JPH08313139A - Refrigerator - Google Patents
RefrigeratorInfo
- Publication number
- JPH08313139A JPH08313139A JP12223495A JP12223495A JPH08313139A JP H08313139 A JPH08313139 A JP H08313139A JP 12223495 A JP12223495 A JP 12223495A JP 12223495 A JP12223495 A JP 12223495A JP H08313139 A JPH08313139 A JP H08313139A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- temperature sensor
- pressure
- compressor
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2400/00—General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
- F25D2400/30—Quick freezing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2700/00—Means for sensing or measuring; Sensors therefor
- F25D2700/14—Sensors measuring the temperature outside the refrigerator or freezer
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、間接冷却方式冷蔵庫に
おけるコンプレッサーへの負荷低減に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to reduction of load on a compressor in an indirect cooling type refrigerator.
【0002】[0002]
【従来の技術】従来の冷蔵庫におけるコンプレッサーに
加わる負荷の低減を目的とした制御としては、例えば、
特開平5−240554号公報が公知である。2. Description of the Related Art As a control for reducing the load applied to a compressor in a conventional refrigerator, for example,
JP-A-5-240554 is known.
【0003】以下、図6,図7,図8及び図9に従い従
来の冷蔵庫の一例について説明する。An example of a conventional refrigerator will be described below with reference to FIGS. 6, 7, 8 and 9.
【0004】図6は従来の冷蔵庫の制御のフローチャー
ト、図7は同冷蔵庫の概略電気構成を示すブロック図、
図8は同冷蔵庫の縦断面図、図9は同冷蔵庫におけるコ
ンプレッサーの吐出側圧力の変化特性図である。FIG. 6 is a flow chart of control of a conventional refrigerator, FIG. 7 is a block diagram showing a schematic electric configuration of the refrigerator,
FIG. 8 is a longitudinal sectional view of the refrigerator, and FIG. 9 is a change characteristic diagram of the discharge side pressure of the compressor in the refrigerator.
【0005】図8において、冷蔵庫本体1は冷凍室2及
び冷蔵室3を備えた構造となっており、各室にはそれぞ
れ冷凍室扉4、冷蔵室扉5が取り付けられている。冷蔵
庫本体1の背面下部にはコンプレッサー6が配置されて
いる。In FIG. 8, a refrigerator main body 1 has a structure including a freezing compartment 2 and a refrigerating compartment 3, and a freezing compartment door 4 and a refrigerating compartment door 5 are attached to each compartment. A compressor 6 is arranged in the lower rear portion of the refrigerator body 1.
【0006】冷凍室2の背面部位には冷却室7が形成さ
れており、この冷却室7内に冷却器8、送風ファン9及
び除霜ヒータ10が設置され、冷凍室2内には冷凍室温
度センサー11が取り付けられている。A cooling chamber 7 is formed in the rear portion of the freezing chamber 2, a cooler 8, a blower fan 9 and a defrosting heater 10 are installed in the cooling chamber 7, and a freezing chamber is provided in the freezing chamber 2. A temperature sensor 11 is attached.
【0007】冷蔵室3の背面部位には、ダンパー装置1
2と冷蔵室温度センサー13を内蔵した温度調節装置1
4が設置され、前記ダンパー装置12と前記冷却室7は
ダクト15により連結されている。前記冷凍室扉4の前
面下部には室温センサー16が設置されている。A damper device 1 is provided on the rear surface of the refrigerator compartment 3.
2 and a refrigerating room temperature sensor 13 built-in temperature control device 1
4 is installed, and the damper device 12 and the cooling chamber 7 are connected by a duct 15. A room temperature sensor 16 is installed below the front surface of the freezer compartment door 4.
【0008】図7において、冷凍室温度センサー11は
冷凍室2の温度に応じた温度検出信号を発生し、冷蔵室
温度センサー13は冷蔵室3の温度に応じた温度検出信
号を発生し、室温センサー16は冷蔵庫本体1の設置雰
囲気温度DSに応じた温度検出信号を発生する構成とな
っており、これら各温度検出信号は制御回路17に与え
られる。In FIG. 7, the freezer compartment temperature sensor 11 generates a temperature detection signal according to the temperature of the freezer compartment 2, and the refrigerating compartment temperature sensor 13 generates a temperature detection signal according to the temperature of the refrigerating compartment 3 at room temperature. The sensor 16 is configured to generate a temperature detection signal according to the installation ambient temperature DS of the refrigerator main body 1, and these temperature detection signals are given to the control circuit 17.
【0009】除霜タイマー18は所定の除霜周期毎に除
霜信号を発生し、該除霜信号は制御回路17に与えられ
るようになっている。制御回路17は例えばマイコンを
含んで構成されたもので、商用交流電源に接続されるプ
ラグ19から直流電源回路20を介して給電される構成
となっている。The defrost timer 18 generates a defrost signal at every predetermined defrost cycle, and the defrost signal is given to the control circuit 17. The control circuit 17 is configured to include, for example, a microcomputer, and is configured to be supplied with power from a plug 19 connected to a commercial AC power supply via a DC power supply circuit 20.
【0010】この制御回路17は上述のような各入力信
号及び予め記憶した制御用プログラムに基づいて、前記
コンプレッサー6,送風ファン9,ダンパー装置12及
び除霜ヒータ10への通電制御をリレー21〜24を介
して実行するように構成されている。The control circuit 17 controls the energization of the compressor 6, the blower fan 9, the damper device 12 and the defrosting heater 10 based on the above-mentioned input signals and the previously stored control program. It is configured to run via 24.
【0011】図6には制御回路17による制御のうち、
本発明の要旨に関係する部分のみ示してあり、以下これ
について説明する。In FIG. 6, among the controls by the control circuit 17,
Only the portion related to the gist of the present invention is shown, and this will be described below.
【0012】電源が投入されると、コンプレッサー6及
び送風ファン9が運転を開始し(ステップS1)、この
状態で所定時間△T1が経過するまで待機する(ステッ
プS2)。時間△T1が経過した時には、室温センサー
16による検出温度DSが所定の上限温度Dmax以上
あるか否かを判断する(ステップS3)。When the power is turned on, the compressor 6 and the blower fan 9 start operating (step S1), and in this state, the system waits until a predetermined time ΔT1 elapses (step S2). When the time ΔT1 has elapsed, it is determined whether the temperature DS detected by the room temperature sensor 16 is equal to or higher than a predetermined upper limit temperature Dmax (step S3).
【0013】そして検出温度DSが上限温度Dmax未
満であった場合には、そのまま通常制御ルーチンS7を
実行するが、検出温度DSが上限温度Dmax以上であ
った場合、即ちコンプレッサー6への入力負荷が増大し
ている状況下では、送風ファン9を停止させ(ステップ
S4)、予め設定した時間△T2経過するまで待機する
(ステップS5)。When the detected temperature DS is lower than the upper limit temperature Dmax, the normal control routine S7 is executed as it is, but when the detected temperature DS is higher than the upper limit temperature Dmax, that is, the input load to the compressor 6 is increased. Under the increasing condition, the blower fan 9 is stopped (step S4), and waits until the preset time ΔT2 elapses (step S5).
【0014】その後△T2経過した後、送風ファン9へ
の通電を再開させ(ステップS6)、その後通常制御ル
ーチンS7へ移行する。尚、この通常ルーチンS7はご
く一般的なもので、冷凍室温度センサー11からの温度
検出信号に基づいてコンプレッサー6と送風ファン9の
運転制御を行い、冷蔵室温度センサー13からの温度検
出信号に基づいてダンパー装置12の開閉制御を行い、
除霜タイマー18からの除霜信号に基づいて除霜ヒータ
10の通電制御を行うようになっている。After the lapse of ΔT2, energization of the blower fan 9 is restarted (step S6), and then the normal control routine S7 is entered. Incidentally, this normal routine S7 is a very general one, and the operation control of the compressor 6 and the blower fan 9 is performed based on the temperature detection signal from the freezer compartment temperature sensor 11, and the temperature detection signal from the refrigerating compartment temperature sensor 13 is used. Based on the opening and closing control of the damper device 12,
The energization control of the defrost heater 10 is performed based on the defrost signal from the defrost timer 18.
【0015】このような制御における作用について図9
を参照しながら説明する。冷蔵庫を夏場に運搬し、電源
を投入すると、コンプレッサー6の吐出側圧力は時間の
経過とともに急上昇し、それに比例してコンプレッサー
6に加わる負荷も増加してくる。その後△T1経過時
(吐出側圧力Pdl)に、室温センサー16の検出温度
DSが上限温度Dmax以上であった場合、△T2の時
間だけ送風ファン9が停止するため、この間は冷却器8
と庫内空気との熱交換量は減少し、コンプレッサー6の
吐出側圧力Pdも低下し、当然コンプレッサー6への入
力負荷も低下してくる。但しこの間、コンプレッサー6
の運転は継続しているので冷媒は冷却システム内を循環
し続け冷却器8の温度は低下する。その後、△T2経過
後、送風ファン9の運転が再開すると、コンプレッサー
6の吐出側圧力Pdは冷却器8の温度が十分低下してい
るため、相対的に低い値を呈しながら電源投入時よりは
緩やかなカーブを描いて上昇し、最大値Pdmaxを示
した後に冷却器8の温度に応じた値に落ち着くようにな
り、コンプレッサー6への入力負荷の上昇も抑制され
る。The operation in such control is shown in FIG.
Will be described with reference to. When the refrigerator is transported in the summer and the power is turned on, the discharge side pressure of the compressor 6 sharply increases with time, and the load applied to the compressor 6 also increases in proportion to it. After that, when ΔT1 has elapsed (discharge side pressure Pdl) and the temperature DS detected by the room temperature sensor 16 is equal to or higher than the upper limit temperature Dmax, the blower fan 9 is stopped for a period of ΔT2.
The amount of heat exchange between the air and the inside air decreases, the discharge side pressure Pd of the compressor 6 also decreases, and naturally the input load to the compressor 6 also decreases. However, during this time, the compressor 6
Since the operation is continued, the refrigerant continues to circulate in the cooling system and the temperature of the cooler 8 decreases. After that, when the operation of the blower fan 9 is restarted after the lapse of ΔT2, the discharge side pressure Pd of the compressor 6 has a relatively low value because the temperature of the cooler 8 is sufficiently lowered, and therefore the discharge side pressure Pd is lower than that at the time of power-on. The temperature rises in a gentle curve, reaches the maximum value Pdmax, and then stabilizes at a value according to the temperature of the cooler 8, and the increase in the input load to the compressor 6 is also suppressed.
【0016】[0016]
【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、高外気温時(即ちDS≧Dmax時)、
冷凍室及び冷蔵室が十分冷却された状態で停電が発生
し、短時間で復帰した場合にも、電源投入時と同様に△
T1経過後、送風ファンが△T2の間、停止するため結
果的に冷凍室及び冷蔵室が所定温度にまで復帰する時間
が長くなり、保存食品に悪影響を与えるという課題を有
していた。However, in the above-mentioned structure, when the outside temperature is high (that is, when DS ≧ Dmax),
Even when a power failure occurs and the power is restored in a short time while the freezer compartment and the refrigerator compartment are sufficiently cooled, it is the same as when the power is turned on.
After the lapse of T1, the blower fan is stopped during ΔT2, so that the freezing room and the refrigerating room have a long time to return to a predetermined temperature, which causes a problem that stored foods are adversely affected.
【0017】本発明は上記課題に臨み、コンプレッサー
の信頼性を確保しつつ、停電後の冷凍室及び冷蔵室が所
定温度に復帰する時間を短縮するものである。The present invention addresses the above problems and shortens the time required for the freezing chamber and the refrigerating chamber to return to a predetermined temperature after a power failure while ensuring the reliability of the compressor.
【0018】[0018]
【課題を解決するための手段】上記課題を解決するため
に本発明の冷蔵庫は、冷凍室と、冷蔵室と、コンプレッ
サー、凝縮器、冷却器を備えた冷凍サイクルと、前記冷
却器で冷却した冷気を前記冷凍室及び冷蔵室に強制対流
させる送風ファンと、前記冷凍サイクルの高圧側圧力を
検知する高圧圧力検知手段と、前記冷凍室の温度を検知
する冷凍室温度センサーと、外気温度を検知する室温セ
ンサーとを備え、電源投入直後に前記冷凍室温度センサ
ー及び前記室温センサーの温度がともに設定温度以上を
検知した際に、電源投入後所定時間経過後に、前記圧力
検知手段が上限設定圧力以上を検知した場合には予め設
定された時間だけ前記送風ファンの回転数を低速にする
制御回路を設けたものである。In order to solve the above-mentioned problems, the refrigerator of the present invention has a refrigerating compartment, a refrigerating compartment, a refrigerating cycle equipped with a compressor, a condenser, and a cooler, and is cooled by the cooler. A blower fan for forced convection of cold air to the freezing compartment and the refrigerating compartment, a high pressure detecting means for detecting the high pressure side pressure of the refrigeration cycle, a freezing compartment temperature sensor for detecting the temperature of the freezing compartment, and an outside air temperature detection. When the temperature of the freezer compartment temperature sensor and the temperature of the room temperature sensor are both above the set temperature immediately after the power is turned on, the pressure detecting means is above the upper limit set pressure after a predetermined time has passed after the power is turned on. In the case where the above is detected, a control circuit for reducing the rotation speed of the blower fan for a preset time is provided.
【0019】また、冷蔵室の温度を検知する冷蔵室温度
センサーを備え、電源投入直後に前記冷蔵室温度センサ
ー及び前記室温センサーの温度がともに設定温度以上を
検知した際に、電源投入後所定時間経過後に、前記高圧
圧力検知手段が上限設定圧力以上を検知した場合には予
め設定された時間だけ前記送風ファンの回転数を低速に
するファン制御回路を設けたものである。A refrigerating compartment temperature sensor for detecting the temperature of the refrigerating compartment is provided, and when both the refrigerating compartment temperature sensor and the room temperature sensor detect a temperature equal to or higher than a preset temperature immediately after the power is turned on, a predetermined time is passed after the power is turned on. After the lapse of time, when the high pressure detecting means detects a pressure equal to or higher than the upper limit set pressure, a fan control circuit is provided to reduce the rotation speed of the blower fan for a preset time.
【0020】[0020]
【作用】上記構成により本発明の冷蔵庫は、電源投入時
に室温センサーと冷凍室温度センサーもしくは冷蔵室温
度センサーがともに設定温度以上の場合、即ち、高外気
温時で且つ未冷却時であることを検知した場合、その後
所定時間経過後、高圧圧力検知手段が上限設定値以上、
即ちコンプレッサーへの入力負荷が過大な場合のみ、予
め設定した時間だけ送風ファンの回転数を低速にするの
で、コンプレッサーに加わる負荷トルクが低減されると
ともに、十分冷却されている状態で停電が発生し、短時
間で復帰した際には、冷凍室温度センサー及び冷蔵室温
度センサーの温度は低く設定温度以下にあるので上記制
御は行われず通常の制御のままとなる。従って冷凍室及
び冷蔵室が所定温度にまで復帰するまでの時間が長引く
ことなく、保存食品に悪影響を与えることはなくなる。With the above-described structure, the refrigerator of the present invention has the following features when the room temperature sensor and the freezer compartment temperature sensor or the refrigeration compartment temperature sensor are both above the set temperature when the power is turned on, that is, when the outside air temperature is high and uncooled. When it is detected, after a predetermined time has passed, the high pressure detection means is higher than the upper limit set value,
That is, only when the input load to the compressor is excessive, the rotation speed of the blower fan is reduced for a preset time, so that the load torque applied to the compressor is reduced and a power failure occurs in a sufficiently cooled state. However, when the temperature is restored in a short time, the temperatures of the freezer compartment temperature sensor and the refrigerating compartment temperature sensor are low and below the set temperature, so the above control is not performed and the normal control is maintained. Therefore, the time required for the freezer compartment and the refrigerator compartment to return to the predetermined temperature is not prolonged, and the stored food is not adversely affected.
【0021】[0021]
【実施例】以下本発明の一実施例の冷蔵庫について図面
を参照しながら説明する。尚、従来例と同一構成のもの
については同一番号を符し、その詳細な説明は省略す
る。図1は本発明の第1の実施例における冷蔵庫の制御
のフローチャートである。図2は本発明の第1の実施例
及び第2の実施例における冷蔵庫の機械室部の正面図
で、25は高圧圧力検知手段であり、冷凍サイクル中の
高圧側配管26の一部に設置されており、コンプレッサ
ー6から吐出される冷媒の圧力に応じた圧力検出信号を
発生している。DESCRIPTION OF THE PREFERRED EMBODIMENTS A refrigerator according to an embodiment of the present invention will be described below with reference to the drawings. The same components as those of the conventional example are designated by the same reference numerals, and detailed description thereof will be omitted. FIG. 1 is a flowchart of the control of the refrigerator in the first embodiment of the present invention. FIG. 2 is a front view of the machine room of the refrigerator in the first and second embodiments of the present invention, in which 25 is a high pressure detection means, which is installed in a part of the high pressure side pipe 26 in the refrigeration cycle. The pressure detection signal corresponding to the pressure of the refrigerant discharged from the compressor 6 is generated.
【0022】図3は本発明の第1の実施例及び第2の実
施例における冷蔵庫の概略電気構成を示すブロック図で
ある。FIG. 3 is a block diagram showing a schematic electric configuration of the refrigerator in the first and second embodiments of the present invention.
【0023】図3において、制御回路27はマイコンを
含んで構成されたもので、商用交流電源に接続されるプ
ラグ19から直流電源回路20を介して給電される構成
となっており、冷凍室温度センサー11、冷蔵室温度セ
ンサー13、室温センサー16、除霜タイマー18及び
前記高圧圧力検知手段25から発生された入力信号を受
け予め記憶した制御用プログラムに基づいて、前記コン
プレッサー6、送風ファン9、ダンパー装置12及び除
霜ヒータ10への通電制御をリレー21〜24を介して
実行するように構成されている。In FIG. 3, the control circuit 27 is configured to include a microcomputer, and is supplied with power from a plug 19 connected to a commercial AC power source via a DC power source circuit 20. The compressor 6, the blower fan 9, based on a control program stored in advance, which receives input signals generated from the sensor 11, the refrigerator compartment temperature sensor 13, the room temperature sensor 16, the defrost timer 18, and the high pressure detection means 25. The energization control of the damper device 12 and the defrost heater 10 is configured to be executed via the relays 21 to 24.
【0024】図4は本発明の第2の実施例における冷蔵
庫の制御のフローチャートである。図5は本発明の冷蔵
庫におけるコンプレッサーの吐出側圧力の変化特性図で
ある。FIG. 4 is a flow chart of control of the refrigerator in the second embodiment of the present invention. FIG. 5 is a change characteristic diagram of the discharge side pressure of the compressor in the refrigerator of the present invention.
【0025】以上のように構成された冷蔵庫について、
以下その制御について説明する。まず第1の実施例では
図1及び図3において、電源が投入されるとコンプレッ
サー6及び送風ファン9が運転を開始し(ステップP
1)、その直後に室温センサー16の検出温度DSと冷
凍室温度センサー11の検出温度DFがともに設定値D
max(例えば35℃)以上あるか否かを判断する(ス
テップP2)。Regarding the refrigerator constructed as described above,
The control will be described below. First, in the first embodiment, in FIG. 1 and FIG. 3, when the power is turned on, the compressor 6 and the blower fan 9 start operating (step P
1), immediately after that, the detected temperature DS of the room temperature sensor 16 and the detected temperature DF of the freezer compartment temperature sensor 11 are both set value D.
It is determined whether or not it is equal to or higher than max (for example, 35 ° C.) (step P2).
【0026】そして検出温度DS及びDFがともに設定
値Dmax未満であった場合には、そのまま通常制御ル
ーチンP8を実行するが、検出温度DS及びDFがとも
に設定値Dmax以上であった場合、即ち高外気温時で
且つ未冷却時であることを検知するとその後所定時間△
T1(例えば20分)経過後(ステップP3)に、圧力
検知手段25の検出圧力Pdが上限設定値Pdmax
(例えば1.8MPa)以上あるか否かを判断する(ス
テップP4)。When both the detected temperatures DS and DF are less than the set value Dmax, the normal control routine P8 is executed as it is, but when both the detected temperatures DS and DF are the set value Dmax or more, that is, high. When it is detected that the temperature is outside and the temperature is not cooled, a predetermined time after that △
After a lapse of T1 (for example, 20 minutes) (step P3), the detected pressure Pd of the pressure detection means 25 is set to the upper limit set value Pdmax.
It is determined whether (for example, 1.8 MPa) or more (step P4).
【0027】そして検出圧力Pdが上限設定値Pdma
x未満であった場合には、そのまま通常制御ルーチンP
8を実行するが、検出圧力Pdが上限設定値Pdmax
以上であった場合、即ちコンプレッサー6への入力負荷
が過大な状況下では、制御回路27が送風ファン9へ通
電させる電流量を低減させ送風ファン9の回転数を低速
にさせ(ステップP5)、予め設定された時間△T2
(例えば45分間)経過するまでその状態を維持する
(ステップP6)。The detected pressure Pd is the upper limit set value Pdma.
If it is less than x, the normal control routine P is used as it is.
8 is executed, but the detected pressure Pd is the upper limit set value Pdmax.
When the above is the case, that is, when the input load to the compressor 6 is excessive, the control circuit 27 reduces the amount of current supplied to the blower fan 9 to reduce the rotation speed of the blower fan 9 (step P5). Preset time ΔT2
The state is maintained (for example, 45 minutes) (step P6).
【0028】その後△T2経過した後、制御回路27が
送風ファン9へ通電させる電流量を正規量に復帰させ
(ステップP7)、その後通常制御ルーチンP8へ移行
する。After the lapse of ΔT2, the control circuit 27 restores the amount of current supplied to the blower fan 9 to the normal amount (step P7), and then shifts to the normal control routine P8.
【0029】次に第2の実施例では図3及び図4におい
て、電源が投入されるとコンプレッサー6及び送風ファ
ン9が運転を開始し(ステップP1)、その直後に室温
センサー16の検出温度DSと冷蔵室温度センサー13
の検出温度DPがともに設定値Dmax(例えば35
℃)以上あるか否かを判断する(ステップP2)。In the second embodiment, as shown in FIGS. 3 and 4, when the power is turned on, the compressor 6 and the blower fan 9 start operating (step P1), and immediately after that, the temperature DS detected by the room temperature sensor 16 is detected. And cold room temperature sensor 13
Detected temperature DP of both is set value Dmax (for example, 35
(° C.) or higher (step P2).
【0030】そして検出温度DS及びDPがともに設定
値Dmax未満であった場合には、そのまま通常制御ル
ーチンP8を実行するが、検出温度DS及びDFがとも
に設定値Dmax以上であった場合、即ち高外気温時で
且つ未冷却時であることを検知するとその後所定時間△
T1(例えば20分)経過後(ステップP3)に、圧力
検知手段25の検出圧力Pdが上限設定値Pdmax
(例えば1.8MPa)以上あるか否かを判断する(ス
テップP4)。When both the detected temperatures DS and DP are less than the set value Dmax, the normal control routine P8 is executed as it is, but when both the detected temperatures DS and DF are the set value Dmax or more, that is, high. When it is detected that the temperature is outside and the temperature is not cooled, a predetermined time after that △
After a lapse of T1 (for example, 20 minutes) (step P3), the detected pressure Pd of the pressure detection means 25 is set to the upper limit set value Pdmax.
It is determined whether (for example, 1.8 MPa) or more (step P4).
【0031】そして検出圧力Pdが上限設定値Pdma
x未満であった場合には、そのまま通常制御ルーチンP
8を実行するが、検出圧力Pdが上限設定値Pdmax
以上であった場合、即ちコンプレッサー6への入力負荷
が過大な状況下では、制御回路27が送風ファン9へ通
電させる電流量を低減させ送風ファン9の回転数を低速
にさせ(ステップP5)、予め設定された時間△T2
(例えば45分間)経過するまでその状態を維持する
(ステップP6)。The detected pressure Pd is the upper limit set value Pdma.
If it is less than x, the normal control routine P is used as it is.
8 is executed, but the detected pressure Pd is the upper limit set value Pdmax.
When the above is the case, that is, when the input load to the compressor 6 is excessive, the control circuit 27 reduces the amount of current supplied to the blower fan 9 to reduce the rotation speed of the blower fan 9 (step P5). Preset time ΔT2
The state is maintained (for example, 45 minutes) (step P6).
【0032】その後△T2経過した後、制御回路27が
送風ファン9へ通電させる電流量を正規量に復帰させ
(ステップP7)、その後通常制御ルーチンP8へ移行
する。After the lapse of ΔT2, the control circuit 27 restores the amount of current supplied to the blower fan 9 to the normal amount (step P7), and then shifts to the normal control routine P8.
【0033】以上のような制御における作用について図
5を参照しながら説明する。冷蔵庫を夏場に運搬し設置
する状況下、即ち高外気温で且つ未冷却時(DS≧Dm
ax且つDF≧Dmax、またはDS≧Dmax且つD
P≧Dmax)において、電源が投入されると、コンプ
レッサー6の吐出側圧力は時間の経過とともに急上昇
し、それに比例してコンプレッサー6に加わる負荷も増
加してくる。The operation of the above control will be described with reference to FIG. Under conditions where the refrigerator is transported and installed in the summer, that is, when the outside temperature is high and uncooled (DS ≧ Dm
ax and DF ≧ Dmax, or DS ≧ Dmax and D
In P ≧ Dmax), when the power is turned on, the discharge side pressure of the compressor 6 sharply increases with the passage of time, and the load applied to the compressor 6 also increases in proportion thereto.
【0034】その後△T1経過時(吐出側圧力Pdl)
に、高圧圧力検知手段25の検出圧力Pdが上限設定値
Pdmax以上であった場合、その後△T2の時間だけ
送風ファン9の回転数が低速になるため、この間は冷却
器8と庫内空気との熱交換量は減少し、コンプレッサー
6の吐出側圧力Pdも低下し、当然コンプレッサー6へ
の入力負荷も低下してくる。After that, when ΔT1 has elapsed (discharge side pressure Pdl)
In addition, when the detected pressure Pd of the high pressure detection means 25 is equal to or higher than the upper limit set value Pdmax, the rotation speed of the blower fan 9 becomes low for a period of ΔT2 thereafter, and during this period, the cooler 8 and the air in the refrigerator are separated. The amount of heat exchange of the compressor 6 decreases, the discharge side pressure Pd of the compressor 6 also decreases, and naturally the input load to the compressor 6 also decreases.
【0035】但しこの間、コンプレッサー6の運転は継
続しているので冷媒は冷却システム内を循環し続け冷却
器8の温度は低下する。その後、△T2経過後、送風フ
ァン9の回転数が正規にもどると、コンプレッサー6の
吐出側圧力Pdは冷却器8の温度が十分低下しているた
め、相対的に低い値を呈しながら電源投入時よりは緩や
かなカーブを描いて上昇し、最大値Pdmaxを示した
後に冷却器8の温度に応じた値に落ち着くようになり、
コンプレッサー6への入力負荷の上昇も抑制された状態
で安定運転になる。However, during this time, the operation of the compressor 6 is continued, so that the refrigerant continues to circulate in the cooling system and the temperature of the cooler 8 is lowered. Then, after the lapse of ΔT2, when the number of rotations of the blower fan 9 returns to the normal value, the discharge side pressure Pd of the compressor 6 has a sufficiently low temperature of the cooler 8, so that the power is turned on while exhibiting a relatively low value. The curve rises in a gentler curve than the time, and after reaching the maximum value Pdmax, it reaches a value corresponding to the temperature of the cooler 8,
Stable operation is performed with the increase in the input load to the compressor 6 suppressed.
【0036】その後、T3時点において停電が発生し、
ごく短時間T4の時点で通電が再開した場合、制御回路
27は電源投入時として認知するが、冷凍室2もしくは
冷蔵室3は所定温度より高いものの、まだ冷却された状
態にあり、冷凍室温度センサー11の検出温度DF及び
冷蔵室温度センサー13の検出温度DPはともに上限設
定温度Dmax未満であるため、その後の制御は通常制
御に従って遂行される。従って従来例では、停電後通電
が再開された後、T4時点から△T1経過後にも△T2
の時間送風ファン9が停止していたが、本実施例におい
ては送風ファン9は停止することなく、通常制御に従っ
て運転を続けることになる。After that, a power failure occurs at time T3,
When the energization is restarted at a very short time T4, the control circuit 27 recognizes that the power is turned on, but although the freezing compartment 2 or the refrigerating compartment 3 is higher than a predetermined temperature, it is still in a cooled state and the freezing compartment temperature is high. Since the detected temperature DF of the sensor 11 and the detected temperature DP of the refrigerating compartment temperature sensor 13 are both lower than the upper limit set temperature Dmax, the subsequent control is performed according to the normal control. Therefore, in the conventional example, after the energization is restarted after the power failure, ΔT2 is maintained even after ΔT1 has elapsed from the time point T4.
However, in the present embodiment, the blower fan 9 does not stop and continues to operate according to the normal control.
【0037】要するに本実施例の構成によれば、高外気
温時で且つ、未冷却時においては、コンプレッサー9に
加わる負荷を低減し、コンプレッサー6の信頼性を確保
しつつ停電時には、通電再開後、冷凍室2及び冷蔵室3
の庫内温度が所定の温度にまで復帰する時間を不必要に
長引かせることなく、貯蔵食品への影響を低減し得るよ
うになる。In short, according to the configuration of the present embodiment, the load applied to the compressor 9 is reduced at high outside air temperature and in the uncooled state, the reliability of the compressor 6 is ensured, and the energization is resumed after a power failure. , Freezer 2 and refrigerator 3
The effect on stored food can be reduced without unnecessarily prolonging the time required for the internal temperature of the container to return to a predetermined temperature.
【0038】[0038]
【発明の効果】以上のように本発明は、冷凍室と、冷蔵
室と、コンプレッサー、凝縮器、冷却器を備えた公知の
冷凍サイクルと、前記冷却器で冷却した冷気を前記冷凍
室及び冷蔵室に強制対流させる送風ファンと、前記冷凍
サイクルの高圧側圧力を検知する高圧圧力検知手段と、
前記冷凍室の温度を検知する冷凍室温度センサーと、外
気温度を検知する室温センサーとを備え、電源投入直後
に前記冷凍室温度センサー及び前記室温センサーの温度
がともに設定温度以上を検知した際に、電源投入後所定
時間経過後に、前記圧力検知手段が上限設定圧力以上を
検知した場合には予め設定された時間だけ前記送風ファ
ンの回転数を低速にする制御回路を設ける構成としたも
のであり、高外気温時で且つ未冷却時においては、電源
投入後のコンプレッサーに加わる負荷を低減し、コンプ
レッサーの信頼性を確保しつつ、停電時には、通電再開
後、冷凍室及び冷蔵室の庫内温度が所定の温度にまで復
帰する時間を不必要に長引かせることなく貯蔵食品への
影響を低減するという効果が得られる。As described above, according to the present invention, a known refrigerating cycle including a freezer compartment, a refrigerating compartment, a compressor, a condenser and a cooler, and cold air cooled by the cooler are stored in the freezer compartment and the refrigerating compartment. A blower fan forcibly convection to the chamber, a high pressure detection means for detecting the high pressure side pressure of the refrigeration cycle,
A freezer compartment temperature sensor that detects the temperature of the freezer compartment and a room temperature sensor that detects the outside air temperature are provided, and when the temperatures of the freezer compartment temperature sensor and the room temperature sensor are both above a set temperature immediately after power-on. When a predetermined time has elapsed after turning on the power and the pressure detecting means detects a pressure equal to or higher than the upper limit set pressure, a control circuit for reducing the rotation speed of the blower fan for a preset time is provided. At high outside air temperature and uncooled, the load on the compressor is reduced after the power is turned on to ensure the reliability of the compressor, and at the time of power failure, the temperature inside the freezer and refrigerating compartments is reopened after the power is turned on again. It is possible to obtain the effect of reducing the influence on the stored food without unnecessarily prolonging the time required for the product to return to a predetermined temperature.
【0039】また、冷蔵室の温度を検知する冷蔵室温度
センサーを備え、電源投入直後に前記冷蔵室温度センサ
ー及び前記室温センサーの温度がともに設定温度以上を
検知した際に、電源投入後所定時間経過後に、前記高圧
圧力検知手段が上限設定圧力以上を検知した場合には予
め設定された時間だけ前記送風ファンの回転数を低速に
する制御回路を設ける構成としたものであり、高外気温
時で且つ未冷却時においては、電源投入後のコンプレッ
サーに加わる負荷を低減し、コンプレッサーの信頼性を
確保しつつ、停電時には、通電再開後、冷凍室及び冷蔵
室の庫内温度が所定の温度にまで復帰する時間を不必要
に長引かせることなく貯蔵食品への影響を低減するとい
う効果が得られる。A refrigerating compartment temperature sensor for detecting the temperature of the refrigerating compartment is provided, and when both the refrigerating compartment temperature sensor and the room temperature sensor detect a temperature equal to or higher than a preset temperature immediately after the power is turned on, a predetermined time is passed after the power is turned on. After the lapse of time, when the high pressure detection means detects a pressure higher than the upper limit set pressure, a control circuit for reducing the rotation speed of the blower fan to a low speed for a preset time is provided. In the uncooled state, the load applied to the compressor after the power is turned on is reduced, and the reliability of the compressor is secured.At the time of a power failure, the internal temperature of the freezer compartment and the refrigerator compartment is set to a predetermined temperature after the power supply is restarted. It is possible to obtain the effect of reducing the influence on the stored food without unnecessarily prolonging the time required to return to.
【図1】本発明の第1の実施例における冷蔵庫の制御の
フローチャートFIG. 1 is a flowchart for controlling a refrigerator according to a first embodiment of the present invention.
【図2】本発明の第1の実施例及び第2の実施例におけ
る冷蔵庫の機械室部の正面図FIG. 2 is a front view of a machine room portion of a refrigerator according to the first and second embodiments of the present invention.
【図3】本発明の第1の実施例及び第2の実施例におけ
る冷蔵庫の概略電気構成を示すブロック図FIG. 3 is a block diagram showing a schematic electric configuration of a refrigerator according to the first and second embodiments of the present invention.
【図4】本発明の第2の実施例における冷蔵庫の制御の
フローチャートFIG. 4 is a flowchart of a refrigerator control according to the second embodiment of the present invention.
【図5】本発明の冷蔵庫におけるコンプレッサーの吐出
側圧力の変化特性図FIG. 5 is a change characteristic diagram of the discharge side pressure of the compressor in the refrigerator of the present invention.
【図6】従来の冷蔵庫の制御のフローチャートFIG. 6 is a flowchart of control of a conventional refrigerator.
【図7】従来の冷蔵庫の概略電気構成を示すブロック図FIG. 7 is a block diagram showing a schematic electric configuration of a conventional refrigerator.
【図8】従来の冷蔵庫の縦断面図FIG. 8 is a vertical sectional view of a conventional refrigerator.
【図9】従来の冷蔵庫におけるコンプレッサーの吐出側
圧力の変化特性図FIG. 9 is a change characteristic diagram of the discharge side pressure of the compressor in the conventional refrigerator.
2 冷凍室 3 冷蔵室 6 コンプレッサー 9 送風ファン 11 冷凍室温度センサー 13 冷蔵室温度センサー 16 室温センサー 25 圧力検知手段 27 制御回路 2 Freezing room 3 Refrigerating room 6 Compressor 9 Blower fan 11 Freezing room temperature sensor 13 Refrigerating room temperature sensor 16 Room temperature sensor 25 Pressure detection means 27 Control circuit
Claims (2)
凝縮器、冷却器を備えた冷凍サイクルと、前記冷却器で
冷却した冷気を前記冷凍室及び冷蔵室に強制対流させる
送風ファンと、前記冷凍サイクルの高圧側圧力を検知す
る高圧圧力検知手段と、前記冷凍室の温度を検知する冷
凍室温度センサーと、外気温度を検知する室温センサー
とを備え、電源投入直後に前記冷凍室温度センサー及び
前記室温センサーの温度がともに設定温度以上を検知し
た際に、電源投入後所定時間経過後に、前記圧力検知手
段が上限設定圧力以上を検知した場合には予め設定され
た時間だけ前記送風ファンの回転数を低速にする制御回
路を設けたことを特徴とする冷蔵庫。1. A freezer compartment, a refrigerator compartment, a compressor,
A condenser, a refrigeration cycle including a cooler, a blower fan for forcing convection of the cool air cooled by the cooler into the refrigerating compartment and a refrigerating compartment, and a high pressure detecting means for detecting a high pressure side pressure of the refrigerating cycle, A freezer compartment temperature sensor that detects the temperature of the freezer compartment and a room temperature sensor that detects the outside air temperature are provided, and when the temperatures of the freezer compartment temperature sensor and the room temperature sensor are both above a set temperature immediately after power-on. A control circuit is provided which, when a predetermined time has elapsed after the power is turned on and the pressure detecting means detects a pressure equal to or higher than the upper limit set pressure, reduces the rotation speed of the blower fan for a preset time. refrigerator.
サーを備え、電源投入直後に前記冷蔵室温度センサー及
び前記室温センサーの温度がともに設定温度以上を検知
した際に、電源投入後所定時間経過後に、前記高圧圧力
検知手段が上限設定圧力以上を検知した場合には予め設
定された時間だけ前記送風ファンの回転数を低速にする
制御回路を設けたことを特徴とする請求項第1記載の冷
蔵庫。2. A refrigerating compartment temperature sensor for detecting the temperature of the refrigerating compartment is provided, and when both the refrigerating compartment temperature sensor and the room temperature sensor detect a temperature equal to or higher than a preset temperature immediately after the power is turned on, a predetermined time after the power is turned on. The control circuit for reducing the rotation speed of the blower fan for a preset time when the high pressure detection means detects a pressure higher than or equal to an upper limit pressure after a lapse of time is provided. Refrigerator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12223495A JPH08313139A (en) | 1995-05-22 | 1995-05-22 | Refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12223495A JPH08313139A (en) | 1995-05-22 | 1995-05-22 | Refrigerator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08313139A true JPH08313139A (en) | 1996-11-29 |
Family
ID=14830902
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12223495A Pending JPH08313139A (en) | 1995-05-22 | 1995-05-22 | Refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08313139A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106895642A (en) * | 2017-02-15 | 2017-06-27 | 合肥美的电冰箱有限公司 | The refrigeration air-supply amount control method of wind cooling refrigerator and wind cooling refrigerator |
-
1995
- 1995-05-22 JP JP12223495A patent/JPH08313139A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106895642A (en) * | 2017-02-15 | 2017-06-27 | 合肥美的电冰箱有限公司 | The refrigeration air-supply amount control method of wind cooling refrigerator and wind cooling refrigerator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11304329A (en) | Cooling operation controller of refrigerator | |
JP2902607B2 (en) | Quick cooling control method for refrigerator | |
JPH08303921A (en) | Refrigerator | |
JPH08313139A (en) | Refrigerator | |
JPH0989431A (en) | Refrigerator | |
JPH08247605A (en) | Refrigerator | |
JP2802237B2 (en) | refrigerator | |
JPH1062050A (en) | Refrigerator | |
JPH08303929A (en) | Refrigerator | |
JPH09113090A (en) | Refrigerator | |
JPH10185395A (en) | Freezing refrigerator | |
JPH0979726A (en) | Refrigerator | |
JPH08247604A (en) | Refrigerator | |
JPH109738A (en) | Refrigerator | |
JPH09113091A (en) | Refrigerator | |
JP3903237B2 (en) | Cold storage | |
JPH1038454A (en) | Refrigerator | |
JP3192729B2 (en) | refrigerator | |
JPH1062051A (en) | Refrigerator | |
JP2796260B2 (en) | Refrigerator control device | |
JPH08303920A (en) | Control device for refrigerator | |
KR100291298B1 (en) | Defrost control device and method of the refrigerator | |
JP3192730B2 (en) | refrigerator | |
JP3611961B2 (en) | refrigerator | |
JP2912848B2 (en) | refrigerator |