[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08317797A - Measurement of fermention tank - Google Patents

Measurement of fermention tank

Info

Publication number
JPH08317797A
JPH08317797A JP12479895A JP12479895A JPH08317797A JP H08317797 A JPH08317797 A JP H08317797A JP 12479895 A JP12479895 A JP 12479895A JP 12479895 A JP12479895 A JP 12479895A JP H08317797 A JPH08317797 A JP H08317797A
Authority
JP
Japan
Prior art keywords
culture
state
metabolic
concentration
measurable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12479895A
Other languages
Japanese (ja)
Inventor
Junichi Horiuchi
淳一 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Priority to JP12479895A priority Critical patent/JPH08317797A/en
Publication of JPH08317797A publication Critical patent/JPH08317797A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Feedback Control In General (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE: To provide a method for fuzzy measurement for a fermentation tank changing a culture state with time. CONSTITUTION: In this method for measuring the lapse of a culture in a culture tank by calculating a metabolic balance from measurement of a metabolite measurable in a metabolic composition, a culture state is classified into specific plural culture states and a metabolic balance in each specific culture state is experimentally determined in each specific culture state. A rule for identifying a culture state is decided by using a membership function corresponding to each measurable state variable, the fidelity against the membership function of each state variable obtained from the fermentation tank is determined, the contribution degree of each specific culture state is determined from the obtained fidelity. The ratio of the metabolic composition is determined from the contribution degree. The amount of a substance existing in the fermentation tank is computed from the measured value of the metabolite composition measurable at a point of the determination of the ratio of the metallic composition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発酵槽のファジイ計測
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuzzy measuring method for a fermenter.

【0002】[0002]

【従来の技術】生物反応プロセスでは、回分培養あるい
は流加培養など反応状態が経時的に変化する非定常な反
応操作がしばしば用いられる。かかる反応の制御のた
め、培養状態を経時的に計測し、プロセスを管理・制御
する指標となる種々の状態変数をオンラインで計測する
ことは極めて重要である。しかし、実生産プロセスにお
いては、基質として廃糖密などの不純物の多い原料が用
いられることも多く、温度、圧力などの物理的状態変数
やpH、DOなどの限られた化学的状態変数を除き、オ
ンラインで直接計測できる状態変数は限られている。ま
た菌体濃度、基質濃度、あるいは細胞内成分など種々の
状態変数を測定するセンサーの開発が進められている
が、殺菌可能であることや、再現性、精度などの点で問
題も多い。このためオンラインで直接測定することので
きない比増殖速度や代謝産物濃度などの状態変数をカル
マンフィルターなどにより間接的に推定したり、物質収
支と組み合わせることにより推算する方法が検討されて
いる。例えば、オンラインで直接測定することができな
い状態変数をオンラインで直接測定できる状態変数から
間接的に推定する手法の一つとして、発酵排ガス中の二
酸化炭素濃度を測定し物質収支に基づいて代謝バランス
を決定し、これらの直接測定できない状態変数を間接的
に推定することが従来行われていた。この方法は、有機
物が微生物にどのように利用され代謝されたか、すなわ
ちどのような比率で二酸化炭素、代謝産物あるいは菌体
増殖などに利用されたかの代謝バランスを物質収支を基
にとりまとめておき、それらのうちオンラインで測定可
能な二酸化炭素の発生速度を測定することにより有機物
の利用量、他の代謝産物量および菌体濃度などを逆算し
て推計するものである。しかしながら、これらの方法を
適用するためには二酸化炭素発生速度、菌体収率、代謝
産物などの物質収支に基づく代謝バランスが培養経過中
一定であると仮定する必要があり、回分培養系や流加培
養系のように経時的に培養状態が変化する場合、その変
化に伴い代謝バランスが変わり、即ち、代謝産物の生成
状況や菌体収率が変化する場合には適用することが難し
かった。また前述の方法において、菌体収率は窒素源と
して使用されるアンモニア消費量から逆算されており、
窒素源としてペプトン・酵素エキスなどを用いる場合に
はその消費量を測定することは不可能なため適用が難し
かった。
2. Description of the Related Art In a biological reaction process, an unsteady reaction operation in which the reaction state changes with time, such as batch culture or fed-batch culture, is often used. In order to control such a reaction, it is extremely important to measure the culture state over time and online measure various state variables that serve as indices for managing and controlling the process. However, in the actual production process, raw materials with a large amount of impurities such as waste sugar concentration are often used as substrates, and physical state variables such as temperature and pressure and limited chemical state variables such as pH and DO are excluded. , The state variables that can be directly measured online are limited. In addition, sensors for measuring various state variables such as bacterial cell concentration, substrate concentration, and intracellular components are being developed, but there are many problems in terms of sterilization, reproducibility, and accuracy. Therefore, methods such as indirectly estimating state variables such as specific growth rate and metabolite concentration, which cannot be directly measured online, by Kalman filter, or by combining with the material balance are being studied. For example, as a method of indirectly estimating a state variable that cannot be directly measured online from a state variable that can be directly measured online, measure the carbon dioxide concentration in the fermentation flue gas to determine the metabolic balance based on the mass balance. It has been conventional practice to determine and indirectly estimate these non-measurable state variables. This method collects the metabolic balance of how the organic matter was used and metabolized by microorganisms, that is, at what ratio it was used for carbon dioxide, metabolites or bacterial growth based on the mass balance. Among these, by measuring the carbon dioxide generation rate that can be measured online, the amount of organic substances used, the amount of other metabolites, and the bacterial cell concentration are back-calculated and estimated. However, in order to apply these methods, it is necessary to assume that the metabolic balance based on the mass balance of carbon dioxide generation rate, bacterial cell yield, metabolites, etc. is constant during the course of the culture. When the culture state changes with time as in a culture system, the metabolic balance changes with the change, that is, it is difficult to apply the method when the production status of the metabolite or the cell yield changes. Further, in the above method, the cell yield is calculated back from the consumption of ammonia used as a nitrogen source,
When peptone / enzyme extract or the like is used as a nitrogen source, it is impossible to measure the amount of consumption, which makes it difficult to apply.

【0003】[0003]

【発明が解決しようとする課題】従って、本発明の目的
は、培養において直接測定することが難しい残存基質濃
度・菌体濃度・代謝産物濃度・副生成物濃度などの状態
変数のオンライン推定を、回分培養系や流加培養系のよ
うに経時的に培養状態が変化し、代謝産物や副生成物の
生成状況が変化する場合や窒素源としてペプトン・酵母
エキスなどを用いる場合においても行い得る発酵槽の計
測方法を提供することにある。
Therefore, an object of the present invention is to perform on-line estimation of state variables such as residual substrate concentration, bacterial cell concentration, metabolite concentration, and by-product concentration, which are difficult to measure directly in culture. Fermentation that can be performed when the culture conditions change over time, such as in batch culture systems or fed-batch culture systems, and the production status of metabolites and byproducts changes, and when peptone / yeast extract is used as a nitrogen source. It is to provide a measuring method for a tank.

【0004】[0004]

【課題を解決するための手段】上記の課題を解決するこ
とのできる本発明の発酵槽の計測方法は、代謝組成物中
の測定可能な代謝物の測定から代謝バランスを計算して
培養槽内での培養経過を計測する方法において、培養状
態を特定の複数の培養状態に分類し、各特定培養状態に
おける代謝バランスを実験的に決定し、測定可能な各状
態変数に対応するメンバーシップ関数を用いて培養状態
を同定するルールを定め、発酵槽から得られた各状態変
数のメンバーシップ関数に対する適合度を定め、得られ
た適合度から各特定培養状態の寄与度を定め、その寄与
度から代謝組成物の比率を決定し、その時点での測定可
能な代謝組成物の測定値から発酵槽内に存在する物質の
量を計算することを特徴とする経時的に培養状態が変化
する発酵槽の計測方法である。本発明では、測定可能な
代謝組成物が二酸化炭素である上記方法及び一定時間間
隔毎に発酵槽内に存在する物質の量を計算する上記方法
をも包含する。
Means for Solving the Problems The method for measuring a fermenter of the present invention which can solve the above-mentioned problems is to calculate a metabolic balance from the measurement of measurable metabolites in a metabolic composition to determine the inside of the culture tank. In the method of measuring the culture progress in, the culture state is classified into a plurality of specific culture states, the metabolic balance in each specific culture state is experimentally determined, and the membership function corresponding to each measurable state variable is determined. Determine the rules for identifying the culture state using, determine the fitness to the membership function of each state variable obtained from the fermenter, determine the contribution of each specific culture state from the obtained fitness, from the contribution A fermenter in which the culture state changes over time, characterized in that the ratio of the metabolic composition is determined, and the amount of the substance present in the fermenter is calculated from the measurable measured value of the metabolic composition at that time. Measurement of It is the law. The present invention also includes the above method in which the measurable metabolic composition is carbon dioxide and the above method of calculating the amount of the substance present in the fermenter at regular time intervals.

【0005】以下、本発明について詳細に説明する。一
般に、微生物は、グルコースなどの有機物をエネルギー
源とする場合、有機物を取り込み、代謝することにより
エネルギーを獲得し、増殖し、二酸化炭素や代謝産物な
どを排出する。従って、代謝された有機物がどのような
比率で二酸化炭素や代謝産物、菌体増殖に利用されたか
が明らかになれば、逆に二酸化炭素の排出速度を測定す
ることにより物質収支に基づき計算された代謝バランス
により逆算し、有機物の利用量や代謝産物および菌体濃
度を計算することができる。しかしながら、この方法は
菌体収率・代謝産物および二酸化炭素発生速度などの代
謝バランスが培養経過中一定であると仮定する必要があ
る。前述の如く回分培養系や流加培養系のように状態変
数が経時的に変化し、代謝産物や菌体収率などの代謝バ
ランスが変化する場合には適用が難しかった。従って、
この方法を回分培養系や流加培養系のように状態変数が
経時的に変化し、代謝産物や菌体収率などの代謝バラン
スが変化する場合に適用しようとする場合には、この培
養状態の変化とそれに起因する代謝バランスの変化を何
らかの方法で推定する必要があり、それが可能になれば
本方法の適用範囲および有効性は大幅に改善される。
The present invention will be described in detail below. Generally, when an organic substance such as glucose is used as an energy source, a microorganism takes in the organic substance and metabolizes it to acquire energy, proliferate, and discharge carbon dioxide and metabolites. Therefore, if the ratio of the metabolized organic substances to carbon dioxide, metabolites, and bacterial growth was clarified, the metabolism calculated based on the mass balance was calculated by measuring the carbon dioxide excretion rate. It is possible to calculate the utilization amount of organic substances, the concentration of metabolites, and the bacterial cell concentration by back-calculating the balance. However, in this method, it is necessary to assume that the metabolic balance such as cell yield, metabolites, and carbon dioxide generation rate is constant during the course of culture. As described above, it is difficult to apply the method when the state variables change with time and the metabolic balance such as the metabolites and the cell yield changes as in the batch culture system and the fed-batch culture system. Therefore,
When applying this method to batch culture systems or fed-batch culture systems where state variables change over time and metabolic balance such as metabolites and cell yields changes, this culture state It is necessary to somehow estimate the change in erythrocyte and the resulting change in metabolic balance, and if it becomes possible, the scope and effectiveness of this method will be greatly improved.

【0006】本発明の計測方法の基本的概念を図1に示
す。先ず、図1に示すように個々の培養状態に対応する
菌体収率・代謝産物および二酸化炭素発生速度などの代
謝バランスを実験的に決定する。一方、その個々の培養
状態を同定するためのルールをファジイ変数を用いて作
成する。そして実際の培養におけるオンラインデータの
それらに対する適合度を計算し、どの培養状態にあるの
か、あるいはどの培養状態がどの比率で寄与しているの
かを同定し、前述の各培養状態の代謝バランスを当ては
めそのときの代謝バランスを決定する。オンラインで得
られる二酸化炭素発生速度から逆算することにより菌体
濃度・残存基質・代謝産物濃度のオンライン推定を行う
のである。
The basic concept of the measuring method of the present invention is shown in FIG. First, as shown in FIG. 1, the metabolic balance such as cell yield / metabolite and carbon dioxide generation rate corresponding to each culture state is experimentally determined. On the other hand, a rule for identifying each individual culture state is created using fuzzy variables. Then, the fitness of online data in actual culture is calculated to identify which culture state or which culture state contributes at what ratio, and applies the metabolic balance of each culture state described above. Determine the metabolic balance at that time. The concentration of cells, residual substrate, and concentration of metabolites are estimated online by back-calculating the carbon dioxide generation rate obtained online.

【0007】以下、温度感受性発現系を用いた組換え大
腸菌の回分培養を一例に本発明を説明する。ここでは直
接計測することが困難な状態変数である代謝産物として
酢酸濃度を、残存基質としてグルコース濃度および菌体
濃度を計測の対象としている。複合培地を用いる温度感
受性組換え大腸菌の回分培養系における遺伝子産物の生
産性は誘導pHに大きく依存している。このため培養p
Hをさまざまに変化させて培養を行うが、菌体の増殖や
代謝産物である酢酸の生成状況もpHなどの誘導条件に
より異なり、その結果複数の異なる代謝バランスを持つ
培養条件が存在する。具体的には本培養系では誘導のp
H条件により菌体収率が高く代謝産物の生成のない状態
と菌体収率が低く代謝副産物として酢酸が蓄積する状態
およびこれらの中間的な培養状態が存在することが明ら
かになった。本培養系ではこのように培養条件に応じ菌
体収率や代謝産物の生成量などの代謝バランスが変化す
る。そのため、誘導条件を種々変更しながら培養条件の
検討を行う場合は、代謝バランスが経時的に変化する。
従い、これらを予め仮定し二酸化炭素発生速度から逆算
する方法では、培養系内の菌体濃度、グルコース濃度、
酢酸濃度などオンラインで推定することは難しかった。
これに対し、もしオンラインデータから現在どのような
培養状態にあり、代謝バランスがどのようになっている
かが推定できれば上記の方法をここで対象としている培
養系にも適用することが可能となる。従って、本発明で
はファジイ推論により培養状態の認識を行う手法を開発
した。物質収支を基に二酸化炭素発生速度から菌体濃
度、基質濃度および酢酸濃度を間接的に推定するシステ
ムを構築し、培養経過中に代謝バランスが変化する場合
においても物質収支に基づいてオンラインで状態変数を
推定することのできる方法を開発した。
The present invention will be described below by taking batch culture of recombinant E. coli using a temperature-sensitive expression system as an example. Here, acetic acid concentration is measured as a metabolite, which is a state variable that is difficult to measure directly, and glucose concentration and microbial cell concentration are measured as residual substrates. The productivity of gene products in a batch culture system of temperature-sensitive recombinant Escherichia coli using a complex medium is largely dependent on the induction pH. Therefore, culture p
Although H is cultivated with various changes, the growth of bacterial cells and the production of acetic acid, which is a metabolite, also differ depending on the induction conditions such as pH, and as a result, there are culture conditions having a plurality of different metabolic balances. Specifically, in the main culture system, induction p
Under the H condition, it was revealed that there are a high microbial cell yield and no metabolite formation, a low microbial cell yield, a state in which acetic acid accumulates as a metabolic by-product, and an intermediate culture state between these. In this way, in the main culture system, the metabolic balance such as the cell yield and the amount of metabolites produced changes according to the culture conditions. Therefore, when the culture conditions are examined while changing the induction conditions, the metabolic balance changes with time.
Therefore, in the method of presuming these in advance and calculating back from the carbon dioxide generation rate, the bacterial cell concentration in the culture system, the glucose concentration,
It was difficult to estimate acetic acid concentration online.
On the other hand, if it is possible to estimate what kind of culturing state and metabolic balance are present from the online data, the above method can be applied to the culturing system targeted here. Therefore, the present invention has developed a method of recognizing the culture state by fuzzy inference. We have constructed a system that indirectly estimates the bacterial cell concentration, substrate concentration, and acetic acid concentration from the carbon dioxide generation rate based on the mass balance, and online even if the metabolic balance changes during the course of culture We have developed a method that can estimate variables.

【0008】本発明で適用した制御アルゴリズムを図2
に示す。すなわち、前項で分類した培養状態をファジイ
推論を用いてリアルタイムで推定し、培養状態の適合度
に応じその時点における菌体収率などの代謝バランスを
決定し、その代謝バランスに基づき二酸化炭素発生速度
から逆算し、菌体濃度、グルコース濃度、酢酸濃度など
をオンラインで推定する。一定時間毎にこの操作を繰り
返すことにより培養経過全体にわたり連続して計測を行
うのである。ここでは便宜上菌体収率が高く代謝産物の
生成のない状態を状態Aと菌体収率が低く代謝産物とし
て酢酸が蓄積する状態を状態Bと呼ぶことにする。そし
てそれぞれの典型的な培養状態における菌体収率と酢酸
濃度および二酸化炭素発生速度など物質収支に基づく代
謝バランスを予め実験的に求めておく。培養状態の同定
は、図3に示す如く、培養pH、経過時間(状態変数)
のメンバーシップ関数を用いて状態Aおよび状態Bを同
定するルールを作成し、オンラインデータの各ルールに
対する適合度から培養状態を同定した。同定方法は先
ず、状態Aおよび状態Bを同定するルールに含まれる状
態変数のメンバーシップ関数に対しオンラインデータが
どれだけ適合するかを各状態変数について計算する。こ
こでは2つの状態変数を用いているが、オンラインデー
タの各メンバーシップ関数に対する適合度の平均適合度
がそのルールに対するデータの適合度とされる。その適
合度からその時点での培養状態、即ち、状態Aおよび状
態Bがどのような割合で寄与しているがが決定される。
培養状態の判定はファジイ推論システムに含まれる各培
養状態を表現するルールに対するプロセスデータの適合
度、すなわち現在のオンラインデータがどのルールにど
の程度当てはまっているかを計算する。例えば、状態A
を表現するルールに対する適合度が 1.0の場合は、完全
に培養状態は状態Aにある。また、状態Aに対する適合
度が 0.4で状態Bに対する適合度が 0.8などという場合
は状態Aから状態Bに移りつつあると推定される。次に
この適合度を用いて計算に使用する代謝バランスを決定
する。例えば、状態Aに対する適合度がAda、菌体収
率がYaで、状態Bに対する適合度がAdb、菌体収率
がYbでの場合、その時点での菌体収率Yは次式で計算
される。 Y=(Ada*Ya+Adb*Yb)/(Ada+Ad
b) このような計算によりその培養状態での代謝バランスを
決定し、二酸化炭素発生速度から逆算することにより菌
体濃度、残存基質濃度、代謝副産物(酢酸)濃度のオン
ライン推定を行った。以上の方法が、本発明で用いたフ
ァジイルールを用いた発酵槽の計測方法の手続きであ
る。
The control algorithm applied in the present invention is shown in FIG.
Shown in That is, the culture states classified in the previous section are estimated in real time using fuzzy reasoning, and the metabolic balance such as the cell yield at that time is determined according to the fitness of the culture state, and the carbon dioxide generation rate is based on the metabolic balance. Calculate the cell concentration, glucose concentration, acetic acid concentration, etc. online from the above. By repeating this operation at regular intervals, the measurement is continuously performed over the entire culture process. Here, for the sake of convenience, the state in which the microbial cell yield is high and no metabolite is produced is referred to as state A, and the state in which the microbial cell yield is low and acetic acid is accumulated as a metabolite is referred to as state B. Then, the metabolic balance based on the mass balance such as cell yield, acetic acid concentration and carbon dioxide generation rate in each typical culture state is experimentally obtained in advance. As shown in FIG. 3, the culture state was identified by the culture pH and elapsed time (state variables).
A rule for identifying the state A and the state B was created by using the membership function of, and the culture state was identified from the goodness of fit of each rule of the online data. The identification method first calculates, for each state variable, how well the online data matches the membership function of the state variable included in the rules for identifying the state A and the state B. Although two state variables are used here, the average goodness of fit of online data to each membership function is taken as the goodness of fit of the data to that rule. From the fitness, the culture state at that time, that is, the proportion of the state A and the state B contributing, is determined.
The determination of the culture state calculates the suitability of the process data with respect to the rule expressing each culture state included in the fuzzy inference system, that is, the degree to which the current online data fits to which rule. For example, state A
When the goodness of fit with respect to the rule expressing is, the culture state is completely in state A. If the goodness of fit for state A is 0.4 and the goodness of fit for state B is 0.8, it is estimated that state A is moving to state B. This goodness of fit is then used to determine the metabolic balance used in the calculation. For example, when the fitness for state A is Ada, the cell yield is Ya, the fitness for state B is Adb, and the cell yield is Yb, the cell yield Y at that time is calculated by the following formula. To be done. Y = (Ada * Ya + Adb * Yb) / (Ada + Ad
b) The metabolic balance in the culture state was determined by such a calculation, and the bacterial cell concentration, the residual substrate concentration, and the metabolic by-product (acetic acid) concentration were online estimated by back-calculating from the carbon dioxide generation rate. The above method is the procedure of the method for measuring the fermentation tank using the fuzzy rule used in the present invention.

【0009】[0009]

【実施例】以下、組換え大腸菌による回分培養系の例を
用いてさらに詳細に本発明を説明する。 実施例1 実験装置としてファジイモニタリング用のパーソナルコ
ンピュータと3リットルジャーファーメンターからなる
培養システムを構築し、オンラインで温度、濁度、D
O、pH、排ガス中のCO2 /O2 濃度、通気量、攪拌
速度のデータを測定した。排ガス中のCO2 濃度のオン
ライン計測にはエイブル社製CO2 /O2メーター(M
odel EX−1562)を使用した。センサー出力
は、1分間隔でRS−232Cケーブルを介しモニタリ
ングコンピュータに転送された。ファジイ推論用プログ
ラムはN88BASICを用いて自作した。先ず本培養
系における代謝バランスについて、増殖に好適なpH
7.2の条件である状態Aおよび生産物の発現に好適な状
態Bの2つの異なる培養状態について炭素収支(酢酸生
成量および二酸化炭素発生速度)および菌体収率をとり
まとめたものを図4に示す。炭素収支の計算に際して
は、複合培地を用いる好気条件下での回分培養において
は炭素源は主にエネルギー代謝に利用され、代謝された
炭素源由来の炭素は二酸化炭素および有機酸などの代謝
産物として菌体外に排出されるとした。先ず状態Aおよ
び状態Bの各々の状態について炭素収支を種々検討した
結果、代謝されたグルコースはほぼ 100%がエネルギー
代謝に利用され、状態Aではほぼ全量が二酸化炭素とし
て排出され、状態Bでは代謝産物を酢酸で代表させるこ
とが可能であり、二酸化炭素に約60%、酢酸に約40%の
比率で代謝されていることが明らかになった。次に菌体
収率について検討した結果、状態Aでは高い菌体収率を
示したが、状態Bでは殆ど菌体増殖は認められず低い菌
体収率であった。これらの代謝バランスと前述の方法に
より、種々の培養条件による組換え大腸菌の回分培養に
おける菌体濃度、基質濃度、酢酸濃度のオンライン推定
を行った結果を図5〜7に示す。オフラインの分析結果
も併せて示している。初期グルコース濃度は20g/リッ
トルであり、何れの実験も5時間目において培養温度を
23.0℃から42.0℃に上昇させる温度誘導を行った。図5
は典型的な状態Aの培養条件に対し本手法を適用した実
験における、培養pH、CO2 発生速度、菌体濃度、基
質濃度、酢酸濃度の経時変化を本発明による推定と実測
値を併せ示した図である。この時実線は本発明の方法に
よって計算された結果であり、大小の白丸および黒丸は
実測値である。この条件は、グルコースが活発に代謝さ
れ、酢酸は蓄積せず、菌体収率が高い条件となるが、図
5(c)から明らかなように菌体濃度およびグルコース
濃度は実測による分析値と良い一致を示している。また
酢酸はこの条件下では蓄積されていない。菌体濃度につ
いては、増殖に好適な条件であることを反映して高濃度
を示している。図6は典型的な状態Bの培養条件に対し
本手法を適用した実験における、培養pH、CO2 発生
速度、菌体濃度、基質濃度、酢酸濃度の経時変化を本発
明による推定と実測値を併せ示した図である。この時実
線は本発明の方法によって計算された結果であり、大小
の白丸および黒丸は実測値である。この実験では温度誘
導と同時に培養pHを低下させることにより誘導生産を
行ったが、この条件ではグルコースの代謝が抑制され、
酢酸が蓄積し、菌体濃度も低い条件となるが、グルコー
スの濃度、菌体濃度、酢酸濃度のいずれについても二酸
化炭素発生速度からこれらの状態変数の経時変化を良好
に追跡することが可能であることを示している。
EXAMPLES The present invention will be described in more detail below with reference to a batch culture system using recombinant Escherichia coli. Example 1 A culture system comprising a personal computer for fuzzy monitoring and a 3 liter jar fermenter was constructed as an experimental device, and temperature, turbidity, D
Data of O, pH, CO 2 / O 2 concentration in exhaust gas, aeration amount, and stirring speed were measured. For online measurement of CO 2 concentration in exhaust gas, CO 2 / O 2 meter (M
OLED EX-1562) was used. The sensor output was transferred to the monitoring computer via RS-232C cable at 1 minute intervals. The fuzzy reasoning program was made by myself using N88BASIC. First, regarding the metabolic balance in the main culture system, the pH suitable for growth
FIG. 4 shows a summary of carbon balance (acetic acid production amount and carbon dioxide production rate) and bacterial cell yields for two different culture conditions of condition A which is the condition of 7.2 and condition B which is suitable for expression of the product. . When calculating the carbon balance, in batch culture under aerobic conditions using a complex medium, the carbon source is mainly used for energy metabolism, and the carbon derived from the metabolized carbon source is a metabolite such as carbon dioxide and organic acid. As a result, it was supposed to be discharged to the outside of the cells. First, as a result of various studies on carbon balance in each of the states A and B, almost 100% of the glucose that was metabolized was used for energy metabolism, almost all of the glucose was excreted as carbon dioxide in the state A, and metabolism in the state B was performed. It was revealed that the product can be represented by acetic acid and is metabolized at a ratio of about 60% to carbon dioxide and about 40% to acetic acid. As a result of examining the microbial cell yield, the microbial cell yield was high in the state A, but the microbial cell growth was hardly observed in the state B, and the microbial cell yield was low. 5 to 7 show the results of online estimation of bacterial cell concentration, substrate concentration, and acetic acid concentration in batch culture of recombinant Escherichia coli under various culture conditions by these metabolic balances and the above-mentioned method. The offline analysis results are also shown. The initial glucose concentration was 20 g / liter, and in all experiments, the culture temperature was adjusted at 5 hours.
Temperature induction was performed to raise the temperature from 23.0 ° C to 42.0 ° C. Figure 5
Shows the time-dependent changes in culture pH, CO 2 generation rate, cell concentration, substrate concentration, and acetic acid concentration in the experiment in which the present method was applied to the typical condition A of the culture conditions, together with the estimated value according to the present invention and the actually measured value. It is a figure. At this time, the solid line is the result calculated by the method of the present invention, and the large and small white circles and black circles are the measured values. Under this condition, glucose is actively metabolized, acetic acid does not accumulate, and the bacterial cell yield is high. However, as is clear from FIG. 5 (c), the bacterial cell concentration and glucose concentration are the analytical values obtained by actual measurement. It shows a good match. Also, acetic acid is not accumulated under these conditions. Regarding the bacterial cell concentration, a high concentration is shown, reflecting the conditions suitable for growth. FIG. 6 shows the estimation of the culture pH, the CO 2 generation rate, the bacterial cell concentration, the substrate concentration, and the acetic acid concentration with time according to the present invention in the experiment in which the present method is applied to the typical condition B of the culture conditions, and the measured values are shown. FIG. At this time, the solid line is the result calculated by the method of the present invention, and the large and small white circles and black circles are the measured values. In this experiment, induction production was performed by lowering the culture pH at the same time as temperature induction, but under this condition, glucose metabolism was suppressed,
Although acetic acid accumulates and the cell concentration is low, it is possible to satisfactorily track changes in these state variables over time from the carbon dioxide generation rate for any of glucose concentration, cell concentration, and acetic acid concentration. It indicates that there is.

【0010】図7は状態Aから状態Bに徐々に推移する
よう培養条件を操作した実験に対し本手法を適用した実
験における、培養pH、CO2 発生速度、菌体濃度、基
質濃度、酢酸濃度の経時変化を本発明による推定と実測
値を併せ示した図である。この時実線は本発明の方法に
よって計算された結果であり、大小の白丸および黒丸は
実測値である。グルコースは最初活発に代謝されるがそ
の後誘導後のpHの低下に伴い代謝が抑制され、また菌
体濃度についても初期は活発に増殖するがその後増殖が
停止してしまう経過が精度良く二酸化炭素濃度から推定
されている。また酢酸濃度についても培養経過を良く表
示している。また図8に本実験において各培養状態を表
すルールに対する適合度の経時変化を示す。図から明ら
かなように状態Aから状態Bに培養状態が推移する様子
が良く表されている。経時的に変化する培養条件に対す
るこれらグルコース濃度、菌体濃度や酢酸濃度などの二
酸化炭素濃度からのオンライン推定は、従来の手法で推
定することは極めて難しい。本発明のファジイ推論によ
る培養状態の認識と物質収支とを組み合わせる方法によ
り、経時的に培養状態が変化し菌体収率や酢酸などの生
成状況が変化する培養においても精度良く直接測定が困
難なグルコース濃度、菌体濃度や酢酸濃度など状態変数
の計測が可能となる。
FIG. 7 shows the culture pH, the CO 2 generation rate, the bacterial cell concentration, the substrate concentration, and the acetic acid concentration in the experiment in which the present method was applied to the experiment in which the culture conditions were manipulated so that the state A gradually changed to the state B. FIG. 3 is a diagram showing changes with time of the present invention, together with an estimation according to the present invention and an actually measured value. At this time, the solid line is the result calculated by the method of the present invention, and the large and small white circles and black circles are the measured values. Glucose is actively metabolized at first, but the metabolism is suppressed with the decrease of pH after induction, and the bacterial cell concentration grows actively at the initial stage but stops growing after that. It is estimated from. The acetic acid concentration also shows the progress of the culture. Further, FIG. 8 shows a change with time in the degree of conformance with respect to the rule representing each culture state in this experiment. As is clear from the figure, the state in which the culture state transitions from the state A to the state B is well represented. Online estimation from these glucose concentrations, carbon dioxide concentrations such as bacterial cell concentrations and acetic acid concentrations for culture conditions that change over time is extremely difficult to estimate by conventional methods. The method of combining the recognition of the culture state by fuzzy reasoning and the mass balance of the present invention makes it difficult to accurately measure directly even in the culture in which the culture state changes over time and the production conditions such as the cell yield and acetic acid change. It is possible to measure state variables such as glucose concentration, bacterial cell concentration and acetic acid concentration.

【0011】[0011]

【発明の効果】発酵槽内での培養状態を予め複数の特定
の培養状態に分類し、各培養状態での代謝バランスを定
め、培養中のオンラインデータからファジイ推論によ
り、その時点の培養状態に対する特定培養状態の寄与度
を定め、寄与度からその時点での代謝バランスを計算
し、二酸化炭素発生速度から直接オンラインでは測定の
困難な発酵槽内の代謝産物の量を計算できるため発酵槽
内の培養状態(代謝産物濃度、残存気質濃度、菌体濃度
等)がリアルタイムで計測可能となった。
EFFECTS OF THE INVENTION The culture state in the fermenter is classified into a plurality of specific culture states in advance, the metabolic balance in each culture state is determined, and the culture state at that time is determined by fuzzy inference from online data during the culture. It is possible to determine the contribution of a specific culture state, calculate the metabolic balance at that time from the contribution, and calculate the amount of metabolites in the fermentor that is difficult to measure directly online from the carbon dioxide generation rate. The culture conditions (metabolite concentration, residual air quality concentration, bacterial cell concentration, etc.) can be measured in real time.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の発酵槽内の計測方法の基本概念
図である。
FIG. 1 is a basic conceptual diagram of a measuring method in a fermenter according to the present invention.

【図2】図2は本発明で適用した制御アルゴリズムを示
す図である。
FIG. 2 is a diagram showing a control algorithm applied in the present invention.

【図3】図3は培養pH、経過時間のメンバーシップ関
数を用いて状態Aおよび状態Bを同定するルールを示す
図である。
FIG. 3 is a diagram showing a rule for identifying a state A and a state B using a membership function of culture pH and elapsed time.

【図4】図4は状態Aおよび状態Bの代謝バランスを示
す図である。
FIG. 4 is a diagram showing metabolic balance of state A and state B.

【図5】図5は状態Aの培養条件に対し本手法を適用し
た結果を示す図である。
FIG. 5 is a diagram showing the results of applying the present method to the culture conditions of state A.

【図6】図6は状態Bの培養条件に対し本手法を適用し
た結果を示す図である。
FIG. 6 is a diagram showing the results of applying the present method to the culture conditions of state B.

【図7】図7は状態Aから状態Bに徐々に推移する培養
条件に対し本手法を適用した結果を示す図である。
FIG. 7 is a diagram showing the results of applying the present method to culture conditions in which the state A gradually changes to the state B.

【図8】図8は培養状態を表すルールに対する適合度の
経時変化を示す図である。
FIG. 8 is a diagram showing a time-dependent change in fitness with respect to a rule representing a culture state.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 代謝組成物中の測定可能な代謝物の測定
から代謝バランスを計算して培養槽内での培養経過を計
測する方法において、培養状態を特定の複数の培養状態
に分類し、各特定培養状態における代謝バランスを実験
的に決定し、測定可能な各状態変数に対応するメンバー
シップ関数を用いて培養状態を同定するルールを定め、
発酵槽から得られた各状態変数のメンバーシップ関数に
対する適合度を定め、得られた適合度から各特定培養状
態の寄与度を定め、その寄与度から代謝組成物の比率を
決定し、その時点での測定可能な代謝組成物の測定値か
ら発酵槽内に存在する物質の量を計算することを特徴と
する経時的に培養状態が変化する発酵槽の計測方法。
1. A method for calculating the metabolic balance from the measurement of measurable metabolites in a metabolic composition to measure the progress of culture in a culture tank, classifying the culture state into a plurality of specific culture states, Experimentally determine the metabolic balance in each specific culture state, and define the rules for identifying the culture state using the membership function corresponding to each measurable state variable,
The fitness of each state variable obtained from the fermentor to the membership function is determined, the contribution of each specific culture state is determined from the obtained fitness, and the ratio of the metabolic composition is determined from the contribution at that time. A method for measuring a fermenter in which the culture state changes with time, which comprises calculating the amount of a substance existing in the fermenter from the measurable measured value of the metabolic composition.
【請求項2】 測定可能な代謝物が二酸化炭素であるこ
とを特徴とする請求項1記載の方法。
2. The method of claim 1, wherein the measurable metabolite is carbon dioxide.
【請求項3】 一定期間毎に発酵槽内に存在する物質の
量を計算することを特徴とする請求項1または2記載の
方法。
3. The method according to claim 1, wherein the amount of the substance present in the fermenter is calculated at regular intervals.
JP12479895A 1995-05-24 1995-05-24 Measurement of fermention tank Pending JPH08317797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12479895A JPH08317797A (en) 1995-05-24 1995-05-24 Measurement of fermention tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12479895A JPH08317797A (en) 1995-05-24 1995-05-24 Measurement of fermention tank

Publications (1)

Publication Number Publication Date
JPH08317797A true JPH08317797A (en) 1996-12-03

Family

ID=14894395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12479895A Pending JPH08317797A (en) 1995-05-24 1995-05-24 Measurement of fermention tank

Country Status (1)

Country Link
JP (1) JPH08317797A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000061791A1 (en) * 1999-04-07 2000-10-19 Daikin Industries, Ltd. Method for measuring bacterial count and apparatus therefor
JP2009075091A (en) * 2007-08-24 2009-04-09 Toto Ltd Health condition measuring device and measuring method
JP2009145190A (en) * 2007-12-14 2009-07-02 Toto Ltd Carbon dioxide gas measuring apparatus and health condition measuring apparatus incorporating the same
JP2009145284A (en) * 2007-12-18 2009-07-02 Toto Ltd Health condition measuring apparatus and its method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000061791A1 (en) * 1999-04-07 2000-10-19 Daikin Industries, Ltd. Method for measuring bacterial count and apparatus therefor
JP2009075091A (en) * 2007-08-24 2009-04-09 Toto Ltd Health condition measuring device and measuring method
JP2009145190A (en) * 2007-12-14 2009-07-02 Toto Ltd Carbon dioxide gas measuring apparatus and health condition measuring apparatus incorporating the same
JP2009145284A (en) * 2007-12-18 2009-07-02 Toto Ltd Health condition measuring apparatus and its method

Similar Documents

Publication Publication Date Title
US20090117647A1 (en) Method for on-line optimization of a fed-batch fermentation unit to maximize the product yield
Turner et al. Monitoring batch fermentations with an electronic tongue
Murugan et al. Estimation of fungal biomass using multiphase artificial neural network based dynamic soft sensor
CN111210867A (en) Microorganism growth state estimation method based on metabolic analysis and enzyme regulation
Li et al. Optimization of polyhydroxyalkanoates fermentations with on-line capacitance measurement
Meyer et al. Growth control in microbial cultures
CN107832582B (en) Method for monitoring biological processes
CN110462018A (en) Method for controlling biotechnology processes
Montague et al. Fermentation monitoring and control: a perspective
JPH08317797A (en) Measurement of fermention tank
Hausmann et al. Present Status of automation for industrial bioprocesses
Gnoth et al. Simple adaptive pH control in bioreactors using gain-scheduling methods
Şipoş Current state and perspective in the models applicable to oenology
Timmins et al. Rapid quantitative analysis of binary mixtures of Escherichia coli strains using pyrolysis mass spectrometry with multivariate calibration and artificial neural networks
Survyla et al. Viable cell estimation of mammalian cells using off-gas-based oxygen uptake rate and aging-specific functional
Ritzka et al. Fermentation monitoring and process control
Hrnčiřík et al. Software sensors for biomass concentration estimation in filamentous microorganism cultivation process
Winder et al. The use of continuous culture in systems biology investigations
Baxter et al. Sequential injection analysis: a versatile technique for bioprocess monitoring
Xu et al. Predicting the multispecies solid-state vinegar fermentation process using single-cell Raman spectroscopy combined with machine learning
Liu et al. Generalised additive modelling approach to the fermentation process of glutamate
Won et al. An artificial neural network for biomass estimation from automatic pH control signal
Cha et al. Ultrasonic measurements and its evaluation for the monitoring of Saccharomyces cerevisiae cultivation
KR20220061100A (en) System for estimating the dynamics of the system to be measured using redox potential
CN103509883A (en) Novel feeding regulation and control process applicable to multiple microorganism fermentation

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040615

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050104