JPH08330671A - Semiconductor optical element - Google Patents
Semiconductor optical elementInfo
- Publication number
- JPH08330671A JPH08330671A JP13318095A JP13318095A JPH08330671A JP H08330671 A JPH08330671 A JP H08330671A JP 13318095 A JP13318095 A JP 13318095A JP 13318095 A JP13318095 A JP 13318095A JP H08330671 A JPH08330671 A JP H08330671A
- Authority
- JP
- Japan
- Prior art keywords
- optical device
- width
- waveguide
- semiconductor optical
- semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Led Devices (AREA)
- Optical Couplings Of Light Guides (AREA)
- Optical Integrated Circuits (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は半導体光素子に係り、特
に光通信用モジュール、光通信システム、光ネットワ−
クに用いる好適な半導体光素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor optical device, and more particularly to an optical communication module, an optical communication system and an optical network.
The present invention relates to a semiconductor optical device suitable for use in electronic devices.
【0002】[0002]
【従来の技術】一般に、半導体レ−ザの高出力化には、
(1)素子の低抵抗化による熱飽和の低減、(2)漏れ
電流の低減、(3)高出力時の横モ−ドの安定化、
(4)高出力時の高信頼性化が必須である。さらにモジ
ュ−ルの高出力化には、(5)レ−ザの出射ビ−ム角を
狭窄化しファイバへの光結合を高効率化することが重要
である。活性層幅の設定に関して上記(1)〜(5)を
考慮すると、(1)、(2)、(4)に関しては広い活
性層幅が望ましい。一方、(3)、(4)に関しては、
比較的狭い活性層幅が望ましい。つまり、活性層幅に対
し上記(1)〜(5)はトレ−ドオフの関係にある。こ
の観点から、活性層幅は単一横モ−ド動作を保つ最大の
活性層幅にしばしば設定されているが、(1)〜(5)
を同時達成するのは一般には困難である。また、動作光
の光子エネルギ−が大きい発振波長1μm程度以下の短
波長レ−ザでは光密度の大きい端面の活性層近傍での結
晶破壊がこの劣化の主要因である。これに対しては、活
性層位置での光密度の低減が極めて重要であるが、これ
までのところ効果的な解決手法は出現していないのが現
状である。2. Description of the Related Art Generally, in order to increase the output of a semiconductor laser,
(1) Reduction of thermal saturation due to low resistance of the element, (2) Reduction of leakage current, (3) Stabilization of lateral mode at high output,
(4) High reliability at high output is essential. Further, in order to increase the output of the module, (5) it is important to narrow the exit beam angle of the laser to improve the efficiency of optical coupling to the fiber. Considering the above (1) to (5) regarding the setting of the active layer width, a wide active layer width is desirable for (1), (2) and (4). On the other hand, regarding (3) and (4),
A relatively narrow active layer width is desirable. That is, the above items (1) to (5) have a trade-off relationship with the active layer width. From this point of view, the active layer width is often set to the maximum active layer width that maintains a single lateral mode operation, but (1) to (5)
Is generally difficult to achieve simultaneously. Further, in a short wavelength laser having a large oscillation wavelength of about 1 μm or less in which the photon energy of the operating light is large, crystal destruction near the active layer on the end face having a large light density is the main cause of this deterioration. On the other hand, it is extremely important to reduce the light density at the position of the active layer, but at present, no effective solution has emerged.
【0003】なお、これらに関連するものに、例えば電
子情報通信学会秋季大会C−311、1994年9月
が、後者に関連するものに応用物理Vol.64、N
o.1、2−12頁、1995年が挙げられる。[0003] Related to these are, for example, the Institute of Electronics, Information and Communication Engineers Autumn Meeting C-311, September 1994, and related to the latter, Applied Physics Vol. 64, N
o. 1, 2-12, 1995.
【0004】[0004]
【発明が解決しようとする課題】本発明は、極めて簡易
な作製法で実現可能な高出力で安定に単一横モ−ド動作
し、かつ温度特性、光ファイバとの結合に優れる半導体
光素子(例えば半導体レ−ザ)の素子構造及びその作製
方法を提供することを目的とする。さらなる目的は特に
発光波長1μm程度以下の半導体レ−ザの端面劣化の防
止に好適な素子構造及び製法を提供することにある。SUMMARY OF THE INVENTION The present invention is a semiconductor optical device which can be realized by an extremely simple manufacturing method and which operates stably in a single lateral mode and has excellent temperature characteristics and coupling with an optical fiber. An object is to provide a device structure (for example, a semiconductor laser) and a manufacturing method thereof. A further object is to provide a device structure and a manufacturing method suitable for preventing deterioration of an end face of a semiconductor laser having an emission wavelength of about 1 μm or less.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に、本発明者らは、導波路を横幅変調するだけで半導体
レーザ等光導波素子の特性を劣化させることなく、高出
力化、横モ−ドの安定化、ファイバへの高効率結合、高
出力時の高信頼を非常に容易な手法で同時に達成可能な
レーザ構造およびその作製方法を考案した。レ−ザ活性
導波路の横幅は光軸方向でテ−パ状に滑らかに変調され
ており、光の出射端で導波路幅が横モ−ドが単一となる
カットオフ幅よりも狭く設定される。さらに、その他の
導波路の領域では横幅が横モ−ドが単一となるカットオ
フ幅よりも広く設定されている。また、リッジ導波路構
造の導入により上記特性がさらに向上される。In order to achieve the above object, the inventors of the present invention have realized a high output and a horizontal output without deteriorating the characteristics of an optical waveguide element such as a semiconductor laser by only laterally modulating the waveguide. We have devised a laser structure and its fabrication method that can simultaneously achieve mode stabilization, high-efficiency coupling to fiber, and high reliability at high output with a very easy method. The lateral width of the laser active waveguide is smoothly modulated in a taper shape in the optical axis direction, and the width of the waveguide is set to be narrower than the cutoff width where the lateral mode is single at the light emission end. To be done. Further, in other waveguide regions, the lateral width is set wider than the cutoff width where the lateral mode is single. In addition, the introduction of the ridge waveguide structure further improves the above characteristics.
【0006】[0006]
【作用】以下、導波路の横幅変調するだけで半導体レー
ザ等光導波素子の特性を劣化させることなく、高出力
化、横モ−ドの安定化、ファイバへの高効率結合、高出
力時の高信頼を非常に容易な手法で同時に達成可能なレ
ーザ構造およびその作製方法について説明する。In the following, a high output power, a stable horizontal mode, a high efficiency coupling to a fiber, and a high output power can be achieved without deteriorating the characteristics of an optical waveguide element such as a semiconductor laser simply by modulating the width of the waveguide. A laser structure capable of simultaneously achieving high reliability by a very easy method and a method for manufacturing the same will be described.
【0007】図1(a)に示すように、活性層1の横幅が
光軸方向に変調されている埋め込み型半導体レーザを公
知の手法により作製する。ここで、全素子長は1200μm
で、導波路の横幅は300μmの領域にわたり光軸方向で
テ−パ状に滑らかに変調されている。光の出射端で導波
路の横幅は0.6μmであり横モ−ドが単一となるカット
オフ幅(約1.8μm)よりも十分狭く設定されている。
また、その他の900μmの領域では横幅は2.4μmであり
カットオフ幅よりも広く設定されている。横幅2.4μm
の導波路部には本来、基本導波モードの他に、高次モー
ドが存在しうる。しかし、基本導波モードのみを許容す
る先端横幅0.6μmのテーパ導波路の導入により、この
集積型導波路には基本導波モードしか励起され得ない。
従って、導波路の大部分を幅広に設定できるため、素子
の低抵抗化、漏れ電流の低減により安定な単一横モード
動作を保ったまま高出力化が可能である。また図1(b)
の上面図に示すように横幅が狭窄化された導波路では光
の閉じ込め作用が弱くなるため、自動的にビームスポッ
トが拡大される。これによりビーム放射角は水平、垂直
方向で約10度となり、レーザ光をファイバへ入射する場
合の光結合効率を大きく改善することができる。As shown in FIG. 1A, a buried semiconductor laser in which the lateral width of the active layer 1 is modulated in the optical axis direction is manufactured by a known method. Here, the total element length is 1200 μm
Then, the lateral width of the waveguide is smoothly modulated in a taper shape in the optical axis direction over a region of 300 μm. The lateral width of the waveguide at the light emitting end is 0.6 μm, which is set sufficiently narrower than the cutoff width (about 1.8 μm) in which the lateral mode is single.
In the other 900 μm region, the lateral width is 2.4 μm, which is set wider than the cutoff width. Width 2.4 μm
In the waveguide section, originally, higher-order modes may exist in addition to the fundamental guide mode. However, by introducing a tapered waveguide having a lateral width of 0.6 μm, which allows only the fundamental waveguide mode, only the fundamental waveguide mode can be excited in the integrated waveguide.
Therefore, since most of the waveguide can be set wide, it is possible to increase the output while maintaining stable single transverse mode operation by reducing the resistance of the element and reducing the leakage current. Also, Fig. 1 (b)
As shown in the top view of FIG. 3, in a waveguide having a narrowed width, the light confinement action is weakened, so that the beam spot is automatically expanded. As a result, the beam emission angle becomes approximately 10 degrees in the horizontal and vertical directions, and the optical coupling efficiency when the laser light is incident on the fiber can be greatly improved.
【0008】図2(a)は同様にリッジ装荷型導波路を用
いて同様な半導体レーザを作製した例である。ここで、
全素子長は1200μmで、導波路の横幅は300μmの領域
にわたり光軸方向でテ−パ状に滑らかに変調されてい
る。光の出射端で導波路の横幅は1.0μmであり横モ−
ドが単一となるカットオフ幅(約2.4μm)よりも十分
狭く設定されている。また、その他の900μmの領域で
は横幅は3.0μmでありカットオフ幅よりも広く設定さ
れている。この場合にも、埋め込み型レーザと同じ原理
で横幅を狭窄化したテーパ導波路の導入により高出力
化、ファイバへの高結合効率を達成できる。さらに、リ
ッジ装荷型導波路の場合には、基本導波モードに対して
も導波路のカットオフ幅が存在するため、カットオフ幅
近くまで導波路幅を狭窄していった場合、図2(b)の上
面図、同(c)の断面図に示すように光強度分布が活性層
から基板側に徐々にシフトする。従ってこの結果、バン
ドギャップの狭い活性層での光強度を大きく低減でき
る。この現象は、動作光の光子エネルギ−が大きく光密
度の大きい活性層端面近傍での過度の光吸収結による結
晶破壊が素子劣化の主要因である発振波長1μm程度以
下の短波長レ−ザの高信頼化に極めて有効である。FIG. 2 (a) shows an example in which a similar semiconductor laser is similarly manufactured using a ridge-loaded waveguide. here,
The total element length is 1200 μm, and the lateral width of the waveguide is smoothly modulated like a taper in the optical axis direction over a region of 300 μm. The width of the waveguide at the light output end is 1.0 μm.
It is set to be sufficiently narrower than the cutoff width (about 2.4 μm) that makes the unitary. In the other 900 μm region, the lateral width is 3.0 μm, which is set wider than the cutoff width. Also in this case, high output and high coupling efficiency to the fiber can be achieved by introducing a tapered waveguide whose lateral width is narrowed by the same principle as the embedded laser. Further, in the case of the ridge-loaded waveguide, since the cutoff width of the waveguide exists even for the fundamental waveguide mode, when the waveguide width is narrowed close to the cutoff width, as shown in FIG. As shown in the top view of b) and the sectional view of (c), the light intensity distribution gradually shifts from the active layer to the substrate side. Therefore, as a result, the light intensity in the active layer having a narrow band gap can be greatly reduced. This phenomenon is caused by a short wavelength laser with an oscillation wavelength of about 1 μm or less, which is the main factor of device deterioration due to crystal destruction due to excessive light absorption coupling near the end surface of the active layer where the photon energy of the operating light is large and the light density is large. It is extremely effective for high reliability.
【0009】以上のように、横幅を狭窄化したテーパ導
波路を導入するだけの極めて容易な手法で半導体レーザ
の高出力化、高信頼化を実現する手法について説明し
た。また、この原理は半導体レーザ以外にも半導体光増
幅器、光変調器等、導波路型光素子の高出力化に適用可
能であることは言うまでもない。As described above, the method of realizing high output and high reliability of the semiconductor laser has been described by the extremely easy method of only introducing the tapered waveguide having the narrowed lateral width. Further, it goes without saying that this principle can be applied to increase the output of a waveguide type optical element such as a semiconductor optical amplifier, an optical modulator, etc. other than the semiconductor laser.
【0010】[0010]
【実施例】以下、本発明の実施例を図3〜図11を用い
て説明する。Embodiments of the present invention will be described below with reference to FIGS.
【0011】実施例1 図3に示すように、n型(100)InP半導体基板1
1上に公知の手法によりn型InPバッファ層1.0μ
m12、n型InGaAsP下側ガイド層(組成波長
1.10μm)0.05μm13、6.0nm厚の1%
圧縮歪を有するInGaAsP(組成波長1.45μ
m)を井戸層、12nm厚のInGaAsP(組成波長
1.20μm)を障壁層とする4周期の多重量子井戸活
性層14、InGaAsP(組成波長1.10μm)上
側光ガイド層0.05μm15、p型InPクラッド層
1.9μm16、p型InGaAsキャップ層0.2μ
m17を順次形成する。多重量子井戸活性層14の発光
波長は約1.48μmである。次に公知の手法によりキ
ャップ層17をテーパストライプ構造に加工する。ここ
でストライプ方向は[011]とし、横幅狭窄テーパ部
の長さ300μm、レ−ザ出射端面部でストライプ幅
3.4μm、その他の領域でのストライプ幅は5.4μ
mのとなるようにストライプテ−パ部を設ける。続い
て、図に示すような(111)A面を側壁にもつ逆メサ
断面形状のリッジ導波路を形成する。この結果、活性層
幅となるリッジ底面の幅は3.0μm、テ−パ−部先端
で1.0μmとなる。Example 1 As shown in FIG. 3, an n-type (100) InP semiconductor substrate 1
N-type InP buffer layer 1.0 .mu.
m12, n-type InGaAsP lower guide layer (composition wavelength: 1.10 μm) 0.05 μm 13, 1% of 6.0 nm thickness
InGaAsP with compressive strain (composition wavelength 1.45μ
m) as a well layer and a 12 nm thick InGaAsP (composition wavelength 1.20 μm) as a barrier layer, a multi-quantum well active layer 14 of four periods, InGaAsP (composition wavelength 1.10 μm) upper optical guide layer 0.05 μm 15, p-type InP clad layer 1.9 μm 16, p-type InGaAs cap layer 0.2 μm
m17 are sequentially formed. The emission wavelength of the multiple quantum well active layer 14 is about 1.48 μm. Next, the cap layer 17 is processed into a taper stripe structure by a known method. Here, the stripe direction is [011], the length of the lateral narrowing taper portion is 300 μm, the stripe width is 3.4 μm at the laser emission end face portion, and the stripe width in other regions is 5.4 μm.
A striped taper portion is provided so that m. Subsequently, a ridge waveguide having an inverted mesa cross section having a (111) A plane as a side wall is formed as shown in the figure. As a result, the width of the bottom surface of the ridge, which is the width of the active layer, is 3.0 μm, and the width at the tip of the taper portion is 1.0 μm.
【0012】続いて公知の手法により基板全面に厚さ
0.20μmのシリコン酸化膜18を形成した後、ポリ
イミド樹脂19を基板全面に形成する。さらに、リッジ
上面にエッチバック法を用いてシリコン酸化膜窓を形成
する。最後に電極20を形成の後、劈開工程によりテ−
パ−部300μmを含む共振器長1200μmの素子に
切り出す。後端面となる3.0μm幅のリッジ部端面に
は反射率90%の高反射膜21を、前端面となる1.0
μm幅のリッジ部端面には反射率3%の低反射膜22を
公知の手法により形成した。Then, a 0.20 μm thick silicon oxide film 18 is formed on the entire surface of the substrate by a known method, and then a polyimide resin 19 is formed on the entire surface of the substrate. Further, a silicon oxide film window is formed on the upper surface of the ridge by the etch back method. Finally, after the electrode 20 is formed, a cleavage process is performed.
A device having a resonator length of 1200 μm including a part of 300 μm is cut out. A highly reflective film 21 having a reflectance of 90% is formed on the end face of the ridge portion having a width of 3.0 μm which is the rear end face, and 1.0 which is the front end face.
A low reflection film 22 having a reflectance of 3% was formed on the end face of the ridge portion having a width of μm by a known method.
【0013】作製した素子は室温、連続条件においてし
きい値25〜30mA、発振効率0.45〜0.50W
/Aと良好な発振特性を示した。また、動作電流1.2
Aにおいて最高出力400mWを得た。動作出力300mW
でのビーム広がり角度は水平、垂直方向とも約10度と
狭い。また、素子の長期信頼性を70℃、200mWの条
件下で評価したところ20万時間以上の推定寿命を確認
した。本素子をモジュール化したところ、狭窄化された
ビームを反映してファイバへの平均結合損失1dBが得ら
れ、最高モジュール出力320mWを達成した。本素子を
エルビウム添加ファイバ増幅器の励起光源として用いる
ことにより、雑音強度の低い良好な光増幅特性を確認し
た。The fabricated device has a threshold value of 25 to 30 mA and oscillation efficiency of 0.45 to 0.50 W under continuous conditions at room temperature.
/ A, indicating good oscillation characteristics. Also, operating current 1.2
A maximum output of 400 mW was obtained at A. Operation output 300mW
The beam divergence angle is narrow at about 10 degrees in both horizontal and vertical directions. When the long-term reliability of the device was evaluated under the conditions of 70 ° C. and 200 mW, an estimated life of 200,000 hours or more was confirmed. When this device was modularized, the average coupling loss to the fiber was 1 dB, reflecting the narrowed beam, and the maximum module output of 320 mW was achieved. By using this device as a pumping light source for an erbium-doped fiber amplifier, good optical amplification characteristics with low noise intensity were confirmed.
【0014】実施例2 図4は図3の実施例とほぼ同様の手法で埋め込みヘテロ
構造の波長1.48μm帯の高出力エルビウム添加ファ
イバ増幅器用励起光源を作製した一例である。横幅狭窄
テーパ部の長さ300μm、レ−ザ出射端面部での活性
層幅0.4μm、その他の領域での活性層幅は2.4μ
mのとなるようにストライプテ−パ部を設ける。埋め込
み構造31は公知の手法を用いて形成している。Example 2 FIG. 4 shows an example of producing a pumping light source for a high-power erbium-doped fiber amplifier with a buried heterostructure having a wavelength of 1.48 μm by a method similar to that of the example of FIG. The width of the lateral narrowing taper portion is 300 μm, the active layer width at the laser emission end face portion is 0.4 μm, and the active layer width at other regions is 2.4 μm.
A striped taper portion is provided so that m. The embedded structure 31 is formed using a known method.
【0015】作製した素子は室温、連続条件においてし
きい値20〜25mA、発振効率0.40〜0.45W
/Aと良好な発振特性を示した。また、動作電流1.2
Aにおいて最高出力350mWを得た。動作出力250mW
でのビーム広がり角度は水平、垂直方向とも約10度と
狭い。また、素子の長期信頼性を70℃、170mWの条
件下で評価したところ20万時間以上の推定寿命を確認
した。本素子をモジュール化したところ、狭窄化された
ビームを反映してファイバへの平均結合損失1dBが得ら
れ、最高モジュール出力280mWを達成した。本素子を
エルビウム添加ファイバ増幅器の励起光源として用いる
ことにより、雑音強度の低い良好な光増幅特性を確認し
た。The manufactured device has a threshold value of 20 to 25 mA and oscillation efficiency of 0.40 to 0.45 W under continuous conditions at room temperature.
/ A, indicating good oscillation characteristics. Also, operating current 1.2
A maximum output of 350 mW was obtained at A. Operating output 250mW
The beam divergence angle is narrow at about 10 degrees in both horizontal and vertical directions. When the long-term reliability of the device was evaluated under the conditions of 70 ° C. and 170 mW, an estimated life of 200,000 hours or more was confirmed. When this device was modularized, the average coupling loss to the fiber was 1 dB, reflecting the narrowed beam, and the maximum module output of 280 mW was achieved. By using this device as a pumping light source for an erbium-doped fiber amplifier, good optical amplification characteristics with low noise intensity were confirmed.
【0016】実施例3 図5は実施例1とほぼ同様の手法で1.55μmで発振
する高出力で広温度範囲で動作可能な分布帰還型レ−ザ
を作製した例である。図に示すように、n型(100)
InP半導体基板41上に公知の手法によりn型InP
バッファ層1.0μm42、n型InGaAsP下側ガ
イド層(組成波長1.10μm)0.05μm43、
6.0nm厚の1%圧縮歪を有するInGaAsP(組
成波長1.67μm)を井戸層、12nm厚のInGa
AsP(組成波長1.15μm)を障壁層とする6周期
の多重量子井戸活性層44、InGaAsP(組成波長
1.10μm)上側光ガイド層0.1μm45を順次形
成する。多重量子井戸活性層44の発光波長は約1.5
6μmである。次に公知の手法によりλ/4位相シフト
構造を有する周期241nmの回折格子46を上側光ガイ
ド層45上に形成する。この際、回折格子は後にテーパ
導波路となる領域には形成しない。またλ/4位相シフ
トは回折格子が形成される領域の中央に設ける。続い
て、この基板上にp型InPクラッド層1.9μm4
7、p型InGaAsキャップ層0.2μm48を順次
形成する。Embodiment 3 FIG. 5 shows an example of manufacturing a distributed feedback laser which can oscillate at 1.55 μm and can operate in a wide temperature range by a method substantially similar to that of Embodiment 1. As shown, n-type (100)
N-type InP is formed on the InP semiconductor substrate 41 by a known method.
Buffer layer 1.0 μm 42, n-type InGaAsP lower guide layer (composition wavelength 1.10 μm) 0.05 μm 43,
A well layer of InGaAsP (composition wavelength: 1.67 μm) having a thickness of 6.0 nm and 1% compression strain, and an InGa layer having a thickness of 12 nm
A 6-period multiple quantum well active layer 44 having an AsP (composition wavelength of 1.15 μm) as a barrier layer and an InGaAsP (composition wavelength of 1.10 μm) upper optical guide layer of 0.1 μm 45 are sequentially formed. The emission wavelength of the multiple quantum well active layer 44 is about 1.5.
It is 6 μm. Next, a diffraction grating 46 having a λ / 4 phase shift structure and a period of 241 nm is formed on the upper light guide layer 45 by a known method. At this time, the diffraction grating is not formed in a region that will later become a tapered waveguide. The λ / 4 phase shift is provided in the center of the area where the diffraction grating is formed. Then, a p-type InP clad layer of 1.9 μm 4 was formed on the substrate.
7. A p-type InGaAs cap layer 0.2 μm 48 is sequentially formed.
【0017】次に実施例1と同じ手法を用いてテ−パ状
リッジ導波路を形成する。横幅狭窄テーパ部の長さは1
50μm、活性層幅となるリッジ底面の幅は3.0μ
m、テ−パ−部先端での活性層幅は1.0μmに設定す
る。続いて、実施例1と同じ手法でポリイミド埋め込み
型リッジ導波路型レーザ構造に加工する。劈開工程によ
りテ−パ部150μmを含む共振器長450μmの素子
に切り出した後、両端面に反射率1%の低反射膜49を
公知の手法により形成した。Next, a taper-shaped ridge waveguide is formed by using the same method as in the first embodiment. The width of the width narrowing taper part is 1
50 μm, the width of the bottom of the ridge which is the width of the active layer is 3.0 μm
m, and the width of the active layer at the tip of the taper portion is set to 1.0 μm. Then, it is processed into a polyimide-embedded ridge waveguide type laser structure by the same method as in Example 1. After cutting into a device having a cavity length of 450 μm including a taper portion of 150 μm by a cleavage step, a low reflection film 49 having a reflectance of 1% was formed on both end faces by a known method.
【0018】作製した素子は室温、連続条件においてし
きい値8〜12mA、テーパ部端面からの発振効率0.
35〜0.40W/A、後端面からの発振効率0.1〜
0.15W/Aと良好な発振特性を示した。λ/4位相
シフト構造の導入にも関わらず両端面の光出射量を非対
称化できたのは回折格子のないテーパ導波路部が光増幅
器として作用するためであり、本構造の大きな特長の一
つである。また、85℃の高温条件においてもしきい値
は18〜24mA、発振効率は0.25〜0.30W/
A程度と良好であった。また、30mWの高出力時におい
ても安定な単一横モード、縦モード動作を示し、ー40
〜85℃の全温度範囲で副モード抑圧比40dB以上を9
0%以上の作製歩留りで確認した。一方、リッジ幅1.
0μmの前端面からのレーザ出射ビ−ムのスポット径は
6μmと従来の構造に比べて3倍以上に拡大された。こ
のレーザとコア径10μmの単一モ−ドファイバとの結
合を光学レンズを用いずに行ったところ結合損失2dB
以下を水平、垂直方向の位置決め精度±3μmで実現し
た。また、素子の長期信頼性を90℃の高温条件下で評
価したところ10万時間以上の推定寿命を確認した。The fabricated device has a threshold value of 8 to 12 mA under continuous conditions at room temperature and an oscillation efficiency of 0.
35 to 0.40 W / A, oscillation efficiency from rear end surface 0.1 to
It showed a good oscillation characteristic of 0.15 W / A. Despite the introduction of the λ / 4 phase shift structure, the amount of light emitted from both end faces could be made asymmetric because the tapered waveguide section without a diffraction grating acts as an optical amplifier. Is one. Further, even at a high temperature condition of 85 ° C., the threshold value is 18 to 24 mA, and the oscillation efficiency is 0.25 to 0.30 W /
It was as good as A. In addition, stable single transverse mode and longitudinal mode operation is shown even at high output of 30 mW, -40
The secondary mode suppression ratio of 40 dB or more is 9 over the entire temperature range of ~ 85 ° C.
The production yield of 0% or more was confirmed. On the other hand, the ridge width 1.
The spot diameter of the laser emitting beam from the front end face of 0 μm is 6 μm, which is three times or more that of the conventional structure. When this laser and a single mode fiber with a core diameter of 10 μm were coupled without using an optical lens, the coupling loss was 2 dB.
The following was realized with horizontal and vertical positioning accuracy of ± 3 μm. Moreover, when the long-term reliability of the device was evaluated under a high temperature condition of 90 ° C., an estimated life of 100,000 hours or more was confirmed.
【0019】実施例4 図6は実施例3と同様の手法で波長1.3μm帯の出射
ビームを拡大したレーザを作製した一例である。素子構
造は活性層に発光波長1.3μmの歪InGaAsP多
重量子井戸構造61、後端面に高反射膜62が導入され
ている点以外は実施例3とほぼ同じである。Example 4 FIG. 6 is an example of producing a laser in which an emission beam in the wavelength band of 1.3 μm is expanded by the same method as in Example 3. The device structure is almost the same as that of the third embodiment except that a strained InGaAsP multiple quantum well structure 61 having an emission wavelength of 1.3 μm is introduced into the active layer and a high reflection film 62 is introduced into the rear end face.
【0020】作製した素子は室温、連続条件においてし
きい値8〜12mA、発振効率0.50〜0.55W/
Aと良好な発振特性を示した。85℃の高温条件におい
てもしきい値は16〜24mA、発振効率は0.40〜
0.44W/A程度と良好であった。また、リッジ幅
1.0μmの前端面からのレーザ出射ビ−ムのスポット
径は6μmと従来に比べて3倍以上に拡大された。この
レーザとコア径10μmの単一モ−ドファイバとの結合
を光学レンズを用いずに行ったところ結合損失2dB以
下を水平、垂直方向の位置決め精度±3μmで実現し
た。また、素子の長期信頼性を90℃の高温条件下で評
価したところ10万時間以上の推定寿命を確認した。The produced device has a threshold value of 8 to 12 mA and an oscillation efficiency of 0.50 to 0.55 W / in continuous conditions at room temperature.
A shows good oscillation characteristics. The threshold value is 16 to 24 mA and the oscillation efficiency is 0.40 even under the high temperature condition of 85 ° C.
It was good at about 0.44 W / A. Further, the spot diameter of the laser emitting beam from the front end face having a ridge width of 1.0 μm is 6 μm, which is three times or more that of the conventional one. When this laser and a single mode fiber with a core diameter of 10 μm were coupled without using an optical lens, a coupling loss of 2 dB or less was realized with horizontal and vertical positioning accuracy of ± 3 μm. Moreover, when the long-term reliability of the device was evaluated under a high temperature condition of 90 ° C., an estimated life of 100,000 hours or more was confirmed.
【0021】実施例5 図7は図1の実施例とほぼ同様の手法で波長0.98μ
m帯の高出力エルビウム添加ファイバ増幅器用励起光源
を作製した一例である。図に示すように、n型(10
0)GaAs半導体基板71上に公知の手法によりn型
In0.51Ga0.49Pバッファ層3.0μm7
2、6.0nm厚のIn0.17Ga0.83Asを井
戸層、10nm厚のInGaAsP(組成波長0.70
μm)を障壁層とする単一量子井戸活性層73、p型I
n0.51Ga0.49P第一クラッド層0.1μm7
4、GaAsエッチング停止層5nm75、p型In
0.51Ga0.49P第二クラッド層1.7μm7
6、p型GaAsキャップ層0.2μm77を順次形成
する。単一量子井戸活性層73の発光波長は約0.98
μmである。Example 5 FIG. 7 shows a wavelength of 0.98 μm in the same manner as in the example of FIG.
It is an example of producing an m-band pumping light source for a high-power erbium-doped fiber amplifier. As shown in the figure, n-type (10
0) n-type In0.51Ga0.49P buffer layer 3.0 μm 7 on the GaAs semiconductor substrate 71 by a known method.
2, 6.0 nm thick In0.17Ga0.83As well layer, 10 nm thick InGaAsP (composition wavelength 0.70
μm) as a barrier layer, single quantum well active layer 73, p-type I
n0.51Ga0.49P First cladding layer 0.1 μm 7
4, GaAs etching stop layer 5 nm 75, p-type In
0.51Ga0.49P Second clad layer 1.7 μm 7
6. P-type GaAs cap layer 0.2 μm 77 is sequentially formed. The emission wavelength of the single quantum well active layer 73 is about 0.98.
μm.
【0022】次に公知の手法によりキャップ層77をテ
ーパストライプ構造に加工する。ここでストライプ方向
は[011]とし、横幅狭窄テーパ部の長さ250μ
m、レ−ザ出射端面部でストライプ幅3.2μm、その
他の領域でのストライプ幅は5.4μmのとなるように
ストライプテ−パ部を設ける。続いて、図に示すような
(111)A面を側壁にもつ逆メサ断面形状のリッジ導
波路を形成する。この結果、活性層幅となるリッジ底面
の幅は3.0μm、テ−パ−部先端で0.8μmとな
る。Next, the cap layer 77 is processed into a taper stripe structure by a known method. Here, the stripe direction is [011], and the width of the lateral narrowing taper portion is 250 μm.
m, the stripe width is 3.2 μm at the laser emission end face, and the stripe width is 5.4 μm in the other regions. Subsequently, a ridge waveguide having an inverted mesa cross section having a (111) A plane as a side wall is formed as shown in the figure. As a result, the width of the bottom surface of the ridge, which is the width of the active layer, is 3.0 μm, and the width at the tip of the taper portion is 0.8 μm.
【0023】続いて公知の手法により基板全面に厚さ
0.20μmのシリコン酸化膜78を形成した後、ポリ
イミド樹脂79を基板全面に形成する。さらに、リッジ
上面にエッチバック法を用いてシリコン酸化膜窓を形成
する。最後に電極80を形成の後、劈開工程によりテ−
パ−部250μmを含む共振器長1000μmの素子に
切り出す。後端面となる3.0μm幅のリッジ部端面に
は反射率90%の高反射膜81を、前端面となる0.8
μm幅のリッジ部端面には反射率3%の低反射膜82を
公知の手法により形成した。Then, a 0.20 μm thick silicon oxide film 78 is formed on the entire surface of the substrate by a known method, and then a polyimide resin 79 is formed on the entire surface of the substrate. Further, a silicon oxide film window is formed on the upper surface of the ridge by the etch back method. Finally, after the electrode 80 is formed, a cleavage process is performed.
A device having a resonator length of 1000 μm including a part of 250 μm is cut out. A highly reflective film 81 having a reflectance of 90% is provided on the end face of the ridge portion having a width of 3.0 μm, which is the rear end face, and 0.8 is provided as the front end face.
A low reflection film 82 having a reflectance of 3% was formed on the end face of the ridge portion having a width of μm by a known method.
【0024】作製した素子は室温、連続条件においてし
きい値15〜20mA、発振効率0.7〜0.75W/
Aと良好な発振特性を示した。また、動作電流500mA
において最高出力500mWを得、所謂CODによる素子の
急速劣化は全く観測されなかった。動作出力300mWで
のビーム広がり角度は水平約15度、垂直20度と両方
向とも狭い。出射端面での近視野像を観察したところ、
図に示す用に活性層位置から1μm離れたn型In0.
51Ga0.49Pバッファ層72に光強度の中心が位
置していることが解かった。この結果、活性層端面近傍
での過度の光吸収結による結晶破壊が素子劣化が防止で
きた。素子の長期信頼性を70℃、200mWの条件下で
評価したところ50万時間以上の推定寿命を確認した。
本素子をモジュール化したところ、狭窄化されたビーム
を反映してファイバへの平均結合損失1.5dBが得ら
れ、最高モジュール出力350mWを達成した。本素子を
エルビウム添加ファイバ増幅器の励起光源として用いる
ことにより、雑音強度の低い良好な光増幅特性を確認し
た。The produced device has a threshold value of 15 to 20 mA and an oscillation efficiency of 0.7 to 0.75 W / at room temperature and continuous conditions.
A shows good oscillation characteristics. Also, operating current 500mA
A maximum output of 500 mW was obtained and no rapid deterioration of the element due to so-called COD was observed. The beam divergence angle at an operation output of 300 mW is about 15 degrees horizontally and 20 degrees vertically, which is narrow in both directions. Observing the near-field image at the exit end,
As shown in the figure, n-type InO.
It was found that the center of the light intensity is located in the 51Ga0.49P buffer layer 72. As a result, it was possible to prevent crystal degradation due to excessive light absorption in the vicinity of the end face of the active layer and element deterioration. When the long-term reliability of the device was evaluated under the conditions of 70 ° C. and 200 mW, an estimated life of 500,000 hours or more was confirmed.
When this device was modularized, an average coupling loss to the fiber of 1.5 dB was obtained reflecting the narrowed beam, and the maximum module output of 350 mW was achieved. By using this device as a pumping light source for an erbium-doped fiber amplifier, good optical amplification characteristics with low noise intensity were confirmed.
【0025】尚、ビ−ム拡大による端面光密度の低減に
よる素子寿命改善効果は波長1μm程度以下の全ての高
出力半導体レーザに適用できることは言うまでもない。It is needless to say that the effect of improving the device life by reducing the light density on the end surface by expanding the beam can be applied to all high-power semiconductor lasers having a wavelength of about 1 μm or less.
【0026】実施例6 図8は図7の実施例とほぼ同様の手法でリッジ埋め込み
構造の波長0.98μm帯の高出力エルビウム添加ファ
イバ増幅器用励起光源を作製した一例である。横幅狭窄
テーパ部の長さ250μm、レ−ザ出射端面部での活性
層幅0.6μm、その他の領域での活性層幅は3.0μ
mのとなるようにストライプテ−パ部を設ける。埋め込
み構造101は公知の手法を用いて形成している。Example 6 FIG. 8 shows an example of producing a pumping light source for a high-power erbium-doped fiber amplifier having a ridge-embedded structure and a wavelength of 0.98 μm in a manner substantially similar to that of the example of FIG. The width of the lateral narrowing taper portion is 250 μm, the active layer width is 0.6 μm at the laser emission end face portion, and the active layer width is 3.0 μm in other regions.
A striped taper portion is provided so that m. The embedded structure 101 is formed by using a known method.
【0027】作製した素子は室温、連続条件においてし
きい値15〜20mA、発振効率0.7〜0.75W/
Aと良好な発振特性を示した。また、動作電流400mA
において最高出力400mWを得、所謂CODによる素子の
急速劣化は全く観測されなかった。動作出力250mWで
のビーム広がり角度は水平約18度、垂直25度と両方
向とも狭い。出射端面での近視野像を観察したところ、
図に示す用に活性層位置から0.3μm離れたn型In
0.51Ga0.49Pバッファ層72に光強度の中心
が位置していることが解かった。この結果、活性層端面
近傍での過度の光吸収結による結晶破壊が素子劣化が防
止できた。素子の長期信頼性を70℃、150mWの条件
下で評価したところ20万時間以上の推定寿命を確認し
た。本素子をモジュール化したところ、狭窄化されたビ
ームを反映してファイバへの平均結合損失1.5dBが得
られ、最高モジュール出力280mWを達成した。本素子
をエルビウム添加ファイバ増幅器の励起光源として用い
ることにより、雑音強度の低い良好な光増幅特性を確認
した。The fabricated device has a threshold value of 15 to 20 mA and an oscillation efficiency of 0.7 to 0.75 W / at room temperature and continuous conditions.
A shows good oscillation characteristics. Also, operating current 400mA
A maximum output of 400 mW was obtained and no rapid deterioration of the device due to so-called COD was observed. The beam divergence angle at the operation output of 250 mW is about 18 degrees horizontally and 25 degrees vertically, which is narrow in both directions. Observing the near-field image at the exit end,
As shown in the figure, n-type In separated from the active layer position by 0.3 μm
It was found that the center of the light intensity is located in the 0.51Ga0.49P buffer layer 72. As a result, it was possible to prevent crystal degradation due to excessive light absorption in the vicinity of the end face of the active layer and element deterioration. When the long-term reliability of the device was evaluated under the conditions of 70 ° C. and 150 mW, an estimated life of 200,000 hours or more was confirmed. When this device was modularized, an average coupling loss to the fiber of 1.5 dB was obtained reflecting the narrowed beam, and the maximum module output of 280 mW was achieved. By using this device as a pumping light source for an erbium-doped fiber amplifier, good optical amplification characteristics with low noise intensity were confirmed.
【0028】実施例7 図9は実施例1とほぼ同様の手法で波長1.55μm帯
で動作する半導体レ−ザ光増幅器を作製した例である。Example 7 FIG. 9 shows an example in which a semiconductor laser optical amplifier operating in the wavelength band of 1.55 μm was manufactured by a method similar to that of Example 1.
【0029】図に示す様にn型(100)InP半導体
基板111上に公知の手法によりn型InPバッファ層
0.5μm112、n型InGaAsP下側光ガイド層
(組成波長1.15μm)0.05μm113、6.0
nm厚で0.45%の引っ張り歪を持つInGaAs
(組成波長1.60μm)を井戸層、10nm厚のIn
GaAsP(組成波長1.15μm)を障壁層とする6
周期の歪多重量子井戸活性層114、InGaAsP
(組成波長1.15μm)上側光ガイド層0.05μm
115、p型InPクラッド層1.9μm116、p型
InGaAsキャップ層0.2μm117を順次形成す
る。As shown in the figure, the n-type InP buffer layer 0.5 μm 112 and the n-type InGaAsP lower optical guide layer (composition wavelength 1.15 μm) 0.05 μm 113 are formed on the n-type (100) InP semiconductor substrate 111 by a known method. , 6.0
nm thickness InGaAs with 0.45% tensile strain
(Composition wavelength 1.60 μm) is a well layer, 10 nm thick In
GaAsP (composition wavelength 1.15 μm) as a barrier layer 6
Periodic strained multiple quantum well active layer 114, InGaAsP
(Composition wavelength 1.15 μm) Upper light guide layer 0.05 μm
115, p-type InP clad layer 1.9 μm 116, and p-type InGaAs cap layer 0.2 μm 117 are sequentially formed.
【0030】次に公知のレーザ作製法を用いて図に示す
ようなテ−パ−形状のリッジストライプ導波路を素子の
両端面に有するレーザ構造に加工する。ここで素子中央
のリッジの底面の幅は3.0μmであるがレーザ出射端
では1.0μmにまでテ−パ−状に狭窄化されている。
リッジ幅が漸次変化するテ−パ−領域長は150μm、
全素子長は700μmである。素子の両端面には反射率
0.05%の反射防止膜118を施した。Next, using a well-known laser manufacturing method, a laser structure having a taper-shaped ridge stripe waveguide as shown in the figure on both end surfaces of the device is processed. Here, the width of the bottom surface of the ridge at the center of the element is 3.0 μm, but at the laser emission end, it is narrowed in a taper shape to 1.0 μm.
The taper region length in which the ridge width gradually changes is 150 μm,
The total element length is 700 μm. An antireflection film 118 having a reflectance of 0.05% was applied to both end faces of the element.
【0031】作製した素子は室温、連続条件において、
印加電流100mAにおいてチップ利得25dBを得、
TE、TMモ−ド間の利得差は0.5dB以下と良好で
ある。また、飽和出力は10dBmであった。The manufactured element was kept at room temperature under continuous conditions.
A chip gain of 25 dB is obtained at an applied current of 100 mA,
The gain difference between the TE and TM modes is as good as 0.5 dB or less. The saturated output was 10 dBm.
【0032】一方、リッジ幅1.0μmの入/出射端面
でのビ−ムスポット径は約6μmと従来型に比べて4倍
に拡大された。この光増幅器とコア径10μmの単一モ
−ドファイバとの結合を行ったところ片端面当たりの結
合損失2dB以下を水平、垂直方向の位置決め精度±3
μmで実現した。On the other hand, the beam spot diameter at the entrance / exit end face having a ridge width of 1.0 μm is about 6 μm, which is four times larger than that of the conventional type. When this optical amplifier and a single mode fiber with a core diameter of 10 μm were coupled, the coupling loss per end face was 2 dB or less, and the positioning accuracy in the horizontal and vertical directions was ± 3.
It was realized in μm.
【0033】実施例8 図10は実施例5と同様の手法で波長0.68μm帯の
高出力レーザを作製した一例である。素子構造は活性層
に発光波長0.68μmの歪InGaP/InGaAl
P多重量子井戸構造132、後端面に高反射膜133が
導入されている点以外は実施例5とほぼ同じである。Example 8 FIG. 10 shows an example in which a high-power laser having a wavelength of 0.68 μm was manufactured by the same method as in Example 5. The device structure has a strained InGaP / InGaAl layer with an emission wavelength of 0.68 μm in the active layer.
The P-quantum well structure 132 is substantially the same as the fifth embodiment except that the high reflection film 133 is introduced on the rear end face.
【0034】作製した素子は室温、連続条件においてし
きい値25〜30mA、発振効率0.90〜0.95W
/Aと良好な発振特性を示した。85℃の高温条件にお
いてもしきい値は50〜60mA、発振効率は0.75
〜0.80W/A程度と良好であった。また、リッジ幅
1.0μmの前端面からのレーザ出射ビ−ムのスポット
径は5μmと従来に比べて3倍以上に拡大された。これ
により、素子の端面破壊が発生する、光出力レベルは1
00mW以上であった。これを反映して、素子の長期信
頼性を70℃、50mWの条件下で評価したところ10
万時間以上の推定寿命を確認した。The manufactured device has a threshold value of 25 to 30 mA and oscillation efficiency of 0.90 to 0.95 W under continuous conditions at room temperature.
/ A, indicating good oscillation characteristics. The threshold value is 50 to 60 mA and the oscillation efficiency is 0.75 even at a high temperature of 85 ° C.
It was good at about 0.80 W / A. Further, the spot diameter of the laser emitting beam from the front end face having a ridge width of 1.0 μm is 5 μm, which is three times or more that of the conventional one. As a result, the end face of the device is destroyed, and the optical output level is 1
It was more than 00 mW. Reflecting this, the long-term reliability of the device was evaluated under the conditions of 70 ° C. and 50 mW.
Confirmed life expectancy of 10,000 hours or more.
【0035】実施例9 図11は実施例5と同様の手法で波長0.78μm帯の
高出力レーザを作製した一例である。素子構造は活性層
に発光波長0.78μmのGaAs/AlGaAs多重
量子井戸構造142、後端面に高反射膜143が導入さ
れている点以外は実施例5とほぼ同じである。Example 9 FIG. 11 shows an example of producing a high-power laser having a wavelength of 0.78 μm in the same manner as in Example 5. The device structure is almost the same as that of the fifth embodiment except that a GaAs / AlGaAs multiple quantum well structure 142 having an emission wavelength of 0.78 μm is introduced in the active layer and a high reflection film 143 is introduced in the rear end face.
【0036】作製した素子は室温、連続条件においてし
きい値25〜30mA、発振効率0.80〜0.85W
/Aと良好な発振特性を示した。85℃の高温条件にお
いてもしきい値は50〜60mA、発振効率は0.65
〜0.60W/A程度と良好であった。また、リッジ幅
1.0μmの前端面からのレーザ出射ビ−ムのスポット
径は5μmと従来に比べて3倍以上に拡大された。これ
により、素子の端面破壊が発生する、光出力レベルは2
00mW以上であった。これを反映して、素子の長期信
頼性を70℃、150mWの条件下で評価したところ1
0万時間以上の推定寿命を確認した。The manufactured device has a threshold value of 25 to 30 mA and an oscillation efficiency of 0.80 to 0.85 W under continuous conditions at room temperature.
/ A, indicating good oscillation characteristics. The threshold value is 50 to 60 mA and the oscillation efficiency is 0.65 even at a high temperature of 85 ° C.
It was good at about 0.60 W / A. Further, the spot diameter of the laser emitting beam from the front end face having a ridge width of 1.0 μm is 5 μm, which is three times or more that of the conventional one. As a result, the end face of the device is destroyed, and the optical output level is 2
It was more than 00 mW. Reflecting this, the long-term reliability of the device was evaluated under the conditions of 70 ° C. and 150 mW.
An estimated life of over 10,000 hours was confirmed.
【0037】[0037]
【発明の効果】本発明に係る半導体発光素子よれば、高
出力で光ファイバとの光結合が容易で且つ動作電流、動
作電圧の低く、且つ高速特性の優れた半導体レーザ、光
増幅器等の半導体光素子を極めて容易な手法で実現でき
る。本発明を用いれば、素子性能、歩留まりが飛躍的に
向上するだけでなく、この素子を適用した光通信システ
ムの低価格化、大容量化、長距離化を容易に実現でき
る。According to the semiconductor light emitting device of the present invention, a semiconductor such as a semiconductor laser, an optical amplifier, etc., which has a high output, easy optical coupling with an optical fiber, low operating current and operating voltage, and excellent high-speed characteristics. The optical element can be realized by an extremely easy method. By using the present invention, not only the element performance and the yield are dramatically improved, but also the optical communication system to which the element is applied can be easily reduced in price, increased in capacity, and increased in distance.
【図1】本発明の作用を説明するための図である。FIG. 1 is a diagram for explaining the operation of the present invention.
【図2】本発明の作用を説明するための図である。FIG. 2 is a diagram for explaining the operation of the present invention.
【図3】本発明の実施例を説明するための図である。FIG. 3 is a diagram for explaining an example of the present invention.
【図4】本発明の実施例を説明するための図である。FIG. 4 is a diagram for explaining an example of the present invention.
【図5】本発明の実施例を説明するための図である。FIG. 5 is a diagram for explaining an example of the present invention.
【図6】本発明の実施例を説明するための図である。FIG. 6 is a diagram for explaining an example of the present invention.
【図7】本発明の実施例を説明するための図である。FIG. 7 is a diagram for explaining an example of the present invention.
【図8】本発明の実施例を説明するための図である。FIG. 8 is a diagram for explaining an example of the present invention.
【図9】本発明の実施例を説明するための図である。FIG. 9 is a diagram for explaining an example of the present invention.
【図10】本発明の実施例を説明するための図である。FIG. 10 is a diagram for explaining an example of the present invention.
【図11】本発明の実施例を説明するための図である。FIG. 11 is a diagram for explaining an example of the present invention.
1…活性層、11…n型(100)InP半導体基板、
12…n型InPバッファ層1.0μm、13…n型I
nGaAsP下側ガイド層、14…歪InGaAsP多
重量子井戸活性層、15…InGaAsP上側光ガイド
層、16…p型InPクラッド層、17…p型InGa
Asキャップ層、18…シリコン酸化膜、19…ポリイ
ミド樹脂、20…電極、21…高反射膜、22…低反射
膜、31…埋め込み構造、41…n型(100)InP
半導体基板、42…n型InPバッファ層、43…n型
InGaAsP下側ガイド層、44…歪InGaAsP
多重量子井戸活性層、45…InGaAsP上側光ガイ
ド層、46…λ/4位相シフト回折格子、47…p型I
nPクラッド層、48…p型InGaAsキャップ層、
49…低反射膜、61…1.3μm歪InGaAsP多
重量子井戸構造、62…高反射膜、71…n型(10
0)GaAs半導体基板、72…n型In0.51Ga
0.49Pバッファ層、73…単一量子井戸活性層、7
4…p型In0.51Ga0.49P第一クラッド層、
75…GaAsエッチング停止層、76…p型In0.
51Ga0.49P第二クラッド層、77…p型GaA
sキャップ層、88…シリコン酸化膜、89…ポリイミ
ド樹脂、90…電極、101…埋め込み構造、111…
n型(100)InP半導体基板、112…n型InP
バッファ層、113…n型InGaAsP下側光ガイド
層、114…引っ張り歪InGaAs多重量子井戸活性
層、115…InGaAsP上側光ガイド層、116…
p型InPクラッド層、117…p型InGaAsキャ
ップ層、131…n型(100)GaAs半導体基板、
132…歪InGaP/InGaAlP多重量子井戸構
造、133…高反射膜、141…n型(100)GaA
s半導体基板、142…GaAs/AlGaAs多重量
子井戸構造、143…高反射膜。1 ... Active layer, 11 ... N-type (100) InP semiconductor substrate,
12 ... n type InP buffer layer 1.0 μm, 13 ... n type I
nGaAsP lower guide layer, 14 ... strained InGaAsP multiple quantum well active layer, 15 ... InGaAsP upper optical guide layer, 16 ... p-type InP clad layer, 17 ... p-type InGa
As cap layer, 18 ... Silicon oxide film, 19 ... Polyimide resin, 20 ... Electrode, 21 ... High reflection film, 22 ... Low reflection film, 31 ... Buried structure, 41 ... N-type (100) InP
Semiconductor substrate, 42 ... N-type InP buffer layer, 43 ... N-type InGaAsP lower guide layer, 44 ... Strained InGaAsP
Multiple quantum well active layer, 45 ... InGaAsP upper optical guide layer, 46 ... λ / 4 phase shift diffraction grating, 47 ... P-type I
nP clad layer, 48 ... p-type InGaAs cap layer,
49 ... Low reflection film, 61 ... 1.3 μm strained InGaAsP multiple quantum well structure, 62 ... High reflection film, 71 ... N-type (10
0) GaAs semiconductor substrate, 72 ... n-type In0.51Ga
0.49P buffer layer, 73 ... Single quantum well active layer, 7
4 ... p-type In0.51Ga0.49P first cladding layer,
75 ... GaAs etching stop layer, 76 ... p-type In0.
51Ga0.49P second cladding layer, 77 ... p-type GaA
s cap layer, 88 ... Silicon oxide film, 89 ... Polyimide resin, 90 ... Electrode, 101 ... Embedded structure, 111 ...
n-type (100) InP semiconductor substrate, 112 ... n-type InP
Buffer layer, 113 ... n-type InGaAsP lower optical guide layer, 114 ... Tensile strain InGaAs multiple quantum well active layer, 115 ... InGaAsP upper optical guide layer, 116 ...
p-type InP clad layer, 117 ... p-type InGaAs cap layer, 131 ... n-type (100) GaAs semiconductor substrate,
132 ... Strained InGaP / InGaAlP multiple quantum well structure, 133 ... High reflective film, 141 ... n-type (100) GaA
s semiconductor substrate, 142 ... GaAs / AlGaAs multiple quantum well structure, 143 ... Highly reflective film.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐川 みすず 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 平本 清久 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 魚見 和久 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Misuzu Sagawa 1-280 Higashi Koikeku, Kokubunji, Tokyo Metropolitan Research Laboratory, Hitachi Ltd. (72) Kiyohisa Hiramoto 1-280 Higashi Koikeku, Kokubunji, Tokyo Hitachi Ltd. (72) Inventor, Kazuhisa Uomi 1-280, Higashi Koikekubo, Kokubunji, Tokyo Metropolitan Research Center, Hitachi, Ltd.
Claims (15)
広バンドギャップで低屈折率な材料からなるクラッド層
を第1のコア層の両側に有する半導体光素子において、
導波路の横幅が光軸方向でテ−パ状に滑らかに変調され
ており、光の入射端または出射端もしくはその両部で導
波路の横幅が横モ−ドが単一となるカットオフ幅よりも
狭く設定され、且つその他の導波路の領域では横幅が横
モ−ドが単一となるカットオフ幅よりも広く設定されて
いることを特徴とする半導体光素子。1. A semiconductor optical device having a first core layer and a cladding layer made of a material having a wider bandgap and a lower refractive index than the first core layer on both sides of the first core layer on a semiconductor substrate,
The width of the waveguide is smoothly modulated in a taper shape in the optical axis direction, and the width of the waveguide becomes a single cutoff width at the light entrance end or the light exit end or both parts. A semiconductor optical device characterized in that the width is set to be narrower than that of the waveguide and the width of the other waveguide regions is set to be wider than the cutoff width where the horizontal mode is single.
率材料からなるクラッド層を第1のコア層の両側に有す
る半導体光素子において、導波路の横幅が光軸方向でテ
−パ状に滑らかに変調されていおり、光の入射端または
出射端もしくはその両部で導波路の横幅が0.2〜2μ
mであり、且つその他の導波路の領域では横幅が2〜1
0μmであることを特徴とする半導体光素子。2. In a semiconductor optical device having a first core layer and a cladding layer made of a material having a lower refractive index than the first core layer on both sides of the first core layer on a substrate, the lateral width of the waveguide is in the optical axis direction. -Smoothly modulated in the shape of a line, and the width of the waveguide is 0.2 to 2 μm at the light entrance end or the light exit end or both of them.
m, and the lateral width is 2-1 in other waveguide regions.
A semiconductor optical device having a thickness of 0 μm.
徴とする請求項1又は2記載の半導体光素子。3. The semiconductor optical device according to claim 1, wherein the waveguide is of a ridge loading type.
のピ−ク位置が第1のコア層の位置になく、基板側にシ
フトしていることを特徴とする請求項1乃至3のいずれ
かに記載の半導体光素子。4. The peak position of the intensity distribution of the guided light at the light input end and the light output end is not located at the position of the first core layer, but is shifted to the substrate side. 4. The semiconductor optical device according to any one of 3 to 3.
(01−1)結晶面であることを特徴とする請求項1乃
至4のいずれかに記載の半導体光素子。5. The semiconductor optical device according to claim 1, wherein the side walls on both sides of the ridge are (111) A or (01-1) crystal planes.
徴とする請求項1又は2記載の半導体光素子。6. The semiconductor optical device according to claim 1, wherein the optical device is a semiconductor laser.
徴とする請求項6記載の半導体素子。7. The semiconductor device according to claim 6, wherein the oscillation wavelength is 1.2 μm or less.
も20度以下であることを特徴とする請求項6記載の半
導体光素子。8. A semiconductor optical device according to claim 6, wherein the divergence angle of the emitted beam is 20 degrees or less in both horizontal and vertical directions.
形成されていることを特徴とする請求項6記載の半導体
光素子。9. A semiconductor optical device according to claim 6, wherein the diffraction grating is formed at least in a part of the waveguide.
ことを特徴とする請求項1又は2記載の半導体光素子。10. The semiconductor optical device according to claim 1, wherein the optical device is a semiconductor laser amplifier.
特徴とする請求項10記載の半導体光素子。11. The semiconductor optical device according to claim 10, wherein the oscillation wavelength is 1.2 μm or less.
とも20度以下であることを特徴とする請求項10記載
の半導体光素子。12. The semiconductor optical device according to claim 10, wherein the divergence angle of the outgoing beam is 20 degrees or less in both horizontal and vertical directions.
に形成されていることを特徴とする請求項10記載の半
導体光素子。13. A semiconductor optical device according to claim 10, wherein the diffraction grating is formed at least in a part of the waveguide.
用いた光通信用モジュール。14. An optical communication module using the semiconductor optical device according to claim 1.
を用いた光通信システム。15. An optical communication system using the optical communication module according to claim 14.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13318095A JPH08330671A (en) | 1995-05-31 | 1995-05-31 | Semiconductor optical element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13318095A JPH08330671A (en) | 1995-05-31 | 1995-05-31 | Semiconductor optical element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08330671A true JPH08330671A (en) | 1996-12-13 |
Family
ID=15098559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13318095A Pending JPH08330671A (en) | 1995-05-31 | 1995-05-31 | Semiconductor optical element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08330671A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000046893A1 (en) * | 1999-02-03 | 2000-08-10 | The Furukawa Electric Co., Ltd. | Semiconductor laser and semiconductor laser module using the same |
US6253003B1 (en) | 1997-08-06 | 2001-06-26 | Nec Corporation | Optical coupling method and optical coupling device |
US6307242B1 (en) | 1998-02-19 | 2001-10-23 | Nec Corporation | Semiconductor photo-detector with square-shaped optical wave-guide |
JP2002228863A (en) * | 2001-02-06 | 2002-08-14 | Kddi Submarine Cable Systems Inc | Optical coupling structure |
US6614822B2 (en) | 2000-02-03 | 2003-09-02 | The Furukawa Electric Co., Ltd. | Semiconductor laser devices, and semiconductor laser modules and optical communication systems using the same |
US6810063B1 (en) | 1999-06-09 | 2004-10-26 | The Furukawa Electric Co., Ltd. | Semiconductor laser device |
US6870871B2 (en) | 2000-02-03 | 2005-03-22 | The Furukawa Electric Co., Ltd. | Semiconductor laser devices, and semiconductor laser modules and optical communication systems using the same |
US6996149B2 (en) | 2002-02-19 | 2006-02-07 | The Furukawa Electric Co., Ltd. | Semiconductor laser device and semiconductor laser module |
US7006545B2 (en) | 2000-10-02 | 2006-02-28 | The Furukawa Electric Co., Ltd. | Semiconductor laser device and optical fiber amplifier using the same |
JP2007221172A (en) * | 1999-06-03 | 2007-08-30 | Fujitsu Ltd | Polarization independent semiconductor optical amplifier |
US8705920B2 (en) | 2008-12-26 | 2014-04-22 | Nec Corporation | Wavelength filter |
CN106164722A (en) * | 2014-04-09 | 2016-11-23 | 华为技术有限公司 | Edge Coupling device manufactures |
EP3258555A4 (en) * | 2015-02-12 | 2018-10-10 | Furukawa Electric Co. Ltd. | Semiconductor laser element and laser light irradiation device |
CN110350396A (en) * | 2018-04-03 | 2019-10-18 | 住友电气工业株式会社 | Quantum cascade laser |
CN115864135A (en) * | 2023-02-17 | 2023-03-28 | 福建慧芯激光科技有限公司 | DFB laser chip with gradually-changed ridge waveguides at two ends |
-
1995
- 1995-05-31 JP JP13318095A patent/JPH08330671A/en active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6253003B1 (en) | 1997-08-06 | 2001-06-26 | Nec Corporation | Optical coupling method and optical coupling device |
US6307242B1 (en) | 1998-02-19 | 2001-10-23 | Nec Corporation | Semiconductor photo-detector with square-shaped optical wave-guide |
EP1603206A3 (en) * | 1999-02-03 | 2006-04-26 | The Furukawa Electric Co., Ltd. | Semiconductor laser device and semiconductor laser module using the same |
US6567447B1 (en) | 1999-02-03 | 2003-05-20 | The Furukawa Electric Co., Ltd. | Semiconductor laser device and semiconductor laser module using the same |
WO2000046893A1 (en) * | 1999-02-03 | 2000-08-10 | The Furukawa Electric Co., Ltd. | Semiconductor laser and semiconductor laser module using the same |
JP2007221172A (en) * | 1999-06-03 | 2007-08-30 | Fujitsu Ltd | Polarization independent semiconductor optical amplifier |
US6810063B1 (en) | 1999-06-09 | 2004-10-26 | The Furukawa Electric Co., Ltd. | Semiconductor laser device |
US6614822B2 (en) | 2000-02-03 | 2003-09-02 | The Furukawa Electric Co., Ltd. | Semiconductor laser devices, and semiconductor laser modules and optical communication systems using the same |
US6870871B2 (en) | 2000-02-03 | 2005-03-22 | The Furukawa Electric Co., Ltd. | Semiconductor laser devices, and semiconductor laser modules and optical communication systems using the same |
US7006545B2 (en) | 2000-10-02 | 2006-02-28 | The Furukawa Electric Co., Ltd. | Semiconductor laser device and optical fiber amplifier using the same |
JP2002228863A (en) * | 2001-02-06 | 2002-08-14 | Kddi Submarine Cable Systems Inc | Optical coupling structure |
US6996149B2 (en) | 2002-02-19 | 2006-02-07 | The Furukawa Electric Co., Ltd. | Semiconductor laser device and semiconductor laser module |
US8705920B2 (en) | 2008-12-26 | 2014-04-22 | Nec Corporation | Wavelength filter |
CN106164722A (en) * | 2014-04-09 | 2016-11-23 | 华为技术有限公司 | Edge Coupling device manufactures |
EP3258555A4 (en) * | 2015-02-12 | 2018-10-10 | Furukawa Electric Co. Ltd. | Semiconductor laser element and laser light irradiation device |
US10439361B2 (en) | 2015-02-12 | 2019-10-08 | Furukawa Electric Co., Ltd. | Semiconductor laser device and laser light irradiation apparatus |
CN110350396A (en) * | 2018-04-03 | 2019-10-18 | 住友电气工业株式会社 | Quantum cascade laser |
JP2019186278A (en) * | 2018-04-03 | 2019-10-24 | 住友電気工業株式会社 | Quantum cascade laser |
CN115864135A (en) * | 2023-02-17 | 2023-03-28 | 福建慧芯激光科技有限公司 | DFB laser chip with gradually-changed ridge waveguides at two ends |
CN115864135B (en) * | 2023-02-17 | 2023-04-25 | 福建慧芯激光科技有限公司 | DFB laser chip with graded ridge waveguides at two ends |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5737474A (en) | Semiconductor optical device | |
US5400353A (en) | Tapered semiconductor laser gain structure with cavity spoiling grooves | |
US5457569A (en) | Semiconductor amplifier or laser having integrated lens | |
JP4574009B2 (en) | Side anti-waveguide high-power semiconductor with reduced lateral optical confinement | |
US5272711A (en) | High-power semiconductor laser diode | |
JP2009295680A (en) | Semiconductor laser device | |
JPH08330671A (en) | Semiconductor optical element | |
JP3468612B2 (en) | Semiconductor laser device | |
JPS5940592A (en) | Semiconductor laser element | |
US20020136255A1 (en) | Semiconductor laser, optical element provided with the same and optical pickup provided with the optical element | |
US5555544A (en) | Tapered semiconductor laser oscillator | |
Shigihara et al. | High-power 980-nm ridge waveguide laser diodes including an asymmetrically expanded optical field normal to the active layer | |
JPH08220358A (en) | Waveguide type optical element | |
JP2005209952A (en) | Semiconductor laser equipment and optical pickup equipment using the same | |
JP2002111125A (en) | Distributed feedback semiconductor laser | |
JP3053139B2 (en) | Strained quantum well semiconductor laser | |
US20060140236A1 (en) | Semiconductor laser device and optical pick-up device using the same | |
JP3266728B2 (en) | Manufacturing method of waveguide type optical element | |
JPH0730199A (en) | Semiconductor laser element | |
JP3639654B2 (en) | Semiconductor laser and manufacturing method thereof | |
JPH10290052A (en) | Semiconductor laser | |
JP3998492B2 (en) | Semiconductor laser element | |
JP3200918B2 (en) | Semiconductor laser device | |
JP3194237B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JP2000068587A (en) | Semiconductor laser device |