxylic acid-based high-performance water reducing agent include one or more polymers of a carboxyl group-containing polymerizable monomer or an anhydride thereof, or a carboxyl group-containing polymerizable monomer. A compound having a mean molecular weight of 500 to 50,000, which is a polymer of one or more kinds of the isomer or an anhydride thereof and another polymerizable monomer or a salt thereof, is preferably used. Specifically, polyacrylates, polymethacrylates, copolymers of acrylic acid and allyl ether, α
-Copolymers of olefin and ethylenically unsaturated dicarboxylic acid, water-soluble salts such as partially esterified products, partially amidated products and partially imidized products thereof are exemplified, and as typical ones currently marketed,・ SP Company, SP-8 series, HP-1 manufactured by Takemoto Yushi Co., Ltd.
1 series, Work 500 manufactured by Nippon Zeon Co., Ltd., 100PHX manufactured by Denka Grace Co., Ltd. and the like are preferably used, but not limited thereto.
【0018】高性能減水剤の添加量は、粒度調整するポ
ルトランドセメント、骨材及び所要の減水効果などを勘
案して調整されるが、前述の結合材100重量部に対し
て0.1〜10重量%、好ましくは1〜5重量%添加す
る。これが0.1重量%未満では減水効果が実質上無
く、またこれを10重量%越えて添加しても減水性、流
動性の改善効果が頭打ちとなる。The amount of the high-performance water-reducing agent added is adjusted in consideration of Portland cement for adjusting the particle size, the aggregate, and the required water-reducing effect. %, Preferably 1-5% by weight. If it is less than 0.1% by weight, the water-reducing effect is substantially absent, and if it is added in excess of 10% by weight, the effects of improving the water-reducing property and the fluidity reach a ceiling.
【0019】以上説明した配合成分のほかに、この発明
は、通常、セメント、モルタル、コンククリートにおい
て用いられる急硬・急結剤、高強度混和剤、化学混和剤
などの各種配合剤や補強材として各種繊維や鋼を使用す
ることもできる。特に水和促進剤としての亜硝酸カルシ
ウムの添加は、ポルトランドセメントの水和反応を高め
る効果があり、良好な流動性を保持できる時間は短くな
るが、速硬性が得られるので、材令一日以内の強度を大
幅に増大することができる。亜硝酸カルシウムの添加量
は、多くなるほど流動性を保持できる時間が短くなるの
で、結合材100重量部に対して2.0重量部以下とす
るのが好ましい。In addition to the above-described compounding ingredients, the present invention also provides various compounding agents and reinforcing materials such as quick-hardening / quick-setting agents, high-strength admixtures, chemical admixtures and the like, which are usually used in cement, mortar and concrete It is also possible to use various fibers and steels. In particular, the addition of calcium nitrite as a hydration accelerator has the effect of enhancing the hydration reaction of Portland cement and shortens the time during which good fluidity can be maintained, but it provides fast hardening, so The strength within can be greatly increased. The amount of calcium nitrite added is preferably 2.0 parts by weight or less with respect to 100 parts by weight of the binder, because the more the amount of calcium nitrite is added, the shorter the time during which fluidity can be maintained.
【0020】この発明においては、前記説明した結合
材、骨材、高性能減水剤を組合わせることにより、水/
結合材重量比が0.15〜0.25程度の超低水/結合
材比で、良好な作業性と十分な作業時間を確保すること
ができ、通常の遠心力成形装置に盛り込み、あるいはポ
ンプ圧送等により投入成形することができる。当然のこ
とながらプレストレス導入も従来と同様である。また、
遠心力成形に当たり、前記各成分の混合及び混練方法に
制限は無く、均一に混合混練できればいずれの方法でも
よいが、ミキサー内を大気圧以下にして練り混ぜを行う
と、強度低下の原因となる練り混ぜ中の空気連行を防ぐ
と共に、減圧下での水分蒸発による水/結合材比の低減
化を更に可能とする。圧力は、0.5気圧以下とするこ
とが好ましいが、大気圧以下であれば効果が得られる。
尚、配合成分の添加順序にも特に制限されるものではな
い。In the present invention, by combining the above-mentioned binder, aggregate and high-performance water reducing agent, water / water
With an ultra-low water / binder ratio of about 0.15 to 0.25 binder weight ratio, good workability and sufficient work time can be secured, and it is incorporated in a normal centrifugal molding device or pumped. Injection molding can be performed by pressure feeding or the like. As a matter of course, the introduction of prestress is the same as in the past. Also,
In centrifugal molding, there is no limitation on the mixing and kneading method of each of the above components, and any method can be used as long as it can be uniformly mixed and kneaded, but if kneading is performed under the atmospheric pressure in the mixer, it causes a decrease in strength. It prevents air entrainment during kneading and further enables reduction of the water / binder ratio by evaporation of water under reduced pressure. The pressure is preferably 0.5 atmospheric pressure or less, but the effect can be obtained if it is atmospheric pressure or less.
The order of adding the components is not particularly limited.
【0021】次に遠心力成形後の養生は、各種の養生方
法が適用可能であり、常温養生、高温養生、常圧蒸気養
生、高温高圧養生のいずれの方法も採用でき、必要なら
ば、これらの組合わせを行って高強度水硬性硬化体とす
ることができる。特にこの発明の遠心力成形用ポルトラ
ンドセメント及びその水硬性配合物は、蒸気養生、高温
高圧養生による強度増進性に優れ、例えば、800kg
f/cm2 を越える程度の高強度遠心力成形品を得るた
めには、遠心力成型後、数時間の前置き養生後の常圧蒸
気養生、大気養生だけで充分であり、この常圧蒸気養生
に加えてオートクレーブによる高温高圧養生を行うこと
により1500kgf/cm2 以上の超高強度遠心力成
形製品を得ることができる。常圧蒸気養生、高温高圧養
生おける温度条件、圧力条件等は通常の範囲内のもので
良い。For the curing after centrifugal molding, various curing methods can be applied, and any of normal temperature curing, high temperature curing, normal pressure steam curing and high temperature and high pressure curing can be adopted. Can be combined to obtain a high-strength hydraulic cured product. In particular, the Portland cement for centrifugal force molding of the present invention and the hydraulic compound thereof are excellent in strength enhancement by steam curing and high temperature and high pressure curing, for example, 800 kg.
In order to obtain a high-strength centrifugal molded product having a strength exceeding f / cm 2 , normal pressure steam curing and atmospheric curing after several hours of pre-curing after centrifugal molding are sufficient. In addition, by carrying out high temperature and high pressure curing by an autoclave, it is possible to obtain an ultra-high strength centrifugal molded product of 1500 kgf / cm 2 or more. The temperature conditions, pressure conditions and the like for normal pressure steam curing, high temperature and high pressure curing may be within normal ranges.
【0022】[0022]
【作用】既に述べたように、モルタル、コンクリート等
において、高強度を得ようとする場合、高強度混和材を
使用すると共に、水/結合材重量比の低減を図らなけれ
ばならない。この発明は、高強度混和材を使用すること
なしに、結合材、骨材、高性能減水剤を組合わせるこ
と、特に、水硬率2.20以上で、ブレーン比表面積4
000cm2 /g以上、30μm篩上残分値15〜25
重量%に調整したポルトランドセメントを使用するこ
と、さらには0.15mmの篩を通過する粒子が5重量
%以下となるように粒度調整した細骨材、及び高性能減
水剤を組合わせることにより、ポルトランドセメント粒
子と骨材粒子の干渉防止、高性能減水剤との極めて良好
な適合性等、これら三者が相乗効果的に作用し、水/結
合材重量比0.25以下及び細骨材/結合材重量比0.
20以上という極めて厳しい条件で、良好な作業性と十
分な作業時間を確保することができ、遠心力成形高強度
水硬性硬化体とすることができる。As described above, in order to obtain high strength in mortar, concrete, etc., it is necessary to use a high-strength admixture and reduce the water / binder weight ratio. This invention combines a binder, an aggregate, and a high-performance water reducing agent without using a high-strength admixture, and particularly, has a hydraulic modulus of 2.20 or more and a Blaine specific surface area of 4
000 cm 2 / g or more, residual value on sieve of 30 μm 15 to 25
By using Portland cement adjusted to wt%, and further, by combining fine aggregate with a particle size adjusted so that particles that pass through a 0.15 mm sieve will be 5 wt% or less, and a high-performance water reducing agent, Prevention of interference between Portland cement particles and aggregate particles, extremely good compatibility with high performance water reducing agents, etc., these three acts synergistically, water / binder weight ratio of 0.25 or less and fine aggregate / Binder weight ratio of 0.
Under extremely severe conditions of 20 or more, good workability and sufficient work time can be ensured, and a centrifugally molded high-strength hydraulic cured product can be obtained.
【0023】[0023]
【実施例】結合材として、水硬率2.22、ブレーン比
表面積4230cm2 /g、30μm篩上残分値15.
8重量%、DI値0.45に調整したポルトランドセメ
ント(実施例1〜6)、水硬率2.22、ブレーン比表
面積4230cm2 /g、30μm篩上残分値24.6
重量%、DI値0.22に調整したポルトランドセメン
ト(実施例7)、実施例1〜6で用いたセメント90重
量部と超微粉末としてのシリカヒューム(実施例8)、
ブレーン比表面積15600cm2 /gの高炉スラグ粉
末(実施例9)、及びブレーン比表面積32400cm
2 /gの炭酸カルシウム粉末(実施例10)それぞれ1
0重量部からなる結合材と、比較のため、市販の水硬率
2.15、ブレーン比表面積3360cm2 /g、30
μm篩上残分値23.4重量%、DI値0.41の普通
ポルトランドセメント(比較例1〜2)、水硬率2.1
5、ブレーン比表面積4390cm2 /g、30μm篩
上残分値12.7重量%、DI値0.61の早強ポルト
ランドセメント(比較例3〜4)を用い、表1に示す配
合割合でコンクリートを調整した。EXAMPLE As a binder, the hydraulic modulus was 2.22, the Blaine specific surface area was 4230 cm 2 / g, and the residual value on the 30 μm sieve was 15.
Portland cement adjusted to 8% by weight, DI value 0.45 (Examples 1 to 6), hydraulic modulus 2.22, Blaine specific surface area 4230 cm 2 / g, residual value on sieve of 30 μm 24.6.
Wt%, Portland cement adjusted to a DI value of 0.22 (Example 7), 90 parts by weight of the cement used in Examples 1 to 6 and silica fume as ultrafine powder (Example 8),
Blast furnace slag powder having a Blaine specific surface area of 15600 cm 2 / g (Example 9), and Blaine specific surface area of 32400 cm
2 / g calcium carbonate powder (Example 10) 1 each
For comparison with a binder made up of 0 parts by weight, a commercially available hydraulic modulus of 2.15 and a Blaine specific surface area of 3360 cm 2 / g, 30
Ordinary Portland cement having a residue value on the μm sieve of 23.4% by weight, a DI value of 0.41 (Comparative Examples 1 and 2), and a water hardness of 2.1.
5, using the early strength Portland cement (Comparative Examples 3 to 4) having a Blaine specific surface area of 4390 cm 2 / g, a residual value on the sieve of 30 μm of 12.7% by weight, and a DI value of 0.61 at the mixing ratio shown in Table 1. Was adjusted.
【0024】尚、細骨材として0.15mm篩下通過分
2.2重量%に粒度調整したもの(実施例4、6)と、
0.15mm篩下通過分5.3重量%の天然の小笠山砂
(実施例4、6を除く)、粗骨材として最大寸法20m
mの岩瀬産砕石、高性能減水剤として、実施例5で竹本
油脂(株)社製のチューポールHP−11(商品名)を
用いた以外は、花王(株)製のマイティ−150(商品
名)を使用した。As fine aggregate, those having a particle size adjusted to 2.2% by weight of the amount passed through a 0.15 mm sieve (Examples 4 and 6),
Natural Ogasayama sand (excluding Examples 4 and 6) having a content of 5.3% by weight passed under a sieve of 0.15 mm, and a maximum size of 20 m as coarse aggregate.
Mighty-150 (commercial product) manufactured by Kao Corporation, except that Tupole HP-11 (trade name) manufactured by Takemoto Yushi Co., Ltd. was used in Example 5 as the crushed stone from Iwase, a high-performance water reducing agent. First name) was used.
【0025】[0025]
【表1】 [Table 1]
【0026】このコンクリートを、内径200mm、長
さ300mmの円筒状の試験用遠心力成形型枠に盛り込
み、常法により遠心力成形を行い、その後室温(20
℃)で4時間の前置き養生し、次いで蒸気養生を行っ
た。蒸気養生は、温度65℃まで約3時間で昇温し、そ
のまま3時間30分保持したのち蒸気を止めて室温まで
放冷した。脱型後、一部の供試体は各材令まで大気養生
を行って圧縮強度試験を行うと共に、残りの供試体につ
いては、脱型直後からオートクレーブ養生(180℃、
10気圧、5時間保持)を行い、圧縮強度試験を行っ
た。結果を表1に併せて示す。This concrete was placed in a cylindrical centrifugal force forming mold for testing having an inner diameter of 200 mm and a length of 300 mm, and centrifugal force forming was carried out by an ordinary method, and then at room temperature (20
C.) was pre-cured for 4 hours and then steam-cured. In the steam curing, the temperature was raised to 65 ° C. in about 3 hours, kept for 3 hours and 30 minutes, stopped steam, and allowed to cool to room temperature. After demolding, some specimens were subjected to atmospheric curing up to each age and subjected to a compressive strength test, while the remaining specimens were autoclaved immediately after demolding (180 ° C,
After 10 atm for 5 hours, a compressive strength test was performed. The results are shown in Table 1.
【0027】[0027]
【発明の効果】以上説明した様に、この発明によれば、
高強度混和材を使用することなしに、通常の遠心力成形
により高強度水硬性硬化体とすることができ、しかも水
/結合材重量比0.25以下及び細骨材/結合材重量比
0.20以上という極めて厳しい条件で、良好な作業性
と十分な作業時間を確保することができ、超高強度水硬
性硬化体とすることができる。As described above, according to the present invention,
A high-strength hydraulically hardened product can be formed by ordinary centrifugal molding without using a high-strength admixture, and a water / binder weight ratio of 0.25 or less and a fine aggregate / binder weight ratio of 0 or less. Good workability and sufficient work time can be secured under extremely severe conditions of .20 or more, and an ultra-high strength hydraulically cured product can be obtained.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 24:26 H E 22:08) B 103:14 103:30 111:56 (72)発明者 宇智田 俊一郎 千葉県佐倉市大作2−4−2 小野田セメ ント株式会社中央研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C04B 24:26 HE 22:08) B 103: 14 103: 30 111: 56 (72) Inventor Shunichiro Uchida 2-4-2 Daisaku, Sakura City, Chiba Prefecture Central Research Laboratory, Onoda Cement Co., Ltd.
Claims (17)
積4000cm2 /g以上、30μm篩上残分値15〜2
5重量%に調整したことを特徴とする遠心力成形用ポル
トランドセメント。1. A hydraulic modulus of 2.20 or more, a Blaine specific surface area of 4000 cm 2 / g or more, and a 30 μm sieve residue value of 15 to 2
A Portland cement for centrifugal force forming, which is adjusted to 5% by weight.
含み、結合材が水硬率2.20以上で、ブレーン比表面
積4000cm2 /g以上、30μm篩上残分値15〜
25重量%に調整したポルトランドセメントであること
を特徴とする遠心力成形用水硬性配合物。2. A binder, an aggregate, a high-performance water reducing agent, and water, wherein the binder has a hydraulic modulus of 2.20 or more, a Blaine specific surface area of 4000 cm 2 / g or more, and a residual value on a 30 μm sieve of 15 to.
A hydraulic compound for centrifugal molding, which is Portland cement adjusted to 25% by weight.
含み、結合材が水硬率2.20以上で、ブレーン比表面
積4000cm2 /g以上、30μm篩上残分値15〜
25重量%に調整したポルトランドセメント80重量部
以上と、ブレーン比表面積10000cm2 /g以上の
超微粉末20重量部以下からなることを特徴とする遠心
力成形用水硬性配合物。3. A binder, an aggregate, a high-performance water reducing agent, and water, wherein the binder has a hydraulic modulus of 2.20 or more, a Blaine specific surface area of 4000 cm 2 / g or more, and a residual value on a 30 μm sieve of 15 to.
A hydraulic compound for centrifugal molding, which comprises 80 parts by weight or more of Portland cement adjusted to 25% by weight and 20 parts by weight or less of ultrafine powder having a Blaine specific surface area of 10000 cm 2 / g or more.
が5重量%以下となるように粒度調整した細骨材を含
み、細骨材/結合材重量比が0.20以上であることを
特徴とする請求項2若しくは3記載の遠心力成形用水硬
性配合物。4. An aggregate comprising fine aggregate whose particle size is adjusted so that 5% by weight or less of particles pass through a sieve of 0.15 mm, and a fine aggregate / binder weight ratio is 0.20 or more. The hydraulic compound for centrifugal force molding according to claim 2 or 3, characterized in that.
る請求項4記載の遠心力成形用水硬性配合物。5. The hydraulic compound for centrifugal molding according to claim 4, wherein the fine aggregate is a spherical aggregate.
能減水剤であることを特徴とする請求項2〜5いずれか
記載の遠心力成形用水硬性配合物。6. The hydraulic compound for centrifugal molding according to claim 2, wherein the high performance water reducing agent is a polycarboxylic acid type high performance water reducing agent.
であることを特徴とする請求項2〜6いずれか記載の遠
心力成形用水硬性配合物。7. A water / binder weight ratio of 0.10 to 0.25.
The hydraulic compound for centrifugal force molding according to any one of claims 2 to 6, wherein
量%以下の水和促進剤を含むことを特徴とする請求項2
〜7いずれか記載の遠心力成形用水硬性配合物。8. A hydration accelerator of 2.0 wt% or less is included with respect to 100 parts by weight of the binder.
7. A hydraulic compound for centrifugal molding according to any one of to 7.
とを特徴とする請求項8記載の遠心力成形用水硬性配合
物。9. The hydraulic compound for centrifugal molding according to claim 8, wherein the hydration accelerator is calcium nitrite.
を含む水硬性配合物を遠心成形するに当たり、結合材と
して水硬率2.20以上で、ブレーン比表面積4000
cm2 /g以上、30μm篩上残分値15〜25重量%
に調整したポルトランドセメントを用いることを特徴と
する遠心力成形水硬性硬化体の製造方法。10. When centrifugally molding a hydraulic compound containing a binder, an aggregate, a high-performance water reducing agent, and water, the binder has a hydraulic modulus of 2.20 or more and a Blaine specific surface area of 4,000.
cm 2 / g or more, residual value on sieve of 30 μm 15 to 25% by weight
A method for producing a centrifugally-formed hydraulically cured product, which comprises using the Portland cement prepared as above.
を含む水硬性配合物を遠心成形するに当たり、結合材が
水硬率2.20以上で、ブレーン比表面積4000cm
2 /g以上、30μm篩上残分値15〜25重量%に調
整したポルトランドセメント80重量部以上と、ブレー
ン比表面積10000cm2 /g以上の超微粉末20重
量部以下からなることを特徴とする遠心力成形水硬性硬
化体の製造方法。11. When centrifugally molding a hydraulic composition containing a binder, an aggregate, a high-performance water reducing agent, and water, the binder has a hydraulic modulus of 2.20 or more and a Blaine specific surface area of 4000 cm.
It is characterized in that it comprises 80 parts by weight or more of Portland cement adjusted to a residue value on the sieve of 2 / g or more and 30 μm sieve of 15 to 25% by weight and 20 parts by weight or less of ultrafine powder having a Blaine specific surface area of 10,000 cm 2 / g or more. Method for producing centrifugally molded hydraulically cured product.
気養生及びオートクレーブ養生を行うことを特徴とする
請求項10若しくは11記載の遠心力成形水硬性硬化体
の製造方法。12. The method for producing a centrifugally formed hydraulically cured product according to claim 10, wherein steam curing or steam curing and autoclave curing are performed after centrifugal molding.
5で練り混ぜ、遠心成形することを特徴とする請求項1
0〜12いずれか記載の遠心力成形水硬性硬化体の製造
方法。13. A water / binder weight ratio of 0.10 to 0.2.
5. The mixture is kneaded in 5, and centrifugally molded.
The method for producing a centrifugally formed hydraulically cured product according to any one of 0 to 12.
子が5重量%以下となるように粒度調整した細骨材を含
み、細骨材/結合材重量比が0.20以上であることを
特徴とする請求項10〜13いずれか記載の遠心力成形
水硬性硬化体の製造方法。14. An aggregate comprising fine aggregate whose particle size is adjusted so that the amount of particles passing through a sieve of 0.15 mm is 5% by weight or less, and the fine aggregate / binder weight ratio is 0.20 or more. The method for manufacturing a centrifugally formed hydraulically cured product according to any one of claims 10 to 13.
する請求項14記載の遠心力成形水硬性硬化体の製造方
法。15. The method for producing a centrifugally-formed hydraulically cured product according to claim 14, wherein the fine aggregate is a spherical aggregate.
に対して、2.0重量%以下の水和促進剤を含むことを
特徴とする請求項10〜15いずれか記載の遠心力成形
水硬性硬化体の製造方法。16. The centrifugal molding according to claim 10, wherein the hydraulic composition contains 2.0% by weight or less of a hydration accelerator with respect to 100 parts by weight of the binder. A method for producing a hydraulically cured product.
ことを特徴とする請求項16記載の遠心力成形水硬性硬
化体の製造方法。17. The method for producing a centrifugally formed hydraulically cured product according to claim 16, wherein the hydration accelerator is calcium nitrite.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19352694A JP3461038B2 (en) | 1994-07-26 | 1994-07-26 | Method for producing portland cement for centrifugal molding, hydraulic compound, and cured product thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19352694A JP3461038B2 (en) | 1994-07-26 | 1994-07-26 | Method for producing portland cement for centrifugal molding, hydraulic compound, and cured product thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0834645A true JPH0834645A (en) | 1996-02-06 |
JP3461038B2 JP3461038B2 (en) | 2003-10-27 |
Family
ID=16309546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19352694A Expired - Fee Related JP3461038B2 (en) | 1994-07-26 | 1994-07-26 | Method for producing portland cement for centrifugal molding, hydraulic compound, and cured product thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3461038B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005154213A (en) * | 2003-11-27 | 2005-06-16 | Fuji Ps Corp | Binder composition in high durable concrete, product of high durable concrete and method of manufacturing the same |
JP2005289657A (en) * | 2004-03-31 | 2005-10-20 | Denki Kagaku Kogyo Kk | Method for producing high-strength centrifugally molded article and high-strength centrifugally molded article produced thereby |
JP2006111485A (en) * | 2004-10-14 | 2006-04-27 | Tokuyama Corp | Setting accelerator for cement and cement composition |
JP2008013382A (en) * | 2006-07-03 | 2008-01-24 | Japan Pile Corp | Centrifugally molded ultrahigh strength concrete composition and producing method |
JP2008214147A (en) * | 2007-03-06 | 2008-09-18 | Ube Ind Ltd | Cement composition for highly flowable concrete and highly flowable concrete composition |
JP2021155266A (en) * | 2020-03-27 | 2021-10-07 | 太平洋セメント株式会社 | Cement composition, and manufacturing method cement hardened body |
-
1994
- 1994-07-26 JP JP19352694A patent/JP3461038B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005154213A (en) * | 2003-11-27 | 2005-06-16 | Fuji Ps Corp | Binder composition in high durable concrete, product of high durable concrete and method of manufacturing the same |
JP2005289657A (en) * | 2004-03-31 | 2005-10-20 | Denki Kagaku Kogyo Kk | Method for producing high-strength centrifugally molded article and high-strength centrifugally molded article produced thereby |
JP2006111485A (en) * | 2004-10-14 | 2006-04-27 | Tokuyama Corp | Setting accelerator for cement and cement composition |
JP2008013382A (en) * | 2006-07-03 | 2008-01-24 | Japan Pile Corp | Centrifugally molded ultrahigh strength concrete composition and producing method |
JP2008214147A (en) * | 2007-03-06 | 2008-09-18 | Ube Ind Ltd | Cement composition for highly flowable concrete and highly flowable concrete composition |
JP2021155266A (en) * | 2020-03-27 | 2021-10-07 | 太平洋セメント株式会社 | Cement composition, and manufacturing method cement hardened body |
Also Published As
Publication number | Publication date |
---|---|
JP3461038B2 (en) | 2003-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4558569B2 (en) | Ultra high strength fiber reinforced cement composition, ultra high strength fiber reinforced mortar or concrete, and ultra high strength cement admixture | |
JPH11209159A (en) | Cement concrete product and its production | |
JP3461038B2 (en) | Method for producing portland cement for centrifugal molding, hydraulic compound, and cured product thereof | |
JPH0680456A (en) | Fluid hydraulic composition | |
JPH0986976A (en) | High fluidity cement composition | |
JP2905963B2 (en) | Lightweight high-strength concrete | |
JPH0231026B2 (en) | ||
JPH0952744A (en) | Mortar and concrete composition | |
JPH059049A (en) | Cement admixture and cement composition | |
JP3974970B2 (en) | Concrete production method | |
JP5688069B2 (en) | Cement composition, mortar or concrete using the same | |
JP2022183463A (en) | Low-shrinkage ultra-high strength grout composition and low-shrinkage ultra-high strength grout | |
JP2005008486A (en) | Fiber-reinforced cement composition, concrete structure, and method for producing concrete base material | |
JPH07144953A (en) | Hydraulic blended material and production of hydraulic hardened body | |
JPH10139516A (en) | One-powder type fiber reinforced mortar composition for coating and its production | |
JPH0794341B2 (en) | High strength mortar concrete | |
JPH05238787A (en) | High-strength cement composition | |
JP2005314120A (en) | High strength mortar | |
JPS61178462A (en) | High strength cement composition | |
JPH07157347A (en) | Cement composition, production and hardened body thereof | |
JPH05116996A (en) | Cement admixture and production of cement hardened body | |
JP2001019529A (en) | Cement hardened product | |
JP3082861B2 (en) | Hydraulic composition for high-strength concrete and method for producing high-strength mortar or concrete | |
JPH1160316A (en) | High strength non-shrinkable mortar composition | |
JP6011926B2 (en) | Admixture for high strength concrete and cement composition for high strength concrete |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |