[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08312903A - Once-through boiler device - Google Patents

Once-through boiler device

Info

Publication number
JPH08312903A
JPH08312903A JP12356495A JP12356495A JPH08312903A JP H08312903 A JPH08312903 A JP H08312903A JP 12356495 A JP12356495 A JP 12356495A JP 12356495 A JP12356495 A JP 12356495A JP H08312903 A JPH08312903 A JP H08312903A
Authority
JP
Japan
Prior art keywords
water wall
water
boiler
wall
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12356495A
Other languages
Japanese (ja)
Inventor
Yukio Miyama
幸穂 深山
Katsumi Shimodaira
克己 下平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP12356495A priority Critical patent/JPH08312903A/en
Publication of JPH08312903A publication Critical patent/JPH08312903A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE: To reduce the amount of feed water for a boiler by a method wherein constituting series of water walls are divided into two groups or more with respect to water wall tubes while a switching system for switching the fluid of some group of water wall tube outlet port to conduct whether into a steam separator or the water wall tube inlet port of another group is provided. CONSTITUTION: The water wall 5 of a boiler main body is divided into water walls 52, 53 while a water wall switching valve 59 is interposed i.n a pipeline 43, branched from a pipeline 42 connecting the outlet side of an economizer 4 and the inlet side of the water wall 52. The outlet side of the water wall switching valve 59 is connected to the entrance of a water wall inlet joining part 56 while the outlet side of the joining part 56 is connected to the inlet port of the water wall 53. Further, a pipeline 44, connected to the outlet side of the water wall 52, is divided into two pipes and one of the pipes is provided with a water wall switching valve 57 while the other of the same is provided with another water wall switching valve 58. The outlet side of the water wall switching valve 57 is connected to one of the inlet port of the steam separator inlet port joining part 55 while the outlet side of the water wall switching valve 58 is connected to the other inlet port of the water wall inlet port joining part 56. The outlet side of the joining part 55 is connected to the steam separator 6 to separate moisture from generated steam.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は貫流ボイラ装置に係わ
り、ことに、運転・保守が容易で経済的な水壁の系統構
成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a once-through boiler device, and more particularly to a water wall system configuration that is easy to operate and maintain and economical.

【0002】[0002]

【従来の技術】図2は従来技術による貫流ボイラ装置の
水壁系統を示す。給水はボイラ給水ポンプ1で昇圧され
たのち、順次、ボイラ給水流調弁2、ボイラ(ドレン)
再循環合流部3、節炭器4、水壁5を経て加熱され、次
いで気水分離器6に送られて気水分離される。分離物の
内、ドレンはドレンタンク8に貯えられたのち、ドレン
再循環ポンプ9で昇圧され、次いでドレン再循環流調弁
10を通って節炭器4の入口部に設けられたボイラ再循
環合流部3に戻される。
2. Description of the Related Art FIG. 2 shows a water wall system of a once-through boiler device according to the prior art. After the water supply is boosted by the boiler water supply pump 1, the boiler water supply flow control valve 2 and the boiler (drain) are sequentially installed.
It is heated through the recirculation / merging unit 3, the economizer 4, and the water wall 5, and then sent to the steam separator 6 for steam separation. Of the separated matter, the drain is stored in the drain tank 8 and then pressurized by the drain recirculation pump 9 and then passed through the drain recirculation flow control valve 10 to recycle the boiler provided at the inlet of the economizer 4. It is returned to the merging unit 3.

【0003】また、図2中の12と17は、それぞれド
レンタンクのレベル制御系とボイラ給水量(節炭器給水
量)の制御系を示し、それらの詳細は図3及び図4に示
されている。まず、制御系12によるドレンタンクレベ
ルの制御は通常、ドレンタンクレベル検出器11により
検知されるドレンレベルに比例して、関数要素21でド
レン再循環流調弁10を操作することにより行われる。
関数要素21がドレン再循環流調弁10を全開させても
なおドレンタンクレベルが上昇する場合には、関数要素
22によりドレンタンクブロー流調弁13を操作してド
レンをブローし、以ってドレンタンクレベルを低下させ
る。
Reference numerals 12 and 17 in FIG. 2 respectively show a level control system for the drain tank and a control system for the boiler feed water amount (coal feed water supply amount), and details thereof are shown in FIGS. 3 and 4. ing. First, the control of the drain tank level by the control system 12 is usually performed by operating the drain recirculation flow control valve 10 with the function element 21 in proportion to the drain level detected by the drain tank level detector 11.
When the drain tank level still rises even if the function element 21 fully opens the drain recirculation flow control valve 10, the function element 22 operates the drain tank blow flow control valve 13 to blow the drain, Lower the drain tank level.

【0004】一方、制御系17による節炭器給水量の制
御は、通常、水壁流量検出器15により検知される節炭
器給水量が給水指令18に一致するようにボイラ給水流
調弁2を操作することにより行われる。ただし、水壁5
には水壁管を保護するためにボイラ全負荷時の3割程度
の流量(水壁最低給水量)を確保する必要があるとされ
ているため、給水指令18は最低値制限要素23を通し
て水壁最低給水量の条件を満たす水壁流量目標値30に
変換されている。また、節炭器4内での蒸気発生(ウォ
ータハンマ等の原因となる)を防ぐため、水壁圧力検出
器20により検知される水壁圧力を関数要素26に通し
て節炭器出口流体温度制限値31を作り、これと検出器
19で検知される節炭器出口流体温度とを基に減算要素
27及び比例積分要素28を経てスチーミング防止信号
32を得る。この信号は、節炭器出口の流体温度が節炭
器出口流体温度制限値31を越えると信号高選択要素2
9で選択に賦され、これにより給水量を増加し、もっ
て、節炭器内流体の温度を低下させる機能を持つ。
On the other hand, the control system 17 controls the amount of water supplied to the economizer, which is usually controlled by the boiler feedwater flow control valve 2 so that the amount of water supplied to the economizer detected by the water wall flow rate detector 15 matches the water supply command 18. It is performed by operating. However, water wall 5
In order to protect the water wall pipe, it is necessary to secure a flow rate (minimum water supply of the water wall) of about 30% of full load of the boiler. It has been converted to a water wall flow rate target value 30 that satisfies the minimum wall water supply requirement. Further, in order to prevent generation of steam (causing water hammer etc.) in the economizer 4, the water wall pressure detected by the water wall pressure detector 20 is passed through the function element 26 to output the temperature of the economizer outlet fluid temperature. A limit value 31 is created, and based on this and the economizer outlet fluid temperature detected by the detector 19, a steaming prevention signal 32 is obtained via a subtraction element 27 and a proportional integration element 28. This signal is a signal height selection element 2 when the fluid temperature at the economizer outlet exceeds the economizer outlet fluid temperature limit value 31.
It has a function of increasing the amount of water supply, thereby lowering the temperature of the fluid in the economizer.

【0005】このような構成の貫流ボイラは、水壁最低
給水量以下の蒸気を発生させる場合には再循環ラインを
用いた運転(再循環運転)となり、一方、水壁最低給水
量を越える蒸気を発生させる場合には再循環ラインを用
いない運転(貫流運転)となる。そして、それらの中間
にはベンソンポイント(従来技術では全負荷時の30%
程度)と呼ばれる移行点が存在する。
The once-through boiler having such a structure is operated using a recirculation line (recirculation operation) when generating steam below the minimum water supply amount for the water wall, while steam exceeding the minimum water supply amount for the water wall is used. In the case of generating the above, the operation does not use the recirculation line (flow-through operation). And in the middle of them, Benson point (30% of full load in conventional technology)
There is a transition point called the degree.

【0006】[0006]

【発明が解決しようとする課題】図2の従来技術による
貫流ボイラ装置には、次の点で不便がある。
The once-through boiler apparatus according to the prior art shown in FIG. 2 has the following inconveniences.

【0007】a)ドレン再循環ポンプ9は高価で、保守
に手数がかかり、万一蒸気を吸い込むとポンプが損傷
(いわゆるキャビテーションを生じる)するため、ドレ
ンタンクレベル制御系12により適当な水位を確保した
ドレンタンク8を前置する必要があり、まことに不経済
である。
A) The drain recirculation pump 9 is expensive, maintenance is troublesome, and if the steam is sucked in, the pump will be damaged (so-called cavitation will occur). Therefore, an appropriate water level is secured by the drain tank level control system 12. It is necessary to dispose the drain tank 8 in front, which is uneconomical.

【0008】b)一般にボイラ装置は、負荷を全負荷時
の15%程度(それ以下では、バーナの燃料量を絞ると
燃焼が不安定になるため)まで低減しても安定に運転で
きることが望まれる。しかるに、従来技術の貫流ボイラ
装置はベンソンポイントが全負荷時の30%程度であ
り、当該ポイントを境に、蒸気圧力の制御方法を切替え
る必要がある。すなわち、蒸気圧力は基本的には蒸発量
に依存するが、再循環運転中は水壁流量が最低給水量制
限下で一定に保たれるため、蒸気圧力制御は燃料量で行
うことになる。しかるに、貫流運転時には通常、気水分
離器6入口の流体は十分乾いた蒸気になっているため、
蒸気圧力制御は給水量(燃料量を変化しても、蒸気温度
が変化するのみで蒸発量は不変のため)により行う。こ
れは、蒸気圧力が低下した場合、給水量を増加すれば気
水分離器6入口の流体が乾いている限りそのまま蒸発量
が増加するからである。
B) Generally, it is desirable that the boiler apparatus can be operated stably even if the load is reduced to about 15% of the full load (below that, combustion becomes unstable if the fuel amount of the burner is reduced). Be done. However, in the once-through boiler device of the prior art, the Benson point is about 30% of the full load, and it is necessary to switch the control method of the steam pressure at that point. That is, the steam pressure basically depends on the evaporation amount, but during the recirculation operation, the water wall flow rate is kept constant under the restriction of the minimum water supply amount, so that the steam pressure control is performed by the fuel amount. However, during the once-through operation, the fluid at the inlet of the steam separator 6 is usually sufficiently dry steam,
The steam pressure control is performed by the amount of water supply (since the amount of fuel changes, only the temperature of steam changes and the amount of evaporation does not change). This is because when the steam pressure decreases, the evaporation amount increases as it is as long as the fluid at the inlet of the steam separator 6 is dry if the supply amount of water is increased.

【0009】さらに、従来技術では、このような「切替
え」の不便さに加え、ベンソンポイント近傍のように、
気水分離器6入口の流体が十分な乾き蒸気になっていな
い状態下では、給水量増加は気水分離器6入口の流体エ
ンタルピを低下させるため、蒸気圧力の低下に対応して
給水量を増加すると気水分離器6入口流体が気水混合状
態となって、むしろ蒸発量が低下し、いわゆる「蒸気圧
力制御の逆応答」と呼ばれる事態さえまねく場合があ
る。
Further, in the prior art, in addition to such inconvenience of "switching", as in the vicinity of the Benson point,
In a state where the fluid at the inlet of the steam separator 6 is not sufficiently dry steam, an increase in the amount of water supply decreases the fluid enthalpy at the inlet of the steam separator 6, so the amount of water supply should be reduced in response to the decrease in steam pressure. If it increases, the fluid at the inlet of the steam / water separator 6 becomes in a steam / water mixed state, and the amount of evaporation decreases rather, which may lead to a so-called "inverse response of steam pressure control".

【0010】c)節炭器4入口に、一般に飽和水である
気水分離器6のドレンを再循環するため、制御系17に
前述のスチーミング防止回路を要する。また、当該スチ
ーミング防止回路が作動すると起動時間が延びるし、ド
レンブロー配管14から放出されるドレンが増加し熱損
失が大きくなる。
C) Since the drain of the steam separator 6 which is generally saturated water is recirculated to the inlet of the economizer 4, the control system 17 requires the steaming prevention circuit described above. Further, when the steaming prevention circuit operates, the start-up time is extended, the drain discharged from the drain blow pipe 14 increases, and the heat loss increases.

【0011】もちろん、従来技術は、理由があって図2
の方式の貫流ボイラ装置を提供しているのであり、その
背景にも言及しなければならない。それは、水壁5の保
護が最大の理由である。水壁5はボイラ中にあって、最
も熱負荷の高い場所に位置するので、伝熱管と内部流体
との熱伝達率を十分大きく保って、当該伝熱管の焼損を
防止せねばならない。しかるに伝熱管内の流体が水であ
るか、気泡を少量含む核沸騰状態では当該熱伝達率は大
きいので問題はないが、気泡が増加すると管内流体が流
れにくくなる上、伝熱管内面が膜沸騰状態となって、当
該熱伝達率が著しく低下して危険になる場合すらある。
一般に熱伝達率は内部流体の質量流量に依存して増加
(凡そ0.8乗に比例)するため、ボイラ運用時には、
膜沸騰状態になっても伝熱管を焼損しないため、各伝熱
管について、内部流体の質量流量の確保が最重要視さ
れ、前述の通り、ボイラの蒸発量の如何に拘らず、ボイ
ラ全負荷時の3割程度の流量(水壁最低給水量)の確保
を行っている。これが、以上の不便の背景である。
Of course, the prior art has a reason as shown in FIG.
The above-mentioned type of once-through boiler device is provided, and its background must be mentioned. That is why the protection of the water wall 5 is the greatest reason. Since the water wall 5 is located in the place where the heat load is highest in the boiler, the heat transfer coefficient between the heat transfer tube and the internal fluid must be kept sufficiently large to prevent the heat transfer tube from burning. However, if the fluid in the heat transfer tube is water or the nucleate boiling state containing a small amount of bubbles, the heat transfer coefficient is large, so there is no problem. In some cases, the heat transfer coefficient may be significantly reduced, which may be dangerous.
Generally, the heat transfer coefficient increases depending on the mass flow rate of the internal fluid (approximately proportional to the 0.8th power), so during boiler operation,
Since the heat transfer tubes are not burned even in the film boiling state, it is of utmost importance to secure the mass flow rate of the internal fluid for each heat transfer tube, and as mentioned above, regardless of the evaporation amount of the boiler, when the boiler is fully loaded. We have secured a flow rate of about 30% (the minimum amount of water supply to the water wall). This is the background of the above inconvenience.

【0012】なお、ボイラ再循環ポンプを使用して、上
記b)、c)の問題点を解決する方法としては、筆者等
の出願に係る「貫流ボイラ装置」(特公平4−6528
2号)において提案されたものがある。
As a method of solving the above problems b) and c) by using a boiler recirculation pump, there is disclosed a "through-flow boiler device" (Japanese Patent Publication No. 4528/1992).
2) has been proposed.

【0013】本発明の課題は、ボイラ再循環ポンプを用
いることなく、水壁最低給水量は維持しつつボイラ給水
量を低い値に低減することを可能とするにある。
An object of the present invention is to make it possible to reduce the boiler water supply amount to a low value while maintaining the water wall minimum water supply amount without using a boiler recirculation pump.

【0014】[0014]

【課題を解決するための手段】ボイラの水壁5は、通常
数百本のオーダーの水壁管を並列にして構成されてお
り、この水壁への給水は給水指令に基づいて制御されて
いる。本発明においては、上記の課題を達成するため
に、水壁を構成する水壁管を複数のグループに分け、あ
るグループの水壁管出口の流体を、気水分離器へ流入さ
せるか、他のグループの水壁管入口に流入させるかにつ
いて、切替える系統を設けるとともに、前記「他のグル
ープの水壁管」の入口には、前記「あるグループの水壁
管」出口からの流体と節炭器4出口からの流体を切替え
る系統を設ける。要するに本発明は、水壁管をグループ
分けし、蒸発量小の領域では複数の水壁管グループを直
列に、蒸発量大の領域では各水壁管グループを並列に接
続することにより課題を達成するものである。水壁管グ
ループの接続を直列接続にするか、並列接続にするか
は、給水指令を入力として動作する制御手段を設けて制
御する。
The water wall 5 of the boiler is usually constructed by arranging water wall pipes of the order of several hundreds in parallel, and the water supply to this water wall is controlled based on the water supply command. There is. In the present invention, in order to achieve the above object, the water wall pipes constituting the water wall are divided into a plurality of groups, and the fluid at the water wall pipe outlet of a certain group is allowed to flow into the steam separator. A system for switching whether to flow into the water wall pipe inlet of the group is provided, and at the inlet of the "water wall pipe of the other group", the fluid from the outlet of the "water wall pipe of the certain group" A system for switching the fluid from the outlet of the container 4 is provided. In short, the present invention achieves the object by dividing the water wall pipes into groups, connecting a plurality of water wall pipe groups in series in a small evaporation amount region, and connecting each water wall pipe group in parallel in a large evaporation amount region. To do. Whether the water wall tube groups are connected in series or in parallel is controlled by providing a control unit that operates by using the water supply command as an input.

【0015】[0015]

【作用】水壁管をNグループに分け、これを直列に接続
すれば、伝熱管1本あたりの質量流量は同一でも、水壁
全体の総給水量は従来の並列接続に比して1/Nとな
る。前述のように、ボイラの水壁管の保護は、各伝熱管
1本あたりの通過流体の質量流量の確保により実施され
ている。このとき、内部流体の気泡の含有量等には依存
せず、気水混合物の質量流量の確保でボイラの水壁管の
保護が可能なことに着目すれば、水壁管をNグループの
直列接続で水壁保護給水量を従来に比して1/Nにでき
る。これはベンソンポイントの給水量が1/Nへ低減さ
れることを意味する。従って、ボイラの運用負荷帯より
ベンソンポイントを下にでき、通常運転時には、常に貫
流運転となるので、気水分離器からのドレンブローがな
くなる。
If the water wall tubes are divided into N groups and connected in series, the total water supply of the entire water wall will be 1 / th compared to the conventional parallel connection even if the mass flow rate per heat transfer tube is the same. N. As described above, the protection of the water wall tube of the boiler is performed by ensuring the mass flow rate of the passing fluid for each heat transfer tube. At this time, if it is possible to protect the water wall pipe of the boiler by securing the mass flow rate of the air-water mixture without depending on the content of bubbles in the internal fluid, the water wall pipes can be connected in series in N groups. By connecting, the water supply for water wall protection can be reduced to 1 / N compared to the conventional one. This means that the water supply at Benson Point will be reduced to 1 / N. Therefore, the Benson point can be set lower than the operation load zone of the boiler, and the normal operation is always the once-through operation, so that the drain blow from the steam separator is eliminated.

【0016】[0016]

【実施例】図1は本発明の実施例を示す。これは、従来
技術の実施例(図2)のボイラにN=2で本発明を適用
し、ベンソンポイントを全負荷時の約15%にした例で
ある。ボイラ本体は水壁5を水壁A52、水壁B53に
分割し、ドレン再循環合流部3,ドレンタンク8,ドレ
ン再循環ポンプ9,ドレン再循環流調弁10,ドレンタ
ンクレベル検出器11,ドレンタンクレベル制御系1
2,ドレンタンクブロー流調弁13,ドレンブロー配管
14、及び、節炭器スチーミング防止に係わるボイラ給
水量(節炭器給水量)制御系17,節炭器出口流体温度
検出器19,水壁圧力検出器20を設けず、水壁切替弁
A57,B58,C59を替わりに設けている。ドレン
ブロー配管14の代わりに、ドレンタンク6から直接ブ
ローするドレンブローライン63が設けられている。水
壁切替弁A57,B58が水壁管出口切替手段を、水壁
切替え弁B58,C59が水壁管入口切替手段を、それ
ぞれ構成している。
FIG. 1 shows an embodiment of the present invention. This is an example in which the present invention is applied to the boiler of the embodiment of the prior art (FIG. 2) with N = 2, and the Benson point is set to about 15% of the full load. In the boiler main body, the water wall 5 is divided into a water wall A52 and a water wall B53, and a drain recirculation merging section 3, a drain tank 8, a drain recirculation pump 9, a drain recirculation flow control valve 10, a drain tank level detector 11, Drain tank level control system 1
2, drain tank blow flow control valve 13, drain blow piping 14, and boiler feed water amount (coal feed water supply amount) control system 17 for preventing steam economizer steaming, economizer outlet fluid temperature detector 19, water The wall pressure detector 20 is not provided, and the water wall switching valves A57, B58, C59 are provided instead. Instead of the drain blow pipe 14, a drain blow line 63 for directly blowing from the drain tank 6 is provided. The water wall switching valves A57 and B58 constitute water wall pipe outlet switching means, and the water wall switching valves B58 and C59 constitute water wall pipe inlet switching means.

【0017】すなわち、節炭器4出側と水壁A52の入
り側を結ぶ配管42に分岐する配管43を設け、配管4
3に水壁切替弁C59を接続し、水壁切替弁C59の出
側に配管48を介して水壁B入り口合流部56の一方の
入り口を接続し、水壁B入り口合流部56出側と水壁B
53入り口を配管49で接続し、水壁A出側に接続され
た配管44を二つに分岐させ、該分岐の一方に水壁切替
弁A57を他方に水壁切替弁B58をそれぞれ接続し、
水壁切替弁A57の出側を配管45を介して気水分離器
入口合流部55の一方の入り口に接続し、水壁切替弁B
58の出側を配管47を介して前記水壁B入り口合流部
56の他方の入り口に接続し、水壁B53出側と前記気
水分離器入口合流部55の他方の入り口を配管50を介
して接続し、気水分離器入口合流部55の出側と気水分
離器6を配管46を介して接続してある。
That is, a pipe 43 that branches to a pipe 42 that connects the outlet side of the economizer 4 and the inlet side of the water wall A52 is provided.
3, a water wall switching valve C59 is connected, and one outlet of the water wall B inlet merging portion 56 is connected to the outlet side of the water wall switching valve C59 via a pipe 48 to connect the water wall B inlet merging portion 56 outlet side. Water wall B
The inlet 53 is connected by a pipe 49, the pipe 44 connected to the outlet side of the water wall A is branched into two, and the water wall switching valve A57 is connected to one of the branches and the water wall switching valve B58 is connected to the other,
The outlet of the water wall switching valve A57 is connected to one inlet of the steam / water separator inlet merging portion 55 via the pipe 45, and the water wall switching valve B is connected.
The outlet side of 58 is connected to the other inlet of the water wall B inlet merging portion 56 via a pipe 47, and the outlet side of the water wall B53 and the other inlet of the steam separator inlet merging portion 55 are connected via a pipe 50. The outlet side of the steam / water separator inlet merging portion 55 and the steam / water separator 6 are connected via a pipe 46.

【0018】制御系としては、給水指令18を入力とし
て水壁切替弁A57,水壁切替弁B58,及び水壁切替
弁C59の開度を制御する水壁切替制御系54と、同じ
く給水指令18を入力として水壁流量目標値64を出力
する最低値制限要素60と、水壁流量目標値64と流量
計15の検出値の偏差を出力する信号減算要素61と、
この信号減算要素61の出力を入力としてボイラ給水流
調弁2の開度をPI制御する比例積分要素62と、が設
けられてある。
As the control system, a water wall switching control system 54 for controlling the openings of the water wall switching valve A57, the water wall switching valve B58, and the water wall switching valve C59 by using the water supply command 18 as an input, and the water supply command 18 as well. A minimum value limiting element 60 that outputs the water wall flow rate target value 64 as an input, and a signal subtraction element 61 that outputs the deviation between the water wall flow rate target value 64 and the detection value of the flow meter 15,
A proportional and integral element 62, which receives the output of the signal subtraction element 61 as an input and PI-controls the opening of the boiler feedwater flow control valve 2, is provided.

【0019】上記構成により給水流量制御は簡略化さ
れ、従来技術の最低値制限要素23の場合の約半分の水
壁保護流量を確保する最低値制限要素60から水壁流量
目標値64を得て、水壁流量検出器15の検出値が目標
と一致するようにボイラ給水流調弁2が操作される。水
壁切替弁A,B,Cは水壁切替制御系54により給水指
令18に基づき操作される。具体的には、負荷上昇時
は、給水指令が全負荷時の約35%に達するまでは弁5
8を開し、弁57,59を閉、給水指令が全負荷時の約
35%に達すると弁58を閉し、弁57,59を開す
る。逆に負荷下降時は給水指令が全負荷時の約30%に
なるまでは弁58を閉し、弁57,59を開、給水指令
が全負荷時の約30%に低下すると弁58を開し、弁5
7,59を閉する。
The above structure simplifies the feed water flow rate control, and obtains the water wall flow rate target value 64 from the minimum value limit element 60 which secures a water wall protection flow rate that is about half that of the conventional minimum value limit element 23. The boiler feedwater flow control valve 2 is operated so that the detection value of the water wall flow rate detector 15 matches the target value. The water wall switching valves A, B, C are operated by the water wall switching control system 54 based on the water supply command 18. Specifically, when the load is increased, the valve 5 is operated until the water supply command reaches about 35% of the full load.
8 is opened, valves 57 and 59 are closed, and when the water supply command reaches about 35% of full load, valve 58 is closed and valves 57 and 59 are opened. On the contrary, when the load is decreased, the valve 58 is closed and the valves 57 and 59 are opened until the water supply command becomes about 30% of the full load, and the valve 58 is opened when the water supply command drops to about 30% of the full load. And valve 5
Close 7,59.

【0020】水壁Aと水壁Bが並列に接続されていると
き、負荷30%に相当する給水量が最低必要流量とする
と、水壁A,Bそれぞれついては負荷15%に相当する
給水量が最低必要流量になる。負荷約30%で水壁Aと
水壁Bを直列に接続すると、それまで水壁Aと水壁Bに
15%ずつに別れて流れていた負荷30%に相当する給
水流量が、水壁Aと水壁Bの両方に負荷30%相当の給
水が流れるため、最低必要流量の倍が流れる。給水流量
は、水壁Aと水壁Bの最低必要流量である負荷15%相
当の流量まで低減できるから、ボイラ負荷を15%にま
で低下させても安定に運転できることになる。
When the water wall A and the water wall B are connected in parallel, and the water supply amount corresponding to a load of 30% is the minimum required flow rate, the water supply amount corresponding to a load of 15% is given to each of the water walls A and B. Minimum required flow rate. When the water wall A and the water wall B are connected in series at a load of about 30%, the water supply flow rate corresponding to the load of 30%, which had been separated by 15% into the water wall A and the water wall B until then, was Since the water supply having a load of 30% flows through both the water wall B and the water wall B, the minimum required flow rate is doubled. The feed water flow rate can be reduced to a flow rate corresponding to a load of 15% which is the minimum required flow rate of the water wall A and the water wall B, so that stable operation can be achieved even if the boiler load is reduced to 15%.

【0021】ここに、約5%の接断差を設けるのは給水
指令が変動した場合の頻繁な切替えを防ぐためである。
本例では、ボイラに望まれる最低負荷(全負荷時の約1
5%)から全負荷に至るまで貫流運転が可能であり、気
水分離器からのドレンはボイラ起動時以外には発生しな
い。起動時は、ボイラの運転時間中の限られた時間であ
り、起動時のみのドレンブローを行っても熱損失は問題
にならない。
A dead band of about 5% is provided here to prevent frequent switching when the water supply command fluctuates.
In this example, the minimum load required for the boiler (about 1 at full load)
(5%) to full load operation is possible, and drainage from the steam separator does not occur except when the boiler is started. The start-up is a limited time during the operation time of the boiler, and the heat loss does not become a problem even if the drain blow is performed only at the start-up.

【0022】[0022]

【発明の効果】【The invention's effect】

a)高価で、保守に手数を要するボイラ再循環ポンプが
不要となり、同時にドレンタンク8やドレンタンクレベ
ル制御系12が不要になって経済的である。
a) The boiler recirculation pump, which is expensive and requires maintenance, is not required, and at the same time, the drain tank 8 and the drain tank level control system 12 are not required, which is economical.

【0023】b)ボイラ装置の通常運転では、蒸気圧力
の制御方法を切替える必要がない。従って、制御装置が
簡単になる上、いわゆる「蒸気圧力制御の逆応答」と呼
ばれる事態が発生しない。
B) In normal operation of the boiler device, it is not necessary to switch the control method of steam pressure. Therefore, the control device is simplified, and the so-called "reverse response of steam pressure control" does not occur.

【0024】c)節炭器4には、飽和水を再循環しない
ため、スチーミング防止回路が不要である。
C) No steaming prevention circuit is required in the economizer 4, since saturated water is not recirculated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例である。FIG. 1 is an example of the present invention.

【図2】従来技術の例である。FIG. 2 is an example of a conventional technique.

【図3】従来のドレンタンクレベル制御系の制御の流れ
の例を示す図である。
FIG. 3 is a diagram showing an example of a control flow of a conventional drain tank level control system.

【図4】従来のボイラ給水制御系の制御の流れの例を示
す図である。
FIG. 4 is a diagram showing an example of a control flow of a conventional boiler feedwater control system.

【符号の説明】[Explanation of symbols]

1 ボイラ給水ポンプ 2 ボイラ給水
流調弁 3 ボイラ(ドレン)再循環合流部 4 節炭器 5 水壁 6 気水分離器 7 発生蒸気 8 ドレンタン
ク 9 ドレン再循環ポンプ 10 ドレン再
循環流調弁 11 ドレンタンクレベル検出器 12 ドレンタ
ンクレベル制御系 13 ドレンタンクブロー流調弁 14 ドレンブ
ロー配管 15 水壁流量検出器 17 ボイラ給水量
(節炭器給水量)制御系 18 給水指令 19 節炭器出
口流体温度検出器 20 水壁圧力検出器 21 関数要素 22 関数要素 23 最低値制
限要素 24 減算要素 25 比例積分
要素 26 関数要素 27 減算要素 28 比例積分要素 29 信号高選
択要素 30 水壁流量目標値 31 節炭器出
口流体温度制限値 32 スチーミング防止信号 40〜50 配
管 54 水壁切替制御系 55 気水分離
器入口合流部 56 水壁B入口合流部 57 水壁切替
弁A 58 水壁切替弁B 59 水壁切替
弁C 60 最低値制限要素 61 信号減算
要素 62 比例積分要素 63 ドレンブ
ローライン 64 水壁流量目標値
1 Boiler feed water pump 2 Boiler feed water flow control valve 3 Boiler (drain) recirculation confluence section 4 Coal saver 5 Water wall 6 Steam separator 7 Generated steam 8 Drain tank 9 Drain recirculation pump 10 Drain recirculation flow control valve 11 Drain tank level detector 12 Drain tank level control system 13 Drain tank blow flow control valve 14 Drain blow piping 15 Water wall flow rate detector 17 Boiler water supply (coal supply amount) control system 18 Water supply command 19 Coal outlet liquid Temperature detector 20 Water wall pressure detector 21 Function element 22 Function element 23 Minimum value limiting element 24 Subtraction element 25 Proportional integration element 26 Function element 27 Subtraction element 28 Proportional integration element 29 Signal height selection element 30 Water wall flow rate target value Section 31 Charcoal outlet fluid temperature limit value 32 Steaming prevention signal 40 to 50 Piping 54 Water wall switching control system 55 Steam / water separator Mouth merging part 56 Water wall B inlet merging part 57 Water wall switching valve A 58 Water wall switching valve B 59 Water wall switching valve C 60 Minimum value limiting element 61 Signal subtraction element 62 Proportional integration element 63 Drain blow line 64 Water wall flow rate target value

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水壁と、その後流に配置された気水分離
器とを含んでなる貫流ボイラ装置において、前記水壁を
構成する系統を水壁管について2以上のグループに分
け、あるグループの水壁管出口の流体を、気水分離器へ
流入させるか、他のグループの水壁管入口に流入させる
かについて、切替える系統を設けたことを特徴とする貫
流ボイラ装置。
1. A once-through boiler apparatus comprising a water wall and a steam separator arranged downstream of the water wall, wherein the system constituting the water wall is divided into two or more groups for water wall pipes. The once-through boiler device is characterized in that a system is provided for switching whether the fluid at the water wall tube outlet of (1) flows into the steam separator or the water wall tube inlet of another group.
【請求項2】 節炭器の後流に配置された水壁と、該水
壁の後流に配置された気水分離器とを含んでなり、給水
指令に基づいてボイラへの給水量が制御される貫流ボイ
ラ装置において、前記水壁を構成する系統を水壁管につ
いて複数のグループに分け、あるグループの水壁管出口
の流体を気水分離器へ流入させるか、他のグループの水
壁管入口に流入させるかについて切り替える水壁管出口
切替手段を設けたことと、該他のグループの水壁管に前
記あるグループの水壁管を出た流体を流入させるか、前
記節炭器を出た流体を流入させるかについて切り替える
水壁管入口切替手段を設けたことと、を特徴とする貫流
ボイラ装置。
2. A water wall disposed downstream of the economizer and a steam separator disposed downstream of the water wall, wherein the amount of water supplied to the boiler is based on a water supply command. In a controlled once-through boiler device, the system constituting the water wall is divided into a plurality of groups for water wall pipes, and the fluid at the outlet of the water wall pipes of a certain group is allowed to flow into the steam separator or the water of another group. Water wall pipe outlet switching means for switching whether to flow into the wall pipe inlet is provided, and the fluid leaving the water wall pipe of the certain group is flowed into the water wall pipes of the other group, or the economizer is used. A once-through boiler device, characterized in that a water wall pipe inlet switching means for switching whether to inflow the fluid that has flowed out is provided.
【請求項3】 水壁管出口切替手段と水壁管入口切替手
段の動作を、給水指令を入力として制御する制御手段を
設けたことを特徴とする請求項2に記載の貫流ボイラ装
置。
3. The once-through boiler apparatus according to claim 2, further comprising control means for controlling the operations of the water wall tube outlet switching means and the water wall tube inlet switching means by using a water supply command as an input.
JP12356495A 1995-05-23 1995-05-23 Once-through boiler device Pending JPH08312903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12356495A JPH08312903A (en) 1995-05-23 1995-05-23 Once-through boiler device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12356495A JPH08312903A (en) 1995-05-23 1995-05-23 Once-through boiler device

Publications (1)

Publication Number Publication Date
JPH08312903A true JPH08312903A (en) 1996-11-26

Family

ID=14863713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12356495A Pending JPH08312903A (en) 1995-05-23 1995-05-23 Once-through boiler device

Country Status (1)

Country Link
JP (1) JPH08312903A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007533A (en) * 2011-06-24 2013-01-10 Mitsubishi Heavy Ind Ltd Control method of once-through boiler and device therefor
WO2021256245A1 (en) * 2020-06-15 2021-12-23 三菱パワー株式会社 Operation control device of once-through boiler, operation control method, and once-through boiler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007533A (en) * 2011-06-24 2013-01-10 Mitsubishi Heavy Ind Ltd Control method of once-through boiler and device therefor
WO2021256245A1 (en) * 2020-06-15 2021-12-23 三菱パワー株式会社 Operation control device of once-through boiler, operation control method, and once-through boiler

Similar Documents

Publication Publication Date Title
US5419285A (en) Boiler economizer and control system
US4745757A (en) Combined heat recovery and make-up water heating system
JPS6136121B2 (en)
JPH08312903A (en) Once-through boiler device
US6413361B1 (en) Heavy oil emulsified fuel evaporator system and operation method thereof
JPS60201008A (en) Method and apparatus for controlling operation of plant
JP3121172B2 (en) Multi-tube once-through boiler
SE461421B (en) OPERATOR WITH CATALYTIC SMOKE GAS TREATMENT AND PROCEDURE FOR OPERATING THE BOILER
JP2696124B2 (en) Steam turbine equipment
JPH074208A (en) Steam turbine with steam-steam reheater and usage thereof
US3429371A (en) Surface condenser
JP2955085B2 (en) Transformer once-through boiler
JPS6380104A (en) Exhaust gas economizer
JP2921839B2 (en) Supercritical pressure operation boiler
JPS62142903A (en) Variable-pressure operation boiler device
JPS6134073B2 (en)
JPS5912921B2 (en) How to operate a forced circulation boiler
JPH05296006A (en) Feed water pipe for feed water pump
JPH0330763B2 (en)
JPH0225603A (en) Boiler device and operation thereof
JP2625422B2 (en) Boiler control device
KR850001371Y1 (en) System for controlling the fluid level in a drain tank
SU1183779A1 (en) Boiler
JP3611252B2 (en) Power plant
JPH05240402A (en) Method of operating waste heat recovery boiler

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20050531

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051004