[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08303884A - Compression type heat pump - Google Patents

Compression type heat pump

Info

Publication number
JPH08303884A
JPH08303884A JP7114377A JP11437795A JPH08303884A JP H08303884 A JPH08303884 A JP H08303884A JP 7114377 A JP7114377 A JP 7114377A JP 11437795 A JP11437795 A JP 11437795A JP H08303884 A JPH08303884 A JP H08303884A
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
source
refrigerant
effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7114377A
Other languages
Japanese (ja)
Other versions
JP3300197B2 (en
Inventor
Yasuo Uchikawa
靖夫 内川
Kaoru Hamada
薫 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP11437795A priority Critical patent/JP3300197B2/en
Publication of JPH08303884A publication Critical patent/JPH08303884A/en
Application granted granted Critical
Publication of JP3300197B2 publication Critical patent/JP3300197B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE: To carry out the maximum high grade coefficient operation regardless of changes in the condition of intake or radiation heat source used by controlling the switching operation of first and second passage switching means to make a refrigerant to be evaporated passing through an expansion means from a low effect intake heat exchanger to a high effect intake heat exchanger sequentially. CONSTITUTION: In the heat intake operation, a controller 10 makes a refrigerant to be evaporated passing through an expansion valve 4 pass from a heat source heat exchanger as a low effect intake heat exchanger to a high effect intake heat exchanger sequentially based on the results of judgment of a judging means. In the heat radiation operation, the refrigerant to be condensed discharged from a compressor 3 is made to pass from a heat source heat exchanger as a low effect radiation heat exchanger to a high effect heat source heat exchanger sequentially. In this case, each in the heat intake and heat radiation operation, the switching operation of two-way valves V1-V4 as first and second passage switching means K1 and K2 is controlled. This enables the maximum high grade coefficient operation at any time regardless of changes in the condition of the respective intake heat sources thereby achieving a saving of energy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は圧縮式ヒートポンプに関
し、詳しくは、蒸発器として個別の採熱源により通流冷
媒を加熱する第1及び第2の採熱熱交換器を直列に接続
した二採熱源の圧縮式ヒートポンプ、及び、凝縮器とし
て個別の放熱源により通流冷媒を冷却する第1及び第2
の放熱熱交換器を直列に接続した二放熱源の圧縮式ヒー
トポンプ、及び、個別の採放熱源により通流冷媒を加熱
又は冷却する第1及び第2の熱源熱交換器を直列に接続
し、冷媒を圧縮機−出力熱交換器−膨張手段−第1及び
第2熱源熱交換器の直列組の順に循環させて、出力熱交
換器を凝縮器機能させ、かつ、第1及び第2熱源熱交換
器を採熱熱交換器として蒸発器機能させる採熱運転と、
冷媒を圧縮機−第1及び第2熱源熱交換器の直列組−膨
張手段−出力熱交換器の順に循環させて、出力熱交換器
を蒸発器機能させ、かつ、第1及び第2熱源熱交換器を
放熱熱交換器として凝縮器機能させる放熱運転とに、運
転状態を切り換える二採放熱源の圧縮式ヒートポンプに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compression heat pump, and more particularly, to a two-stage compressor in which first and second heat collecting heat exchangers for heating a circulating refrigerant by individual heat collecting sources as an evaporator are connected in series. A compression heat pump as a heat source, and first and second cooling the flowing refrigerant by individual heat radiation sources as a condenser
, A heat-dissipating heat pump with two heat radiation sources connected in series, and first and second heat source heat exchangers that heat or cool the flowing refrigerant by individual heat radiation sources are connected in series, Refrigerant is circulated in the order of compressor-output heat exchanger-expansion means-first and second heat source heat exchangers to make the output heat exchanger function as a condenser, and the first and second heat source heats. Heat collection operation that makes the exchanger function as an evaporator as a heat collection heat exchanger,
Refrigerant is circulated in the order of compressor-first set of first and second heat source heat exchangers-expansion means-output heat exchanger to make the output heat exchanger function as an evaporator, and the first and second heat source heats. TECHNICAL FIELD The present invention relates to a compression heat pump having two heat radiation sources, which switches the operating state between a heat radiation operation in which the exchanger functions as a heat radiation heat exchanger and a condenser function.

【0002】[0002]

【従来の技術】従来、この種の直列接続形式の圧縮式ヒ
ートポンプでは、図8に示すように、膨張手段4を通過
した蒸発対象冷媒を直列に通流(実線の矢印で示す流
れ)する第1及び第2の採熱熱交換器Ne1,Ne2、
及び、圧縮機3から吐出した凝縮対象冷媒を直列に通流
(破線の矢印で示す流れ)する第1及び第2の放熱熱交
換器Nc1,Nc2のいずれについても、これら熱交換
器の直列組(すなわち、Ne1とNe2との直列組、な
いし、Nc1とNc2との直列組)を単に冷媒の循環経
路中に介装接続する構造を採っており、第1及び第2の
採熱熱交換器Ne1,Ne2に対する冷媒直列通流の順
序、並びに、第1及び第2の放熱熱交換器Nc1,Nc
2に対する冷媒直列通流の順序は夫々、固定されてい
た。
2. Description of the Related Art Conventionally, in this type of serial connection type compression heat pump, as shown in FIG. 8, the refrigerant to be vaporized which has passed through the expansion means 4 is made to flow in series (flow indicated by solid line arrow). 1st and 2nd heat collecting heat exchangers Ne1, Ne2,
Also, with respect to both the first and second radiating heat exchangers Nc1 and Nc2 that flow the refrigerant to be condensed discharged from the compressor 3 in series (the flow indicated by the dashed arrow), a series combination of these heat exchangers (That is, the series combination of Ne1 and Ne2 or the series combination of Nc1 and Nc2) is simply inserted in the circulation path of the refrigerant, and the first and second heat collecting heat exchangers are used. Order of refrigerant serial flow for Ne1 and Ne2, and first and second heat radiation heat exchangers Nc1 and Nc
The order of the serial flow of the refrigerant with respect to No. 2 was fixed.

【0003】なお、G1及びG2は第1及び第2採熱熱
交換器Ne1,Ne2の夫々に対する個別の採熱源、な
いし、第1及び第2放熱熱交換器Nc2,Nc1の夫々
に対する個別の放熱源を示す。
It should be noted that G1 and G2 are individual heat-collecting sources for the first and second heat-collecting heat exchangers Ne1 and Ne2, or individual heat-discharging sources for the first and second heat-dissipating heat exchangers Nc2 and Nc1. Indicates a heat source.

【0004】また、四方弁等による冷媒循環方向の逆転
操作により、第1及び第2の熱源熱交換器を採熱熱交換
器Ne1,Ne2として蒸発器機能させる採熱運転と、
これら第1及び第2の熱源熱交換器を放熱熱交換器Nc
1,Nc2として凝縮器機能させる放熱運転とに運転モ
ードを切り換える形式(すなわち、上記の図8において
実線に示す流れと破線に示す流れとの切り換えを行う形
式)では、冷媒循環方向の逆転に伴い第1及び第2の熱
源熱交換器に対する冷媒直列通流の順序が採熱運転時と
放熱運転時とで逆転するが、採熱運転において第1及び
第2採熱熱交換器Ne1,Ne2に対する冷媒直列通流
の順序が固定され、また、放熱運転において第1及び第
2放熱熱交換器Nc1,Nc2に対する冷媒直列通流の
順序が固定されている点に変わりはない。
In addition, a heat collection operation in which the first and second heat source heat exchangers function as evaporators as the heat collection heat exchangers Ne1 and Ne2 by reversing the refrigerant circulation direction by a four-way valve or the like,
These first and second heat source heat exchangers are connected to the heat radiation heat exchanger Nc.
In the type in which the operation mode is switched to the heat radiation operation in which the condenser functions as 1, Nc2 (that is, in the type in which the flow shown by the solid line and the flow shown by the broken line in FIG. 8 are switched), the refrigerant circulation direction is reversed. Although the sequence of the refrigerant series flow to the first and second heat source heat exchangers is reversed between the heat collection operation and the heat radiation operation, the first and second heat collection heat exchangers Ne1 and Ne2 are collected in the heat collection operation. The order of the refrigerant serial flow is fixed, and the order of the serial refrigerant flow to the first and second radiating heat exchangers Nc1 and Nc2 is fixed in the heat radiation operation.

【0005】[0005]

【発明が解決しようとする課題】しかし、研究の結果、
上記の如く冷媒の直列通流順序が固定されている従来の
圧縮式ヒートポンプでは、第1及び第2採熱熱交換器N
e1,Ne2の夫々での使用採熱源G1,G2による冷
媒昇温効果(すなわち、蒸発過程を経て飽和蒸気となっ
た冷媒をさらに加熱により昇温する効果、略言すれば、
過熱度shの取得効果)について見た場合、直列通流に
おいて上流側に位置する採熱熱交換器Ne1での使用採
熱源G1による冷媒昇温効果と、下流側に位置する採熱
熱交換器Ne2での使用採熱源G2による冷媒昇温効果
との高低関係によって、ヒートポンプ運転における冷媒
の蒸発圧力pe,蒸発温度teが異なるものとなる。
However, as a result of the research,
As described above, in the conventional compression type heat pump in which the serial flow order of the refrigerant is fixed, the first and second heat collection heat exchangers N
The refrigerant temperature raising effect by the heat collecting sources G1 and G2 used in each of e1 and Ne2 (that is, the effect of further heating the refrigerant that has become saturated vapor through the evaporation process by further heating, in short,
In terms of the effect of obtaining the superheat degree sh), the refrigerant temperature raising effect by the heat collecting source G1 used in the heat collecting heat exchanger Ne1 located on the upstream side in the serial flow and the heat collecting heat exchanger located on the downstream side The evaporation pressure pe and the evaporation temperature te of the refrigerant in the heat pump operation differ depending on the level relationship with the refrigerant temperature increasing effect of the heat collection source G2 used in Ne2.

【0006】そして、いずれかの採熱源G1,G2が種
々の原因により状況変化(例えば、採熱源の温度変化や
流量変化等)する場合、これら採熱源の状況変化によ
り、上流側の採熱熱交換器Ne1での使用採熱源G1に
よる冷媒昇温効果と、下流側の採熱熱交換器Ne2での
使用採熱源G2による冷媒昇温効果との高低関係が変化
して、ヒートポンプ運転における蒸発圧力pe,蒸発温
度teが変化するといったことが生じ、このことで蒸発
圧力pe,蒸発温度teの低下による成績係数copの
低下を来す場合があることが判明した。
When the situation of any of the heat collecting sources G1 and G2 changes due to various causes (for example, temperature change and flow rate change of the heat collecting source), the heat collecting heat of the upstream side is changed due to the situation change of these heat collecting sources. The level relationship between the refrigerant temperature raising effect by the heat collecting source G1 used in the exchanger Ne1 and the refrigerant temperature raising effect by the used heat collecting source G2 in the downstream heat collecting heat exchanger Ne2 changes, and the evaporation pressure in the heat pump operation changes. It has been found that the pe and the evaporation temperature te may change, which may cause a decrease in the coefficient of performance cop due to the decrease in the evaporation pressure pe and the evaporation temperature te.

【0007】また、放熱源についても同様に、第1及び
第2放熱熱交換器Nc1,Nc2の夫々での使用放熱源
G2,G1による冷媒降温効果(すなわち、凝縮過程を
経て飽和液となっている冷媒をさらに冷却により降温す
る効果、略言すれば、過冷却度scの取得効果)につい
て見た場合、直列通流において上流側に位置する放熱熱
交換器Nc1での使用放熱源G2による冷媒降温効果
と、下流側に位置する放熱熱交換器Nc2での使用放熱
源G1による冷媒降温効果との高低関係によって、ヒー
トポンプ運転における冷媒の凝縮圧力pc,凝縮温度t
cが異なるものとなる。
Similarly, regarding the heat radiation source, the cooling effect of the refrigerant by the heat radiation sources G2 and G1 used in each of the first and second heat radiation heat exchangers Nc1 and Nc2 (that is, a saturated liquid is formed through the condensation process). In terms of the effect of further cooling the existing refrigerant by cooling, in short, the effect of obtaining the supercooling degree sc), the refrigerant by the heat radiation source G2 used in the heat radiation heat exchanger Nc1 located on the upstream side in the serial flow Due to the level relationship between the temperature lowering effect and the refrigerant temperature lowering effect by the heat radiation source G1 used in the radiation heat exchanger Nc2 located on the downstream side, the condensing pressure pc and the condensing temperature t of the refrigerant in the heat pump operation.
c will be different.

【0008】そして、いずれかの放熱源G2,G1が種
々の原因により状況変化(例えば、放熱源の温度変化や
流量変化等)する場合、これら放熱源の状況変化によ
り、上流側の放熱熱交換器Nc1での使用放熱源G2に
よる冷媒降温効果と、下流側の放熱熱交換器Nc2での
使用放熱源G1による冷媒降温効果との高低関係が変化
して、ヒートポンプ運転における凝縮圧力pc,凝縮温
度tcが変化するといったことが生じ、このことで凝縮
圧力pc,凝縮温度tcの上昇による成績係数copの
低下を来す場合があることが判明した。
When any one of the heat radiation sources G2 and G1 changes its condition due to various causes (for example, temperature change and flow rate change of the heat radiation source), the heat radiation heat exchange on the upstream side due to the change of the condition of these heat radiation sources. The level relationship between the refrigerant temperature lowering effect by the used heat radiation source G2 in the vessel Nc1 and the refrigerant temperature lowering effect by the used heat source G1 in the downstream side heat radiation heat exchanger Nc2 changes, and the condensing pressure pc and the condensing temperature in the heat pump operation are changed. It has been found that there is a case where tc changes, which may cause a decrease in the coefficient of performance cop due to an increase in the condensation pressure pc and the condensation temperature tc.

【0009】以上の実情に対し、本発明の目的は、各採
熱源や各放熱源の状況変化にかかわらず、その時々の状
況下で最大限の高成績係数運転を可能し、合わせ、これ
を達成するための改良構成を簡略なものにする点にあ
る。また、本発明の付随の目的は、一方の採熱源ないし
放熱源の状況悪化による成績係数の低下も合わせ防止す
る点にある。
In view of the above-mentioned circumstances, the object of the present invention is to enable and maximize the maximum coefficient of performance operation under the situation at each time regardless of the situation change of each heat collecting source or each heat radiating source. The point is to simplify the improved configuration to achieve. An additional object of the present invention is to prevent a decrease in the coefficient of performance due to the deterioration of the condition of one heat collecting source or heat radiating source.

【0010】[0010]

【課題を解決するための手段】[Means for Solving the Problems]

〔第1特徴構成〕本発明の第1特徴構成(請求項1に係
る発明の特徴構成)は、圧縮式ヒートポンプに係り、蒸
発器として個別の採熱源により通流冷媒を加熱する第1
及び第2の採熱熱交換器を直列に接続する構成におい
て、膨張手段の出口流路を前記第1及び第2採熱熱交換
器の直列組における一端と他端とに択一的に接続する第
1の流路切換手段と、圧縮機の吸入流路を前記第1及び
第2採熱熱交換器の直列組における一端と他端とに択一
的に接続する第2の流路切換手段と、前記第1及び第2
採熱熱交換器について、使用採熱源による冷媒昇温効果
が他方よりも高い状況にある高効果の採熱熱交換器と、
使用採熱源による冷媒昇温効果が他方よりも低い状況に
ある低効果の採熱熱交換器とを判定する判定手段と、こ
の判定手段の判定結果に基づき、前記膨張手段を通過し
た蒸発対象冷媒を、前記低効果の採熱熱交換器から前記
高効果の採熱熱交換器の順で通流するように、前記第1
及び第2流路切換手段を切り換え制御する制御手段を設
けたことにある。
[First Characteristic Configuration] A first characteristic configuration of the present invention (a characteristic configuration of the invention according to claim 1) relates to a compression heat pump, in which a circulating refrigerant is heated by an individual heat collecting source as an evaporator.
And a configuration in which the second heat collecting heat exchanger is connected in series, the outlet flow path of the expansion means is selectively connected to one end and the other end of the series combination of the first and second heat collecting heat exchangers. And a second flow path switching means for selectively connecting the suction flow path of the compressor to one end and the other end of the series combination of the first and second heat collection heat exchangers. Means and the first and second
Regarding the heat collection heat exchanger, a highly effective heat collection heat exchanger in which the refrigerant temperature raising effect by the used heat collection source is higher than the other,
Determination means for determining a low effect heat collection heat exchanger in a situation where the refrigerant temperature raising effect by the used heat collection source is lower than the other, and the evaporation target refrigerant that has passed through the expansion means based on the determination result of this determination means So as to flow in order from the low-effect heat collection heat exchanger to the high-effect heat collection heat exchanger.
And the control means for controlling the switching of the second flow path switching means.

【0011】〔第2特徴構成〕本発明の第2特徴構成
(請求項2に係る発明の特徴構成)は、上記の第1特徴
構成において、前記判定手段は、前記低効果及び高効果
の採熱熱交換器を判定するとともに、これら採熱熱交換
器の冷媒昇温効果の差が設定差以上であるか否かを判定
する構成とし、前記制御手段は、この判定結果に基づい
て、両採熱熱交換器の冷媒昇温効果の差が設定差以上で
あるとき、前記低効果の採熱熱交換器に対する採熱源の
供給を停止する構成としてあることにある。
[Second Characteristic Configuration] A second characteristic structure of the present invention (a characteristic structure of the invention according to claim 2) is the same as the first characteristic structure described above, wherein the determination means is configured to detect the low effect and the high effect. Along with determining the heat heat exchanger, it is configured to determine whether or not the difference in the refrigerant temperature raising effect of these heat collection heat exchangers is equal to or more than a set difference, and the control means, based on this determination result, When the difference in the refrigerant temperature raising effect of the heat collecting heat exchanger is equal to or more than the set difference, the supply of the heat collecting source to the heat collecting heat exchanger having the low effect is stopped.

【0012】〔第3特徴構成〕本発明の第3特徴構成
(請求項3に係る発明の特徴構成)は、圧縮式ヒートポ
ンプに係り、凝縮器として個別の放熱源により通流冷媒
を冷却する第1及び第2の放熱熱交換器を直列に接続す
る構成において、膨張手段の入口流路を前記第1及び第
2放熱熱交換器の直列組における一端と他端とに択一的
に接続する第1の流路切換手段と、圧縮機の吐出流路を
前記第1及び第2放熱熱交換器の直列組における一端と
他端とに択一的に接続する第2の流路切換手段と、前記
第1及び第2放熱熱交換器について、使用放熱源による
冷媒降温効果が他方よりも高い状況にある高効果の放熱
熱交換器と、使用放熱源による冷媒降温効果が他方より
も低い状況にある低効果の放熱熱交換器とを判定する判
定手段と、この判定手段の判定結果に基づき、前記圧縮
機から吐出した凝縮対象冷媒を、前記低効果の放熱熱交
換器から前記高効果の放熱熱交換器の順で通流するよう
に、前記第1及び第2流路切換手段を切り換え制御する
制御手段を設けたことにある。
[Third Characteristic Configuration] A third characteristic configuration of the present invention (a characteristic configuration of the invention according to claim 3) relates to a compression heat pump, and cools the flowing refrigerant by a separate heat source as a condenser. In a configuration in which the first and second radiant heat exchangers are connected in series, the inlet passage of the expansion means is selectively connected to one end and the other end of the series set of the first and second radiant heat exchangers. First flow path switching means, and second flow path switching means for selectively connecting the discharge flow path of the compressor to one end and the other end of the series combination of the first and second radiant heat exchangers In the first and second radiant heat exchangers, a high-efficiency heat radiating heat exchanger in which the cooling effect of the heat source used is higher than that of the other, and a cooling effect of the heat source used is lower than that of the other. Determining means for determining a low-efficiency heat radiation heat exchanger in Based on the determination result of the stage, the refrigerant to be condensed discharged from the compressor is passed through the low-efficiency heat radiation heat exchanger in the order of the high-efficiency heat radiation heat exchanger. The control means for switching the flow path switching means is provided.

【0013】〔第4特徴構成〕本発明の第4特徴構成
(請求項4に係る発明の特徴構成)は、上記の第3特徴
構成において、前記判定手段は、前記低効果及び高効果
の放熱熱交換器を判定するとともに、これら放熱熱交換
器の冷媒降温効果の差が設定差以上であるか否かを判定
する構成とし、前記制御手段は、この判定結果に基づい
て、両放熱熱交換器の冷媒降温効果の差が設定差以上で
あるとき、前記低効果の放熱熱交換器に対する放熱源の
供給を停止する構成としてあることにある。
[Fourth Characteristic Configuration] According to a fourth characteristic structure of the present invention (a characteristic structure of the invention according to claim 4), in the above-mentioned third characteristic structure, the judging means is characterized in that the low-effect and high-effect heat dissipation is achieved. Along with determining the heat exchanger, it is configured to determine whether or not the difference in the refrigerant cooling effect of these radiant heat exchangers is equal to or greater than a set difference, and the control means, based on this determination result, both radiant heat exchangers. When the difference in the refrigerant cooling effect of the heat exchanger is equal to or more than the set difference, the supply of the heat radiation source to the low heat radiation heat exchanger is stopped.

【0014】〔第5特徴構成〕本発明の第5特徴構成
(請求項5に係る発明の特徴構成)は、圧縮式ヒートポ
ンプに係り、個別の採放熱源により通流冷媒を加熱又は
冷却する第1及び第2の熱源熱交換器を直列に接続し、
冷媒を圧縮機、出力熱交換器、膨張手段、前記第1及び
第2熱源熱交換器の直列組の順に循環させて、前記出力
熱交換器を凝縮器機能させ、かつ、前記第1及び第2熱
源熱交換器を採熱熱交換器として蒸発器機能させる採熱
運転と、冷媒を前記圧縮機、前記第1及び第2熱源熱交
換器の直列組、前記膨張手段、前記出力熱交換器の順に
循環させて、前記出力熱交換器を蒸発器機能させ、か
つ、前記第1及び第2熱源熱交換器を放熱熱交換器とし
て凝縮器機能させる放熱運転とに、運転状態を切り換え
る循環方向切換手段と、採熱運転では前記膨張手段の出
口流路となり、かつ、放熱運転では前記膨張手段の入口
流路となる流路を、前記第1及び第2熱源熱交換器の直
列組における一端と他端とに択一的に接続する第1の流
路切換手段と、採熱運転では前記圧縮機の吸入流路とな
り、かつ、放熱運転では前記圧縮機の吐出流路となる流
路を、前記第1及び第2熱源熱交換器の直列組における
一端と他端とに択一的に接続する第2の流路切換手段
と、採熱運転では、前記第1及び第2熱源熱交換器につ
いて、使用採放熱源による冷媒昇温効果が他方よりも高
い状況で高効果の採熱熱交換器となる熱源熱交換器と、
使用採放熱源による冷媒昇温効果が他方よりも低い状況
で低効果の採熱熱交換器となる熱源熱交換器とを判定
し、かつ、放熱運転では、前記第1及び第2熱源熱交換
器について、使用採放熱源による冷媒降温効果が他方よ
りも高い状況で高効果の放熱熱交換器となる熱源熱交換
器と、使用採放熱源による冷媒降温効果が他方よりも低
い状況で低効果の放熱熱交換器となる熱源熱交換器とを
判定する判定手段と、この判定手段の判定結果に基づ
き、採熱運転では前記膨張手段を通過した蒸発対象冷媒
を、前記低効果の採熱熱交換器となる熱源熱交換器から
前記高効果の採熱熱交換器となる熱源熱交換器の順に通
流するように、かつ、放熱運転では前記圧縮機から吐出
した凝縮対象冷媒を、前記低効果の放熱熱交換器となる
熱源熱交換器から前記高効果の放熱熱交換器となる熱源
熱交換器の順に通流するように、採熱運転及び放熱運転
の夫々で前記第1及び第2流路切換手段を切り換え制御
する制御手段を設けたことにある。
[Fifth Characteristic Configuration] A fifth characteristic configuration of the present invention (a characteristic configuration of the invention according to claim 5) relates to a compression heat pump, wherein a circulating refrigerant is heated or cooled by an individual heat collecting / radiating source. Connecting the first and second heat source heat exchangers in series,
Refrigerant is circulated in the order of a series of a compressor, an output heat exchanger, an expansion means, and the first and second heat source heat exchangers to make the output heat exchanger function as a condenser, and the first and second heat exchangers. (2) Heat collection operation in which the heat source heat exchanger functions as an evaporator as a heat collection heat exchanger, and refrigerant is used in series with the compressor, the first and second heat source heat exchangers, the expansion means, and the output heat exchanger. Circulation direction in which the operating state is switched to heat dissipation operation in which the output heat exchanger functions as an evaporator and the first and second heat source heat exchangers function as condensers as heat dissipation heat exchangers in the order of One end of the series combination of the first and second heat source heat exchangers is the switching means and the flow path which becomes the outlet flow path of the expansion means in the heat collection operation and becomes the entrance flow path of the expansion means in the heat radiation operation. And a first flow path switching means selectively connected to the other end, and heat collection The suction flow path of the compressor in rotation and the discharge flow path of the compressor in heat radiation operation are selected as one end and the other end of the series combination of the first and second heat source heat exchangers. In the heat collection operation, the second flow path switching unit that is integrally connected and the first and second heat source heat exchangers are highly effective in the situation where the refrigerant temperature raising effect by the used heat collection and radiation source is higher than the other. A heat source heat exchanger to be a heat collection heat exchanger,
It is determined that the heat source heat exchanger is a heat collecting heat exchanger having a low effect in a situation where the refrigerant temperature raising effect by the used heat collecting and radiating source is lower than the other, and in the heat radiating operation, the first and second heat source heat exchanges. Heat source heat exchanger that becomes a highly effective heat dissipation heat exchanger in the situation where the cooling and cooling effect of the heat source used is higher than that of the other, and low effect when the cooling effect of the refrigerant by the used heat source is lower than the other Based on the determination means for determining the heat source heat exchanger to be the heat radiation heat exchanger, the evaporation target refrigerant that has passed through the expansion means in the heat collection operation is set to the low effect heat collection heat. In order to flow from the heat source heat exchanger that is the exchanger to the heat source heat exchanger that is the high-efficiency heat collecting heat exchanger, and in the heat radiation operation, the refrigerant to be condensed discharged from the compressor is From the heat source heat exchanger that will be the effective heat dissipation heat exchanger A control means for switching and controlling the first and second flow path switching means in each of the heat collection operation and the heat radiation operation is provided so that the heat source heat exchanger which becomes the effective heat radiation heat exchanger flows in order. is there.

【0015】〔第6特徴構成〕本発明の第6特徴構成
(請求項6に係る発明の特徴構成)は、上記の第5特徴
構成において、前記判定手段は、採熱運転では前記低効
果及び高効果の採熱熱交換器となる熱源熱交換器を判定
するとともに、これら採熱熱交換器としての熱源熱交換
器の冷媒昇温効果の差が設定差以上であるか否かを判定
し、かつ、放熱運転では前記低効果及び高効果の放熱熱
交換器となる熱源熱交換器を判定するとともに、これら
放熱熱交換器としての熱源熱交換器の冷媒降温効果の差
が設定差以上であるか否かを判定する構成とし、前記制
御手段は、この判定結果に基づいて、採熱運転では両熱
源熱交換器の冷媒昇温効果の差が設定差以上であると
き、前記低効果の採熱熱交換器となる熱源熱交換器への
採放熱源の供給を停止し、かつ、放熱運転では両熱源熱
交換器の冷媒降温効果の差が設定差以上であるとき、前
記低効果の放熱熱交換器となる熱源熱交換器への採放熱
源の供給を停止する構成としてあることにある。
[Sixth Characteristic Configuration] A sixth characteristic structure of the present invention (a characteristic structure of the invention according to claim 6) is the above-mentioned fifth characteristic structure, wherein the determination means is configured to reduce the low effect in the heat collecting operation. While determining the heat source heat exchanger to be a highly effective heat collection heat exchanger, it is determined whether the difference in the refrigerant temperature raising effect of these heat source heat exchangers as the heat collection heat exchanger is equal to or greater than the set difference. And, in the heat radiation operation, while determining the heat source heat exchanger to be the low effect and high effect heat radiation heat exchanger, the difference in the refrigerant cooling effect of the heat source heat exchanger as these heat radiation heat exchanger is equal to or more than the set difference. With a configuration to determine whether there is, the control means, based on the determination result, when the difference in the refrigerant temperature raising effect of both heat source heat exchangers in the heat collection operation is equal to or more than the set difference, the low effect Stops supplying heat from the heat source to the heat source heat exchanger Further, in the heat radiation operation, when the difference in the refrigerant cooling effect of both heat source heat exchangers is equal to or more than the set difference, the supply of the heat collection and heat radiation source to the heat source heat exchanger to be the heat radiation heat exchanger of the low effect is stopped. It is as it is.

【0016】[0016]

【作用】[Action]

〔第1特徴構成の作用〕つまり、上流側の採熱熱交換器
での使用採熱源による冷媒昇温効果と、下流側の採熱熱
交換器での使用採熱源による冷媒昇温効果との高低関係
により、ヒートポンプ運転における冷媒の蒸発圧力p
e,蒸発温度teが異なるものとなることについて研究
した結果、下流側の採熱熱交換器での使用採熱源による
冷媒昇温効果が上流側の採熱熱交換器での使用採熱源に
よる冷媒昇温効果よりも高い場合に、この逆の場合に比
べ、蒸発圧力pe,蒸発温度teの高いヒートポンプ運
転が可能となることが判明した。
[Operation of First Characteristic Configuration] That is, the refrigerant heating effect by the used heat collecting source in the upstream heat collecting heat exchanger and the refrigerant heating effect by the used heat collecting source in the downstream heat collecting heat exchanger Due to the high / low relationship, the evaporation pressure p of the refrigerant in the heat pump operation
As a result of studying that e and evaporating temperature te are different, the refrigerant heating effect by the heat collecting source used in the downstream heat collecting heat exchanger is increased by the heat collecting source used in the upstream heat collecting heat exchanger. It has been found that when the temperature raising effect is higher than that in the opposite case, the heat pump operation with higher evaporation pressure pe and evaporation temperature te becomes possible.

【0017】すなわち、膨張手段を通過した蒸発対象冷
媒を第1及び第2の採熱熱交換器に対し直列に通流する
形式では、下流側の採熱熱交換器において、一定の蒸発
圧力pe,蒸発温度teのもとで冷媒蒸発を進行させて
冷媒を飽和蒸気に到らせることと、これに続き蒸発温度
teから冷媒温度を上昇させて過熱度shを取得するこ
ととを行い、これに対し、上流側の採熱熱交換器では、
下流側の採熱熱交換器と等しい蒸発圧力pe,蒸発温度
teのもとで、ある程度の乾き度xまで冷媒を蒸発させ
ることのみを行う形態となることから、このような直列
通流形式のヒートポンプ運転において適当な過熱度sh
を取得する場合の蒸発圧力pe,蒸発温度teは、下流
側の採熱熱交換器での使用採熱源による冷媒昇温効果
(過熱度shの取得効果)によって異なるものとなる。
That is, in the type in which the refrigerant to be evaporated that has passed through the expansion means flows in series to the first and second heat collecting heat exchangers, a constant evaporation pressure pe is set in the downstream heat collecting heat exchanger. , The refrigerant evaporates under the evaporation temperature te to reach the saturated vapor, and subsequently the refrigerant temperature is increased from the evaporation temperature te to obtain the superheat degree sh. On the other hand, in the heat collection heat exchanger on the upstream side,
Since the refrigerant is only evaporated to a certain degree of dryness x under the same evaporation pressure pe and evaporation temperature te as those of the heat collecting heat exchanger on the downstream side, such a serial flow type is used. Appropriate superheat degree sh in heat pump operation
The evaporating pressure pe and the evaporating temperature te in the case of obtaining the temperature difference depend on the refrigerant temperature increasing effect (acquisition effect of the superheat degree sh) by the heat collecting source used in the downstream heat collecting heat exchanger.

【0018】そして、下流側の採熱熱交換器について見
れば、蒸発圧力pe,蒸発温度teを一定に維持する運
転において、下流側の採熱熱交換器での使用採熱源によ
る冷媒昇温効果を変化させた場合に、その冷媒昇温効果
が高いほど取得過熱度shが大きくなることからも理解
されるように、一定の過熱度shを得る場合では、下流
側の採熱熱交換器での使用採熱源による冷媒昇温効果が
高くて、この採熱熱交換器の出口での冷媒温度を高くし
得るほど(すなわち、蒸発温度teからの過熱度sh分
の冷媒温度上昇(顕熱熱交換)をより効率的に行えるほ
ど)、蒸発圧力pe,蒸発温度teは高いものでよく、
このことから、下流側の採熱熱交換器での使用採熱源に
よる冷媒昇温効果が上流側の採熱熱交換器での使用採熱
源による冷媒昇温効果よりも高い場合に、この逆の場合
に比べ蒸発圧力pe,蒸発温度teの高い運転が可能と
なる。
Regarding the heat collecting heat exchanger on the downstream side, in the operation of keeping the evaporation pressure pe and the evaporation temperature te constant, the refrigerant temperature raising effect by the heat collecting source used in the heat collecting heat exchanger on the downstream side As can be understood from the fact that the obtained superheat degree sh increases as the refrigerant temperature increasing effect increases, when the constant superheat degree sh is changed, when the constant superheat degree sh is obtained, The effect of increasing the temperature of the refrigerant by the heat collection source used is so high that the refrigerant temperature at the outlet of the heat collection heat exchanger can be increased (that is, the refrigerant temperature rise by the superheat degree sh from the evaporation temperature te (sensible heat (The exchange) can be performed more efficiently), the evaporation pressure pe and the evaporation temperature te may be high,
From this, when the refrigerant temperature increasing effect by the heat collecting source used in the downstream heat collecting heat exchanger is higher than the refrigerant temperature increasing effect by the used heat collecting source in the upstream heat collecting heat exchanger, the opposite of Compared with the case, the operation with higher evaporation pressure pe and evaporation temperature te becomes possible.

【0019】このことに着目して、本発明の第1特徴構
成では、直列接続の第1及び第2採熱熱交換器につい
て、使用採熱源による冷媒昇温効果が他方よりも高い状
況にある高効果の採熱熱交換器と、使用採熱源による冷
媒昇温効果が他方よりも低い状況にある低効果の採熱熱
交換器とを、採熱源状況の検出等による適当な判定手法
をもって判定手段に判定させ、そして、この判定結果に
基づき、膨張手段を通過した蒸発対象冷媒を低効果の採
熱熱交換器から高効果の採熱熱交換器の順に通流させる
ように、制御手段により第1及び第2の流路切換手段を
制御して第1及び第2採熱熱交換器に対する冷媒通流順
序を変更することで、各採熱源の状況変化による各採熱
熱交換器での冷媒昇温効果の変化にかかわらず、その時
々の状況下で蒸発圧力pe,蒸発温度teの極力高い運
転、すなわち、成績係数copの極力高い運転を可能と
する。
With this in mind, in the first characteristic configuration of the present invention, the first and second heat collecting heat exchangers connected in series have a higher refrigerant temperature raising effect by the heat collecting source used than the other. Judge the high-efficiency heat-collecting heat exchanger and the low-effect heat-collecting heat exchanger in which the refrigerant temperature raising effect by the used heat-collecting source is lower than the other, using an appropriate determination method such as by detecting the heat-collecting source situation. Based on the result of the determination, the control means causes the refrigerant to be evaporated that has passed through the expansion means to flow in the order from the low-effect heat collection heat exchanger to the high-effect heat collection heat exchanger. By controlling the first and second flow path switching means to change the flow order of the refrigerant to the first and second heat collecting heat exchangers, the heat collecting heat exchangers in the respective heat collecting heat exchangers change due to changes in the situation of each heat collecting source. Despite the change in the refrigerant temperature rise effect, the evaporation pressure pe, the highest possible operation of the evaporation temperature te, namely, to allow the highest possible operation of the coefficient of performance (cop).

【0020】一方、第1及び第2の流路切換手段による
上記の通流順序変更については、第1採熱熱交換器2A
が前記の高効果の採熱熱交換器である場合(図2(ロ)
における実線の矢印を参照)、第1流路切換手段K1
は、膨張手段4の出口流路reを第1及び第2採熱熱交
換器2A,2Bの直列組における第2採熱熱交換器2B
の側の端部に接続する切換状態とし、かつ、第2流路切
換手段K2は、圧縮機3の吸入流路rcを上記直列組2
A,2Bにおける第1採熱熱交換器2Aの側の端部に接
続する切換状態とし、これにより、膨張手段4を通過し
た蒸発対象冷媒を、低効果の採熱熱交換器である第2採
熱熱交換器2Bから高効果の採熱熱交換器である第1採
熱熱交換器2Aの順に通流させる。
On the other hand, the first heat collecting heat exchanger 2A is used for changing the flow order by the first and second flow path switching means.
Is the high-efficiency heat-collecting heat exchanger (Fig. 2 (b))
), The first flow path switching means K1
Is the second heat collection heat exchanger 2B in the series combination of the first and second heat collection heat exchangers 2A and 2B, which is connected to the outlet passage re of the expansion means 4.
The second flow passage switching means K2 connects the suction flow passage rc of the compressor 3 to the series set 2
A switching state is established in which the first and second heat collecting heat exchangers 2A and 2B are connected to each other, whereby the refrigerant to be evaporated that has passed through the expansion means 4 is a second heat collecting heat exchanger having a low effect. Flow from the heat collection heat exchanger 2B to the first heat collection heat exchanger 2A, which is a highly effective heat collection heat exchanger, in that order.

【0021】また逆に、第2採熱熱交換器2Bが前記の
高効果の採熱熱交換器である場合(図2(イ)における
実線の矢印を参照)、第1流路切換手段K1は、膨張手
段4の出口流路reを上記直列組2A,2Bにおける第
1採熱熱交換器2Aの側の端部に接続する切換状態と
し、かつ、第2流路切換手段K2は、圧縮機3の吸入流
路rcを上記直列組2A,2Bにおける第2採熱熱交換
器2Bの側の端部に接続する切換状態とし、これによ
り、膨張手段4を通過した蒸発対象冷媒を、低効果の採
熱熱交換器である第1採熱熱交換器2Aから高効果の採
熱熱交換器である第2採熱熱交換器2Bの順に通流させ
る。
On the contrary, when the second heat collecting heat exchanger 2B is the highly effective heat collecting heat exchanger (see the solid arrow in FIG. 2A), the first flow path switching means K1 Is in a switching state in which the outlet flow path re of the expansion means 4 is connected to the end of the series set 2A, 2B on the side of the first heat collection heat exchanger 2A, and the second flow path switching means K2 is compressed. The suction flow path rc of the machine 3 is connected to the end of the series set 2A, 2B on the side of the second heat collection heat exchanger 2B, so that the refrigerant to be evaporated that has passed through the expansion means 4 is reduced. The first heat collection heat exchanger 2A which is an effective heat collection heat exchanger and the second heat collection heat exchanger 2B which is a high effect heat collection heat exchanger are made to flow in this order.

【0022】〔第2特徴構成の作用〕上述の第1特徴構
成において、高効果の採熱熱交換器を下流側に位置させ
ることで蒸発圧力pe,蒸発温度teの極力高い運転を
可能とするにあたり、低効果の採熱熱交換器での使用採
熱源による冷媒昇温効果が高効果の採熱熱交換器での使
用採熱源による冷媒昇温効果に比べ過度に小さいと、上
流側に位置させる低効果の採熱熱交換器では、冷媒に対
する作用温度が上記の蒸発温度teよりも低い状況(す
なわち、使用採熱源が蒸発対象冷媒に対し逆に冷却源と
して作用してしまう状況)となり、このことで成績係数
copの低下を生じる。
[Operation of Second Characteristic Configuration] In the above-described first characteristic configuration, by placing a highly effective heat-collecting heat exchanger on the downstream side, it is possible to operate the evaporation pressure pe and the evaporation temperature te as high as possible. On the other hand, if the refrigerant temperature raising effect of the heat collecting source used in the low heat collection heat exchanger is too small compared to the refrigerant temperature raising effect of the heat collecting source used in the high heat collecting heat exchanger, In the low-effect heat-collection heat exchanger, the working temperature for the refrigerant is lower than the evaporation temperature te (that is, the used heat-collection source acts as a cooling source on the evaporation-target refrigerant in reverse), This causes a decrease in the coefficient of performance cop.

【0023】このことに着目して、本発明の第2特徴構
成では、低効果及び高効果の採熱熱交換器の判定ととも
に、これら採熱熱交換器での使用採熱源による冷媒昇温
効果の差が設定差以上であるか否かを判定手段に判定さ
せ、そして、この判定結果に基づき、両採熱熱交換器の
冷媒昇温効果の差が設定差以上であるときには、制御手
段により低効果の採熱熱交換器への採熱源供給を停止し
て、実質的に高効果の採熱熱交換器のみを蒸発器機能さ
せる状態でヒートポンプ運転を行い、これにより、上記
の如く低効果の採熱熱交換器で使用採熱源が蒸発対象冷
媒に対し冷却源として作用するような状況を回避して、
このような状況の発生による成績係数copの低下を防
止する。
With this in mind, in the second characteristic configuration of the present invention, the heat collection heat exchangers of low effect and high effect are determined, and the refrigerant temperature raising effect by the heat collection source used in these heat collection heat exchangers is determined. The determination means determines whether or not the difference between the two is greater than or equal to the set difference, and based on this determination result, when the difference between the refrigerant temperature raising effects of both heat collection heat exchangers is greater than or equal to the set difference, the control means Heat pump operation is performed with the heat collection source supply to the low-efficiency heat-collecting heat exchanger stopped and only the high-efficiency heat-collecting heat exchanger is allowed to function as an evaporator. Avoid the situation where the heat collection source used in the heat collection heat exchanger acts as a cooling source for the refrigerant to be evaporated,
A decrease in the coefficient of performance cop due to the occurrence of such a situation is prevented.

【0024】〔第3特徴構成の作用〕つまり、上流側の
放熱熱交換器での使用放熱源による冷媒降温効果と、下
流側の放熱熱交換器での使用放熱源による冷媒降温効果
との高低関係により、ヒートポンプ運転における冷媒の
凝縮圧力pc,凝縮温度tcが異なるものとなることに
ついて研究した結果、下流側の放熱熱交換器での使用放
熱源による冷媒降温効果が上流側の放熱熱交換器での使
用放熱源による冷媒降温効果よりも高い場合に、この逆
の場合に比べ、凝縮圧力pc,凝縮温度tcの低い運転
が可能となることが判明した。
[Operation of Third Characteristic Configuration] That is, the refrigerant cooling effect by the heat radiation source used in the upstream radiation heat exchanger and the refrigerant temperature cooling effect by the heat radiation source used in the downstream radiation heat exchanger are high and low. As a result of researching that the condensing pressure pc and the condensing temperature tc of the refrigerant in the heat pump operation are different depending on the relationship, the refrigerant cooling effect by the heat radiation source used in the heat radiation heat exchanger on the downstream side is the heat radiation heat exchanger on the upstream side. It has been found that when the effect of cooling the refrigerant by the used heat radiation source is higher than that in the opposite case, the condensing pressure pc and the condensing temperature tc are lower than those in the opposite case.

【0025】すなわち、圧縮機から吐出した凝縮対象冷
媒を第1及び第2の放熱熱交換器に対し直列に通流する
形式では、下流側の放熱熱交換器において、一定の凝縮
圧力pc,凝縮温度tcのもとで冷媒凝縮を進行させて
冷媒を飽和液に到らせることと、これに続き凝縮温度t
eから冷媒温度を低下させて過冷却度scを取得するこ
ととを行い、これに対し、上流側の放熱熱交換器では、
下流側の放熱熱交換器と等しい凝縮圧力pc,凝縮温度
tcのもとで、ある程度の湿り度m(=1−乾き度x)
まで冷媒を凝縮させることのみを行う形態となることか
ら、このような直列通流形式のヒートポンプ運転におい
て適当な過冷却度scを取得する場合の凝縮圧力pc,
凝縮温度tcは、下流側の放熱熱交換器での使用放熱源
による冷媒降温効果(過冷却度scの取得効果)によっ
て異なるものとなる。
That is, in the type in which the refrigerant to be condensed discharged from the compressor is made to flow in series with the first and second radiant heat exchangers, the radiant heat exchanger on the downstream side has a constant condensing pressure pc and condensation. The refrigerant is condensed under the temperature tc to reach the saturated liquid, and then the condensation temperature t
The refrigerant temperature is lowered from e to obtain the supercooling degree sc, while the upstream side heat radiation heat exchanger
Under a condensing pressure pc and a condensing temperature tc that are equal to those of the radiant heat exchanger on the downstream side, a certain degree of wetness m (= 1-dryness x)
Since only the refrigerant is condensed up to the condensing pressure pc, when obtaining an appropriate supercooling degree sc in such a serial flow type heat pump operation,
The condensing temperature tc varies depending on the cooling effect of the refrigerant by the heat radiation source used in the radiation heat exchanger on the downstream side (the effect of obtaining the degree of supercooling sc).

【0026】そして、下流側の放熱熱交換器について見
れば、凝縮圧力pc,凝縮温度tcを一定に維持する運
転において、下流側の放熱熱交換器での使用放熱源によ
る冷媒降温効果を変化させた場合に、その冷媒降温効果
が高いほど取得過冷却度scが大きくなることからも理
解されるように、一定の過冷却度scを得る場合では、
下流側の放熱熱交換器での使用放熱源による冷媒降温効
果が高くて、この放熱熱交換器の出口での冷媒温度を低
くし得るほど(すなわち、凝縮温度tcからの過冷却度
sc分の冷媒温度低下(顕熱熱交換)をより効率的に行
えるほど)、凝縮圧力pc,凝縮温度tcは低いもので
よく、このことから、下流側の放熱熱交換器での使用放
熱源による冷媒降温効果が上流側の放熱熱交換器での使
用放熱源による冷媒降温効果よりも高い場合に、この逆
の場合に比べ凝縮圧力pc,凝縮温度tcの低い運転が
可能となる。
As for the radiant heat exchanger on the downstream side, in the operation of maintaining the condensing pressure pc and the condensing temperature tc constant, the effect of cooling the refrigerant by the radiant heat source used in the radiant heat exchanger on the downstream side is changed. In this case, as can be understood from the fact that the higher the refrigerant cooling effect is, the larger the acquired supercooling degree sc is, in the case of obtaining a constant supercooling degree sc,
Used in the radiant heat exchanger on the downstream side The effect of cooling the refrigerant by the radiant heat source is high, and the refrigerant temperature at the outlet of the radiant heat exchanger can be lowered (that is, the subcooling degree sc from the condensing temperature tc). The refrigerant temperature can be lowered (sensible heat exchange more efficiently) and the condensing pressure pc and the condensing temperature tc can be low. From this fact, the cooling of the refrigerant by the radiation source used in the radiation heat exchanger on the downstream side can be performed. When the effect is higher than the effect of cooling the refrigerant by the radiating heat source used in the radiant heat exchanger on the upstream side, the operation with lower condensing pressure pc and condensing temperature tc becomes possible compared to the opposite case.

【0027】このことに着目して、本発明の第3特徴構
成では、直列接続の第1及び第2放熱熱交換器につい
て、使用放熱源による冷媒降温効果が他方よりも高い状
況にある高効果の放熱熱交換器と、使用放熱源による冷
媒降温効果が他方よりも低い状況にある低効果の放熱熱
交換器とを、放熱源状況の検出等による適当な判定手法
をもって判定手段に判定させ、そして、この判定結果に
基づき、圧縮機から吐出した凝縮対象冷媒を低効果の放
熱熱交換器から高効果の放熱熱交換器の順に通流させる
ように、制御手段により第1及び第2の流路切換手段を
制御して第1及び第2放熱熱交換器に対する冷媒通流順
序を変更することで、各放熱源の状況変化による各放熱
熱交換器での冷媒降温効果の変化にかかわらず、その時
々の状況下で凝縮圧力pc,凝縮温度tcの極力低い運
転、すなわち、成績係数copの極力高い運転を可能と
する。
With this in mind, in the third characteristic configuration of the present invention, in the first and second radiating heat exchangers connected in series, the refrigerant cooling effect by the radiating heat source used is higher than the other effect. The radiant heat exchanger and the radiant heat exchanger with a low effect in which the cooling effect of the refrigerant by the used radiant heat source is lower than the other, let the deciding means decide by an appropriate deciding method such as detecting the radiant heat source situation, Then, based on this determination result, the control means causes the first and second streams to flow so that the refrigerant to be condensed discharged from the compressor flows in the order from the low-efficiency heat radiation heat exchanger to the high-effect heat radiation heat exchanger. By controlling the path switching means to change the refrigerant flow sequence for the first and second radiant heat exchangers, regardless of the change in the refrigerant cooling effect in each radiant heat exchanger due to the change in the status of each radiant heat source, Condensation pressure under the circumstances pc, as low as possible the operation of the condensation temperature tc, i.e., to allow the highest possible operation of the coefficient of performance (cop).

【0028】一方、第1及び第2の流路切換手段による
上記の通流順序変更については、第1放熱熱交換器2A
が前記の高効果の放熱熱交換器である場合(図2(イ)
における破線の矢印を参照)、第1流路切換手段K1
は、膨張手段4の入口流路reを第1及び第2放熱熱交
換器2A,2Bの直列組における第1放熱熱交換器2A
の側の端部に接続する切換状態とし、かつ、第2流路切
換手段K2は、圧縮機3の吐出流路rcを上記直列組2
A,2Bにおける第2放熱熱交換器2Bの側の端部に接
続する切換状態とし、これにより、圧縮機3から吐出し
た凝縮対象冷媒を、低効果の放熱熱交換器である第2放
熱熱交換器2Bから高効果の放熱熱交換器である第1放
熱熱交換器2Aの順に通流させる。
On the other hand, regarding the above-mentioned change of the flow order by the first and second flow path switching means, the first radiating heat exchanger 2A is used.
Is the high-efficiency heat radiation heat exchanger (Fig. 2 (a))
), The first flow path switching means K1
Is the first radiant heat exchanger 2A in the series combination of the first and second radiant heat exchangers 2A and 2B, which are connected to the inlet passage re of the expansion means 4.
The second flow path switching means K2 connects the discharge flow path rc of the compressor 3 to the series set 2 described above.
A switching state is established in which A and 2B are connected to the ends on the side of the second radiant heat exchanger 2B, whereby the refrigerant to be condensed discharged from the compressor 3 is transferred to the second radiant heat exchanger, which is a low-effective radiant heat exchanger. The first radiant heat exchanger 2A, which is a highly effective radiant heat exchanger, is caused to flow in order from the exchanger 2B.

【0029】また逆に、第2放熱熱交換器2Bが前記の
高効果の放熱熱交換器である場合(図2(ロ)における
破線の矢印を参照)、第1流路切換手段K1は、膨張手
段4の入口流路reを上記直列組2A,2Bにおける第
2放熱熱交換器2Bの側の端部に接続する切換状態と
し、かつ、第2流路切換手段K2は、圧縮機3の吐出流
路を上記直列組2A,2Bにおける第1放熱熱交換器2
Aの側の端部に接続する切換状態とし、これにより、圧
縮機3から吐出した凝縮対象冷媒を、低効果の放熱熱交
換器である第1放熱熱交換器2Aから高効果の放熱熱交
換器である第2放熱熱交換器2Bの順に通流させる。
On the contrary, when the second radiant heat exchanger 2B is the highly effective radiant heat exchanger (see the broken line arrow in FIG. 2B), the first flow path switching means K1 is The inlet flow path re of the expansion means 4 is brought into a switching state in which it is connected to the end of the series set 2A, 2B on the side of the second radiant heat exchanger 2B, and the second flow path switching means K2 is the compressor 3. The discharge flow path is the first radiating heat exchanger 2 in the series set 2A, 2B.
The switching target is connected to the end on the A side, whereby the refrigerant to be condensed discharged from the compressor 3 is transferred from the first radiant heat exchanger 2A, which is a low radiative heat exchanger, to a high radiative heat exchange. The second radiant heat exchanger 2B, which is a container, is allowed to flow in that order.

【0030】〔第4特徴構成の作用〕上述の第3特徴構
成において、高効果の放熱熱交換器を下流側に位置させ
ることで凝縮圧力pc,凝縮温度tcの極力低い運転を
可能とするにあたり、低効果の放熱熱交換器での使用放
熱源による冷媒降温効果が高効果の放熱熱交換器での使
用放熱源による冷媒降温効果に比べ過度に小さいと、上
流側に位置させる低効果の放熱熱交換器では、冷媒に対
する作用温度が上記の凝縮温度tcよりも高い状況(す
なわち、使用放熱源が凝縮対象冷媒に対し逆に加熱源と
して作用してしまう状況)となり、このことで成績係数
copの低下を生じる。
[Operation of Fourth Characteristic Configuration] In the above-mentioned third characteristic configuration, when the highly effective radiant heat exchanger is located on the downstream side, it is possible to operate the condensation pressure pc and the condensation temperature tc as low as possible. Use in low-efficiency heat-radiation heat exchanger If the cooling effect of the refrigerant by the heat-dissipation source is too small compared to the effect of cooling the refrigerant by the heat-dissipation source in the high-efficiency heat-exchanger, the low-efficiency heat dissipation placed on the upstream In the heat exchanger, the working temperature for the refrigerant is higher than the above condensation temperature tc (that is, the heat radiation source used conversely acts as a heating source for the refrigerant to be condensed), which results in the coefficient of performance cop. Cause a decrease in.

【0031】このことに着目して、本発明の第4特徴構
成では、低効果及び高効果の放熱熱交換器の判定ととも
に、これら放熱熱交換器での使用放熱源による冷媒降温
効果の差が設定差以上であるか否かを判定手段に判定さ
せ、そして、この判定結果に基づき、両放熱熱交換器の
冷媒降温効果の差が設定差以上であるときには、制御手
段により低効果の放熱熱交換器への放熱源供給を停止し
て、実質的に高効果の放熱熱交換器のみを凝縮器機能さ
せる状態でヒートポンプ運転を行い、これにより、上記
の如く低効果の放熱熱交換器で使用放熱源が凝縮対象冷
媒に対し加熱源として作用するような状況を回避して、
このような状況の発生による成績係数copの低下を防
止する。
With this in mind, in the fourth characteristic configuration of the present invention, the difference in the cooling effect of the refrigerant depending on the heat radiation source used in these heat radiating heat exchangers is determined along with the determination of the heat radiating heat exchangers of low effect and high effect. If the difference between the refrigerant cooling effects of the two heat radiating heat exchangers is equal to or greater than the set difference, the control means determines whether the heat radiating heat is less than the set difference. Heat pump operation is performed with the heat radiation source supply to the exchanger stopped and only the high-efficiency heat-radiation heat exchanger functions as a condenser. Avoid the situation where the heat radiation source acts as a heat source for the refrigerant to be condensed,
A decrease in the coefficient of performance cop due to the occurrence of such a situation is prevented.

【0032】〔第5特徴構成の作用〕第5特徴構成で
は、第1及び第2熱源熱交換器を採熱熱交換器として蒸
発器機能させて個別の採放熱源に対し採熱作用させなが
ら、出力熱交換器を凝縮器機能させて加熱対象に対し加
熱作用させる採熱運転と、逆に、これら第1及び第2熱
源熱交換器を放熱熱交換器として凝縮器機能させて個別
の採放熱源に対し放熱作用させながら、出力熱交換器を
蒸発器機能させて冷却対象に対し冷却作用させる放熱運
転とを、冷媒循環方向の切り換えにより択一的に実施す
る。
[Operation of Fifth Characteristic Configuration] In the fifth characteristic configuration, while the first and second heat source heat exchangers function as evaporators as heat collecting heat exchangers, heat is collected from individual heat collecting and radiating sources. , The output heat exchanger functions as a condenser to heat the object to be heated, and conversely, the first and second heat source heat exchangers function as condensers to function as heat radiation heat exchangers, The heat radiation operation of causing the output heat exchanger to function as an evaporator and cooling the object to be cooled while causing the heat radiation source to perform heat radiation is selectively performed by switching the refrigerant circulation direction.

【0033】そして、第1及び第2熱源熱交換器を採熱
熱交換器とする採熱運転では、前述の第1特徴構成と同
様に、使用採放熱源による冷媒昇温効果が他方よりも高
い状況の高効果の採熱熱交換器となる熱源熱交換器と、
使用採放熱源による冷媒昇温効果が他方よりも低い状況
の低効果の採熱熱交換器となる熱源熱交換器を、採放熱
源状況の検出等による適当な判定手法をもって判定手段
に判定させ、この判定結果に基づき、膨張手段を通過し
た蒸発対象冷媒を低効果の採熱熱交換器となる熱源熱交
換器から高効果の採熱熱交換器となる熱源熱交換器の順
に通流させるように、制御手段により第1及び第2の流
路切換手段を制御して第1及び第2熱源熱交換器に対す
る冷媒通流順序を変更し、これにより、各採放熱源の状
況変化による各熱源熱交換器での冷媒昇温効果の変化に
かかわらず、その時々の状況下で蒸発圧力pe,蒸発温
度teの極力高い運転、すなわち、成績係数copの極
力高い運転を可能とする。
In the heat collecting operation using the first and second heat source heat exchangers as the heat collecting heat exchangers, the refrigerant temperature raising effect by the used heat collecting and radiating source is higher than that of the other one, as in the above-mentioned first characteristic configuration. A heat source heat exchanger that is a highly effective heat collection heat exchanger in high conditions,
The heat source heat exchanger, which is a heat collecting heat exchanger with a low effect when the temperature rise effect of the heat collecting / radiating source is lower than that of the other, is determined by the judging means using an appropriate judgment method such as detecting the condition of the heat collecting / radiating source. , Based on this determination result, the refrigerant to be evaporated that has passed through the expansion means is made to flow in the order of the heat source heat exchanger, which is a low-effect heat collection heat exchanger, and the heat source heat exchanger, which is a high-effect heat collection heat exchanger. As described above, the control means controls the first and second flow path switching means to change the refrigerant flow sequence for the first and second heat source heat exchangers. In spite of a change in the refrigerant temperature increasing effect in the heat source heat exchanger, it is possible to operate the evaporation pressure pe and the evaporation temperature te as high as possible, that is, the coefficient of performance cop as high as possible under the circumstances at each time.

【0034】また、この採熱運転での第1及び第2流路
切換手段による上記の通流順序変更についても前述の第
1特徴構成と同様、第1熱源熱交換器2Aが高効果の採
熱熱交換器である場合(図2(ロ)における実線の矢印
を参照)、第1流路切換手段K1は、膨張手段4の出口
流路となる流路reを第1及び第2熱源熱交換器2A,
2Bの直列組における第2熱源熱交換器2Bの側の端部
に、かつ、第2流路切換手段K2は、圧縮機3の吸入流
路となる流路rcを上記直列組2A,2Bにおける第1
熱源熱交換器2Aの側の端部に夫々接続する切換状態と
し、これにより、膨張手段4を通過した蒸発対象冷媒
を、低効果の採熱熱交換器である第2熱源熱交換器2B
から高効果の採熱熱交換器である第1熱源熱交換器2A
の順に通流させ、逆に、第2熱源熱交換器2Bが高効果
の採熱熱交換器である場合(図2(イ)における実線の
矢印を参照)、第1流路切換手段K1は、膨張手段4の
出口流路となる流路reを上記直列組2A,2Bにおけ
る第1熱源熱交換器2Aの側の端部に、かつ、第2流路
切換手段K2は、圧縮機3の吸入流路となる流路rcを
上記直列組2A,2Bにおける第2熱源熱交換器2Bの
側の端部に夫々接続する切換状態とし、これにより、膨
張手段4を通過した蒸発対象冷媒を、低効果の採熱熱交
換器である第1熱源熱交換器2Aから高効果の採熱熱交
換器である第2熱源熱交換器2Bの順に通流させる。
Further, regarding the above-mentioned change of the flow order by the first and second flow path switching means in the heat collecting operation, the first heat source heat exchanger 2A is highly effective as in the first characteristic construction. In the case of a heat heat exchanger (see the solid arrow in FIG. 2B), the first flow path switching means K1 uses the flow path re serving as the outlet flow path of the expansion means 4 as the first and second heat source heat. Exchanger 2A,
2B, the second heat source heat exchanger 2B side end of the series combination, and the second flow path switching means K2 has a flow path rc which is the suction flow path of the compressor 3 in the series combination 2A, 2B. First
The heat source heat exchanger 2A is connected to the end portions on the side of the heat exchanger 2A so that the refrigerant to be evaporated that has passed through the expansion means 4 is transferred to the second heat source heat exchanger 2B, which is a heat collecting heat exchanger having a low effect.
Heat source heat exchanger 2A which is a highly effective heat collecting heat exchanger
When the second heat source heat exchanger 2B is a highly effective heat collection heat exchanger (see the solid line arrow in FIG. 2 (A)), the first flow path switching means K1 is , The outlet flow passage re of the expansion means 4 is at the end of the series set 2A, 2B on the first heat source heat exchanger 2A side, and the second flow passage switching means K2 is the compressor 3 The flow passage rc, which is the suction flow passage, is connected to the ends on the second heat source heat exchanger 2B side in the series combination 2A, 2B, respectively, and is brought into a switching state, whereby the refrigerant to be evaporated that has passed through the expansion means 4 is The first heat source heat exchanger 2A, which is a low-effect heat collection heat exchanger, is made to flow from the second heat source heat exchanger 2B, which is a high-effect heat collection heat exchanger, in this order.

【0035】一方、第1及び第2熱源熱交換器を放熱熱
交換器とする放熱運転では、前述の第3特徴構成と同様
に、使用採放熱源による冷媒降温効果が他方よりも高い
状況の高効果の放熱熱交換器となる熱源熱交換器と、使
用採放熱源による冷媒降温効果が他方よりも低い状況の
低効果の放熱熱交換器となる熱源熱交換器を、採放熱源
状況の検出等による適当な判定手法をもって判定手段に
判定させ、この判定結果に基づき、圧縮機から吐出した
凝縮対象冷媒を低効果の放熱熱交換器となる熱源熱交換
器から高効果の放熱熱交換器となる熱源熱交換器の順に
通流させるように、制御手段により第1及び第2の流路
切換手段を制御して第1及び第2熱源熱交換器に対する
冷媒通流順序を変更し、これにより、各採放熱源の状況
変化による各熱源熱交換器での冷媒降温効果の変化にか
かわらず、その時々の状況下で凝縮圧力pc,凝縮温度
tcの極力低い運転、すなわち、成績係数copの極力
高い運転を可能とする。
On the other hand, in the heat radiation operation using the first and second heat source heat exchangers as the heat radiation heat exchangers, the refrigerant cooling effect by the used heat radiation source is higher than that of the other in the same manner as the above-mentioned third characteristic configuration. The heat source heat exchanger, which is a high-efficiency heat radiation heat exchanger, and the heat source heat exchanger, which is a low-efficiency heat radiation heat exchanger when the cooling effect of the refrigerant by the used heat radiation source is lower than the other, The determination means is caused to make a determination by an appropriate determination method such as detection, and based on this determination result, the refrigerant to be condensed discharged from the compressor is a low-efficiency heat exchange heat exchanger. The first and second flow path switching means are controlled by the control means so that the heat source heat exchangers to be flowed in order are changed to change the refrigerant flow sequence for the first and second heat source heat exchangers. Each heat source due to changes in the situation of each heat radiation source Regardless of changes in the refrigerant temperature lowering effect in the exchanger, the occasional situation in the condensation pressure pc, the lowest possible operation of the condensation temperature tc, i.e., to allow the highest possible operation of the coefficient of performance (cop).

【0036】また、この放熱運転での第1及び第2の流
路切換手段による上記の通流順序変更についても前述の
第3特徴構成と同様、第1熱源熱交換器2Aが高効果の
放熱熱交換器である場合(図2(イ)における破線の矢
印を参照)、第1流路切換手段K1は、膨張手段4の入
口流路となる流路reを第1及び第2熱源熱交換器2
A,2Bの直列組における第1熱源熱交換器2Aの側の
端部に、かつ、第2流路切換手段K2は、圧縮機3の吐
出流路となる流路rcを上記直列組2A,2Bにおける
第2熱源熱交換器2Bの側の端部に夫々接続する切換状
態とし、これにより、圧縮機3から吐出した凝縮対象冷
媒を、低効果の放熱熱交換器である第2熱源熱交換器2
Bから高効果の放熱熱交換器である第1熱源熱交換器2
Aの順に通流させ、逆に、第2熱源熱交換器2Bが高効
果の放熱熱交換器である場合(図2(ロ)における破線
の矢印を参照)、第1流路切換手段K1は、膨張手段4
の入口流路となる流路reを上記直列組2A,2Bにお
ける第2熱源熱交換器2Bの側の端部に、かつ、第2流
路切換手段K2は、圧縮機3の吐出流路となる流路rc
を上記直列組2A,2Bにおける第1熱源熱交換器2A
の側の端部に夫々接続する切換状態とし、これにより、
圧縮機3から吐出した凝縮対象冷媒を、低効果の放熱熱
交換器である第1熱源熱交換器2Aから高効果の放熱熱
交換器である第2熱源熱交換器2Bの順に通流させる。
Further, regarding the above-mentioned change of the flow order by the first and second flow path switching means in the heat radiation operation, the first heat source heat exchanger 2A can radiate heat with a high effect, as in the third characteristic configuration. When the heat exchanger is a heat exchanger (see the dashed arrow in FIG. 2 (a)), the first flow path switching unit K1 uses the flow path re serving as the inlet flow path of the expansion unit 4 as the first and second heat source heat exchangers. Bowl 2
At the end of the series combination of A and 2B on the side of the first heat source heat exchanger 2A, and the second flow path switching means K2, the flow path rc which is the discharge flow path of the compressor 3 is connected to the series combination 2A, 2B is in a switching state in which it is connected to the ends on the side of the second heat source heat exchanger 2B, so that the refrigerant to be condensed discharged from the compressor 3 is transferred to the second heat source heat exchanger, which is a low-efficiency heat exchanger. Bowl 2
First heat source heat exchanger 2 which is a highly effective radiant heat exchanger from B
When the second heat source heat exchanger 2B is a high-efficiency heat radiation heat exchanger (see the broken arrow in FIG. 2B), the first flow path switching means K1 is , Expansion means 4
Of the series set 2A, 2B at the end on the second heat source heat exchanger 2B side, and the second flow path switching means K2 serves as the discharge flow path of the compressor 3. Flow path rc
The first heat source heat exchanger 2A in the series set 2A, 2B
In the switching state where they are connected to the ends on the side of
The refrigerant to be condensed discharged from the compressor 3 is caused to flow in order from the first heat source heat exchanger 2A which is a low effect heat radiation heat exchanger to the second heat source heat exchanger 2B which is a high effect heat radiation heat exchanger.

【0037】〔第6特徴構成の作用〕第6特徴構成で
は、上記の第5特徴構成において採熱運転を行う場合、
前述の第2特徴構成と同様に、低効果及び高効果の採熱
熱交換器となる熱源熱交換器の判定とともに、これら採
熱熱交換器としての熱源熱交換器での使用採放熱源によ
る冷媒昇温効果の差が設定差以上であるか否かを判定手
段に判定させ、そして、この判定結果に基づき、両熱源
熱交換器の冷媒昇温効果の差が設定差以上であるときに
は、制御手段により、低効果の採熱熱交換器となる熱源
熱交換器への採放熱源供給を停止して、高効果の採熱熱
交換器となる熱源熱交換器のみを蒸発器機能させる状態
でヒートポンプ運転を行い、これにより、低効果の採熱
熱交換器となる熱源熱交換器で使用採放熱源が蒸発対象
冷媒に対し逆に冷却源として作用するような状況を回避
し、このような状況の発生による成績係数copの低下
を防止する。
[Operation of Sixth Characteristic Configuration] In the sixth characteristic configuration, when heat collection operation is performed in the above fifth characteristic configuration,
Similar to the above-mentioned second characteristic configuration, the heat source heat exchanger to be a low-effect and high-effect heat collecting heat exchanger is determined, and the heat collecting heat exchanger is used as a heat collecting heat exchanger. The determination means determines whether or not the difference in the refrigerant temperature increasing effect is equal to or more than the setting difference, and based on this determination result, when the difference in the refrigerant temperature increasing effect between the two heat source heat exchangers is equal to or more than the setting difference, A state in which the control means stops the supply of heat collecting and radiating heat to the heat source heat exchanger that becomes a low effect heat collecting heat exchanger, and only the heat source heat exchanger that becomes a high effect heat collecting heat exchanger functions as an evaporator. In this way, the heat pump operation is performed with the heat source heat exchanger, which is a low-efficiency heat-collecting heat exchanger. To prevent the coefficient of performance cop from decreasing due to the occurrence of various situations.

【0038】また、前記の第5特徴構成において放熱運
転を行う場合には、前述の第4特徴構成と同様、低効果
及び高効果の放熱熱交換器となる熱源熱交換器の判定と
ともに、これら放熱熱交換器としての熱源熱交換器での
使用採放熱源による冷媒降温効果の差が設定差以上であ
るか否かを判定手段に判定させ、そして、この判定結果
に基づき、両熱源熱交換器の冷媒降温効果の差が設定差
以上であるときには、制御手段により、低効果の放熱熱
交換器となる熱源熱交換器への採放熱源供給を停止し
て、高効果の放熱熱交換器となる熱源熱交換器のみを凝
縮器機能させる状態でヒートポンプ運転を行い、これに
より、低効果の放熱熱交換器となる熱源熱交換器で使用
採放熱源が凝縮対象冷媒に対し逆に加熱源として作用す
るような状況を回避し、このような状況の発生による成
績係数copの低下を防止する。
Further, in the case of performing the heat radiation operation in the fifth characteristic configuration, as in the fourth characteristic configuration, the heat source heat exchanger which is a low effect and high effect heat radiation heat exchanger is determined, and Use as a heat source heat exchanger as a radiant heat exchanger Use the heat source heat exchanger to determine whether the difference in the cooling effect of the refrigerant due to the heat radiating source is greater than or equal to the set difference. When the difference in the refrigerant cooling effect of the heat exchanger is equal to or more than the set difference, the control means stops the supply of the heat radiation source to the heat source heat exchanger, which is the low heat radiation heat exchanger, and the high heat radiation heat exchanger. The heat pump is operated with only the heat source heat exchanger that functions as a condenser functioning, and as a result, it is used in the heat source heat exchanger that functions as a low-efficiency heat radiation heat exchanger. Avoid situations that act as , To prevent a reduction in the coefficient of performance cop due to the occurrence of such a situation.

【0039】[0039]

【発明の効果】【The invention's effect】

〔第1特徴構成の効果〕本発明の第1特徴構成によれ
ば、各採熱源の状況変化にかかわらず、その時々で最大
限の高成績係数運転を行えることにより、省エネを効果
的に達成でき、また、凝縮器側で高い加熱能力を安定的
に得ることができる。
[Effect of First Characteristic Configuration] According to the first characteristic configuration of the present invention, energy saving can be effectively achieved by performing maximum high coefficient of performance operation at each time regardless of changes in the status of each heat collecting source. In addition, a high heating capacity can be stably obtained on the condenser side.

【0040】しかも、この効果を得るための冷媒経路に
対する改良として、第1の採熱熱交換器と第2の採熱熱
交換器との接続については、両者を接続管により単に直
列接続するだけの従来と同様の簡単な接続形態を採り、
また、膨張手段の出口流路を第1及び第2採熱熱交換器
の直列組における一端と他端とに択一的に接続する第1
流路切換手段、及び、圧縮機の吸入流路を第1及び第2
採熱熱交換器の直列組における一端と他端とに択一的に
接続する第2流路切換手段については、夫々、双方向可
能な1個の三方弁や2個の二方弁を用いるだけ等のバル
ブ数の少ない簡単な流路切換構成で済ませ得るから、例
えば図9に示す如く合計で4個の三方弁Vaを用いる流
路切換構成や、図10に示す如く合計で6個の二方弁V
bを用いる流路切換構成を採用して、第1及び第2採熱
熱交換器2A,2Bに対する蒸発対象冷媒の通流順序を
変更可能にするに比べ、冷媒経路に対する改良が簡単で
装置製作を容易にし得るとともに装置コストを安価にし
得る。
Moreover, as an improvement to the refrigerant path for obtaining this effect, regarding the connection between the first heat collecting heat exchanger and the second heat collecting heat exchanger, they are simply connected in series by a connecting pipe. Taking the same simple connection form as the conventional one,
In addition, the first flow path of the expansion means is selectively connected to one end and the other end of the series combination of the first and second heat collection heat exchangers.
The flow path switching means and the suction flow path of the compressor are first and second.
As for the second flow path switching means that is selectively connected to one end and the other end of the series combination of the heat collection heat exchangers, a bidirectional one-way valve and two two-way valve are used, respectively. Since a simple flow path switching configuration with a small number of valves, such as, can be used, for example, a flow path switching configuration using a total of four three-way valves Va as shown in FIG. 9 or a total of six flow path switching elements as shown in FIG. Two-way valve V
Compared to the case where the flow passage switching configuration using b is adopted to change the flow order of the refrigerant to be evaporated to the first and second heat collecting heat exchangers 2A and 2B, the improvement of the refrigerant path is simple and the device is manufactured. And the cost of the device can be reduced.

【0041】〔第2特徴構成の効果〕本発明の第2特徴
構成によれば、第1及び第2採熱熱交換器の冷媒昇温効
果の差が過度に大きくなることで生じる成績係数の低下
を防止できることにより、上述の第1特徴構成の効果と
相まって、成績係数の向上を一層効果的に達成すること
ができる。
[Effect of Second Characteristic Configuration] According to the second characteristic configuration of the present invention, the coefficient of performance caused by an excessively large difference between the refrigerant temperature increasing effects of the first and second heat collecting heat exchangers By preventing the decrease, it is possible to more effectively achieve the improvement of the coefficient of performance in combination with the effect of the first characteristic configuration described above.

【0042】また、第1及び第2採熱熱交換器の冷媒昇
温効果の差が設定差以上であるときに低効果の採熱熱交
換器を機能停止させるにあたり、低効果の採熱熱交換器
に対する採熱源供給を停止して低効果の採熱熱交換器を
機能停止させる形態を採るから、例えば、蒸発対象冷媒
を低効果の採熱熱交換器に対し迂回させることにより低
効果の採熱熱交換器を機能停止させる形態に比べ、迂回
用の冷媒流路や迂回用の切換弁を不要にでき、これによ
り、前述の第1特徴構成の効果と相まって冷媒経路構成
を簡略化し得る。
Further, when the difference in the temperature raising effect of the refrigerant between the first and second heat collecting heat exchangers is equal to or larger than the set difference, the low effect heat collecting heat exchanger is caused to stop functioning. Since the heat-collecting source supply to the exchanger is stopped to stop the low-effect heat-collecting heat exchanger from functioning, for example, by evaporating the refrigerant to be evaporated to the low-effect heat-collecting heat exchanger, Compared with the mode in which the heat collection heat exchanger is stopped, the bypass refrigerant flow path and the bypass switching valve can be eliminated, and the refrigerant path configuration can be simplified in combination with the effect of the first characteristic configuration described above. .

【0043】〔第3特徴構成の効果〕本発明の第3特徴
構成によれば、各放熱源の状況変化にかかわらず、その
時々で最大限の高成績係数運転を行えることにより、省
エネを効果的に達成でき、また、蒸発器側で高い冷却能
力を安定的に得ることができる。
[Effect of Third Characteristic Configuration] According to the third characteristic structure of the present invention, the maximum high coefficient of performance operation can be performed at any time regardless of the change in the status of each heat radiating source, thereby saving energy. In addition, a high cooling capacity can be stably obtained on the evaporator side.

【0044】しかも、この効果を得るための冷媒経路に
対する改良として、第1の放熱熱交換器と第2の放熱熱
交換器との接続については、両者を接続管により単に直
列接続するだけの従来と同様の簡単な接続形態を採り、
また、膨張手段の入口流路を第1及び第2放熱熱交換器
の直列組における一端と他端とに択一的に接続する第1
流路切換手段、及び、圧縮機の吐出流路を第1及び第2
放熱熱交換器の直列組における一端と他端とに択一的に
接続する第2流路切換手段については、夫々、双方向可
能な1個の三方弁や2個の二方弁を用いるだけ等のバル
ブ数の少ない簡単な流路切換構成で済ませ得るから、前
述の図9に示す如き4個の三方弁Vaを用いる流路切換
構成や、前述の図10に示す如き6個の二方弁Vbを用
いる流路切換構成を採用して、第1及び第2放熱熱交換
器2A,2Bに対する凝縮対象冷媒の通流順序を変更可
能にするに比べ、冷媒経路に対する改良が簡単で装置製
作を容易にし得るとともに装置コストを安価にし得る。
Further, as an improvement to the refrigerant path for obtaining this effect, as for the connection between the first radiant heat exchanger and the second radiant heat exchanger, both of them are simply connected in series by connecting pipes. Adopting the same simple connection form as
Also, the first flow path selectively connects the inlet flow path of the expansion means to one end and the other end of the series combination of the first and second heat radiation heat exchangers.
The flow path switching means and the discharge flow path of the compressor are first and second.
For the second flow path switching means that is selectively connected to one end and the other end of the series set of radiant heat exchangers, only one bidirectional three-way valve or two bidirectional valves are used. Since a simple flow path switching configuration with a small number of valves such as 4 can be used, a flow path switching configuration using four three-way valves Va as shown in FIG. 9 or six two-way valves as shown in FIG. Compared with the case where the flow passage switching structure using the valve Vb is adopted to change the flow order of the refrigerant to be condensed to the first and second radiating heat exchangers 2A and 2B, the improvement of the refrigerant path is simple and the device is manufactured. And the cost of the device can be reduced.

【0045】〔第4特徴構成の効果〕本発明の第4特徴
構成によれば、第1及び第2放熱熱交換器の冷媒降温効
果の差が過度に大きくなることで生じる成績係数の低下
を防止できることにより、上述の第3特徴構成の効果と
相まって、成績係数の向上を一層効果的に達成すること
ができる。
[Effect of Fourth Characteristic Configuration] According to the fourth characteristic configuration of the present invention, a decrease in the coefficient of performance caused by an excessively large difference in the refrigerant cooling effect of the first and second radiating heat exchangers is caused. By being able to prevent it, the improvement of the coefficient of performance can be achieved more effectively in combination with the effect of the third characteristic configuration.

【0046】また、第1及び第2放熱熱交換器の冷媒降
温効果の差が設定差以上であるときに低効果の放熱熱交
換器を機能停止させるにあたり、低効果の放熱熱交換器
に対する放熱源供給を停止して低効果の放熱熱交換器を
機能停止させる形態を採るから、例えば、凝縮対象冷媒
を低効果の放熱熱交換器に対し迂回させることにより低
効果の放熱熱交換器を機能停止させる形態に比べ、迂回
用の冷媒流路や迂回用の切換弁を不要にでき、これによ
り、前述の第3特徴構成の効果と相まって冷媒経路構成
を簡略化し得る。
When the difference between the refrigerant cooling effects of the first and second radiant heat exchangers is equal to or more than the set difference, the low effect radiant heat exchanger is stopped when the low effect radiant heat exchanger is stopped. Since the heat source supply is stopped and the low-efficiency radiant heat exchanger stops functioning, for example, the low-effective radiant heat exchanger functions by diverting the refrigerant to be condensed to the low-effective radiant heat exchanger. Compared with the stop mode, the bypass refrigerant flow path and the bypass switching valve can be eliminated, and the refrigerant path configuration can be simplified in combination with the effect of the third characteristic configuration described above.

【0047】〔第5特徴構成の効果〕本発明の第5特徴
構成によれば、第1及び第2の熱源熱交換器を採熱熱交
換器とする採熱運転と、これら第1及び第2の熱源熱交
換器を放熱熱交換器とする放熱運転とを択一的に切換実
施するものにおいて、これら採熱運転及び放熱運転の夫
々で、各採放熱源の状況変化にかかわらず、その時々で
最大限の高成績係数運転を行え、これにより、省エネを
効果的に達成でき、また、出力側で高い冷却能力及び高
い加熱能力を安定的に得ることができる。
[Effect of Fifth Characteristic Configuration] According to the fifth characteristic configuration of the present invention, the heat collection operation using the first and second heat source heat exchangers as the heat collecting heat exchangers, and the first and the second heat collecting operations. In the case where the heat radiation operation using the heat source heat exchanger of 2 as a heat radiation heat exchanger is selectively switched, the heat collection operation and the heat radiation operation are performed independently of the situation change of each heat radiation source. The maximum high coefficient of performance operation can be performed from time to time, whereby energy saving can be effectively achieved, and high cooling capacity and high heating capacity can be stably obtained on the output side.

【0048】そして、この効果を得るための冷媒経路に
対する改良として、冷媒循環方向の切り換えについては
四方弁を用いるなどの従来と同様の切換構成を採用する
だけで、また、第1の熱源熱交換器と第2の熱源熱交換
器との接続についても両者を接続管により単に直列接続
するだけの従来と同様の簡単な接続形態を採りながら、
前述の第1特徴構成や第3特徴構成と同様、第1及び第
2流路切換手段については、夫々、双方向可能な1個の
三方弁や2個の二方弁を用いるだけ等のバルブ数の少な
い簡単な流路切換構成で済ませることができ、これによ
り、前述の図9に示す如き4個の三方弁Vaを用いる流
路切換構成や、前述の図10に示す如き6個の二方弁V
bを用いる流路切換構成を採用して、採熱運転での第1
及び第2熱源熱交換器に対する蒸発対象冷媒の通流順序
変更、及び、放熱運転での第1及び第2熱源熱交換器に
対する凝縮対象冷媒の通流順序変更を可能にするに比
べ、冷媒経路に対する改良が簡単で、装置製作を容易に
し得るとともに装置コストを安価にし得る。
As an improvement to the refrigerant path for obtaining this effect, the switching structure similar to the conventional one such as using a four-way valve for switching the refrigerant circulation direction is adopted, and the first heat source heat exchange is performed. Regarding the connection between the container and the second heat source heat exchanger, while adopting the same simple connection form as the conventional one in which they are simply connected in series by a connecting pipe,
Similar to the above-mentioned first and third characteristic configurations, the first and second flow path switching means are each a valve that uses only one bidirectional three-way valve or two two-way valves. A small number of simple flow passage switching configurations can be used, and as a result, the flow passage switching configuration using the four three-way valves Va as shown in FIG. 9 described above and the six flow switching configurations as shown in FIG. Way valve V
1) in heat collection operation by adopting the flow path switching configuration using b
Compared with enabling to change the flow order of the evaporation object refrigerant to the second and second heat source heat exchangers and to change the flow order of the condensation object refrigerant to the first and second heat source heat exchangers in the heat radiation operation, the refrigerant path Can be easily improved, the device can be manufactured easily, and the device cost can be reduced.

【0049】〔第6特徴構成の効果〕本発明の第6特徴
構成によれば、第1及び第2熱源熱交換器を採熱熱交換
器とする採熱運転で、これら第1及び第2熱源熱交換器
の冷媒昇温効果の差が過度に大きくなることにより生じ
る成績係数の低下、並びに、第1及び第2熱源熱交換器
を放熱熱交換器とする放熱運転で、これら第1及び第2
熱源熱交換器の冷媒降温効果の差が過度に大きくなるこ
とにより生じる成績係数の低下の夫々を防止できること
により、上述の第5特徴構成の効果と相まって、成績係
数の向上を一層効果的に達成することができる。
[Effect of Sixth Characteristic Configuration] According to the sixth characteristic configuration of the present invention, in the heat collecting operation using the first and second heat source heat exchangers as the heat collecting heat exchangers, these first and second The decrease in the coefficient of performance caused by an excessively large difference in the refrigerant temperature raising effect of the heat source heat exchanger, and the heat radiation operation using the first and second heat source heat exchangers as the heat radiation heat exchangers Second
It is possible to prevent a decrease in the coefficient of performance caused by an excessively large difference in the cooling effect of the refrigerant of the heat source heat exchanger, so that the improvement of the coefficient of performance is achieved more effectively in combination with the effect of the fifth characteristic configuration described above. can do.

【0050】また、採熱運転において第1及び第2熱源
熱交換器の冷媒昇温効果の差が設定差以上であるとき、
及び、放熱運転において第1及び第2熱源熱交換器の冷
媒降温効果の差が設定差以上であるとき、低効果の採熱
熱交換器ないし低効果の放熱熱交換器となる熱源熱交換
器を機能停止させるにあたり、前述の第2特徴構成や第
4特徴構成と同様、低効果の採熱熱交換器ないし低効果
の放熱熱交換器となる熱源熱交換器への採放熱源供給の
停止により、この熱源熱交換器を機能停止させる形態を
採るから、低効果の採熱熱交換器ないし低効果の放熱熱
交換器となる熱源熱交換器に対し蒸発対象冷媒や凝縮対
象冷媒を迂回させることで、この熱源熱交換器を機能停
止させるに比べ、迂回用の冷媒流路や迂回用の切換弁を
不要にでき、これにより、前述の第5特徴構成の効果と
相まって冷媒経路構成を簡略化し得る。
Further, in the heat collection operation, when the difference between the refrigerant temperature raising effects of the first and second heat source heat exchangers is equal to or more than the set difference,
Also, in the heat radiation operation, when the difference between the refrigerant cooling effects of the first and second heat source heat exchangers is equal to or more than the set difference, the heat source heat exchanger becomes a low effect heat collecting heat exchanger or a low effect heat radiating heat exchanger. In stopping the function of the heat source, like the above-mentioned second characteristic configuration and fourth characteristic configuration, the stop of supply of the heat collecting and radiating source to the heat source heat exchanger which becomes the heat collecting heat exchanger of low effect or the heat radiating heat exchanger of low effect. Therefore, the heat source heat exchanger is deactivated, so that the evaporation target refrigerant and the condensation target refrigerant are diverted to the heat source heat exchanger which becomes the low effect heat collection heat exchanger or the low effect heat radiation heat exchanger. This makes it possible to eliminate the need for a bypass refrigerant flow path and a bypass switching valve, as compared to the case where the heat source heat exchanger stops functioning. This simplifies the refrigerant path configuration in combination with the effect of the fifth characteristic configuration described above. Can be transformed.

【0051】[0051]

【実施例】図1において、1は冷暖房対象域の加熱(暖
房)や冷却(冷房)、あるいは、物品の加熱や冷却など
に用いる出力熱交換器、2A,2Bは直列接続した第1
及び第2の熱源熱交換器であり、これら出力熱交換器1
及び熱源熱交換器2A,2Bは、圧縮機3及び膨張弁4
(あるいはキャピラリーチューブ)等とともに圧縮式ヒ
ートポンプを構成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, reference numeral 1 is an output heat exchanger used for heating (heating) or cooling (cooling) of an area to be cooled or heated, or for heating or cooling an article, and 2A and 2B are first series connected.
And a second heat source heat exchanger, and these output heat exchangers 1
And the heat source heat exchangers 2A and 2B include the compressor 3 and the expansion valve 4.
(Or a capillary tube) together with a compression heat pump.

【0052】第1熱源熱交換器2Aは、ファン5により
供給される空気G1を採熱源又は放熱源とする空気・冷
媒熱交換器であり、この第1熱源熱交換器2Aで用いる
採放熱源の空気G1には、外気や、冷暖房対象域からの
排気、あるいは、太陽熱集熱器等の加熱手段を通過させ
た加熱空気や、散水冷却器等の冷却手段を通過させた冷
却空気などを適用できる。
The first heat source heat exchanger 2A is an air / refrigerant heat exchanger which uses the air G1 supplied by the fan 5 as a heat collecting source or a heat radiating source, and the heat collecting and radiating source used in the first heat source heat exchanger 2A. As the air G1, the outside air, the exhaust from the cooling / heating target area, the heating air that has passed through the heating means such as the solar heat collector, the cooling air that has passed through the cooling means such as the sprinkler cooler, etc. are applied. it can.

【0053】一方、第2熱源熱交換器2Bは、ポンプ6
により供給される水G2を採熱源又は放熱源とする水・
冷媒熱交換器であり、この第2熱源熱交換器2Bで用い
る採放熱源の水G2には、河川水、井水、海水、下水、
生活排水や工場排水、あるいは、太陽熱集熱器等の加熱
手段を通過させた加熱水や加熱ブライン、冷却塔等の冷
却手段を通過させた冷却水や冷却ブライン、あるいはま
た、蓄熱手段により温熱や冷熱を蓄熱した蓄熱水や蓄熱
ブラインなどを適用できる。
On the other hand, the second heat source heat exchanger 2B includes a pump 6
Using the water G2 supplied as a heat source or heat source
Water G2, which is a refrigerant heat exchanger and is used as a heat collecting and radiating source in the second heat source heat exchanger 2B, includes river water, well water, sea water, sewage,
Domestic wastewater, factory wastewater, heated water or heating brine that has passed through heating means such as a solar heat collector, cooling water or cooling brine that has passed through cooling means such as a cooling tower, or heat storage by heat storage means. Heat storage water that stores cold heat or heat storage brine can be applied.

【0054】7は冷媒に対する循環方向切換手段として
の四方弁であり、この四方弁7の切り換え操作により、
冷媒を図中、実線の矢印で示す如く圧縮機3−出力熱交
換器1−膨張弁4−第1及び第2熱源熱交換器2A,2
Bの直列組の順に循環させる採熱運転と、冷媒を図中、
破線の矢印で示す如く圧縮機3−第1及び第2熱源熱交
換器2A,2Bの直列組−膨張弁4−出力熱交換器1の
順に循環させる放熱運転との切り換えを行う。
Reference numeral 7 is a four-way valve as a circulation direction switching means for the refrigerant. By switching the four-way valve 7,
As for the refrigerant, as shown by solid arrows in the figure, compressor 3-output heat exchanger 1-expansion valve 4-first and second heat source heat exchangers 2A, 2
In the figure, the heat collection operation of circulating the series of B in order and the refrigerant are
As shown by the dashed arrow, switching is performed between the compressor 3 and the series combination of the first and second heat source heat exchangers 2A and 2B-expansion valve 4-output heat exchanger 1 in order of circulation.

【0055】つまり、採熱運転では、第1及び第2熱源
熱交換器2A,2Bを蒸発器機能させて各々の採放熱源
G1,G2に対し採熱熱交換器として採熱作用させなが
ら、出力熱交換器1を凝縮器機能させて加熱対象に対し
加熱作用させ、一方、放熱運転では、第1及び第2熱源
熱交換器2A,2Bを凝縮器機能させて各々の採放熱源
G1,G2に対し放熱熱交換器として放熱作用させなが
ら、出力熱交換器1を蒸発器機能させて冷却対象に対し
冷却作用させる。
That is, in the heat collection operation, the first and second heat source heat exchangers 2A and 2B are caused to function as evaporators, and the respective heat radiation sources G1 and G2 are acted as heat collection heat exchangers, In the heat radiation operation, the output heat exchanger 1 functions as a condenser to heat the object to be heated. On the other hand, in the heat radiation operation, the first and second heat source heat exchangers 2A and 2B function as the condensers to collect heat from the respective heat radiation sources G1 and G1. While radiating heat to G2 as a heat radiating heat exchanger, the output heat exchanger 1 is caused to function as an evaporator to cool the object to be cooled.

【0056】V1,V2は夫々、双方向可能な二方弁で
あり、これら二方弁V1,V2は、採熱運転において膨
張弁4の出口流路となり、かつ、放熱運転において膨張
弁4の入口流路となる流路reを、第1及び第2熱源熱
交換器2A,2Bの直列組における一端と他端とに択一
的に接続する第1の流路切換手段K1を構成する。
V1 and V2 are two-way valves capable of bidirectional operation, and these two-way valves V1 and V2 serve as the outlet passages of the expansion valve 4 during the heat collection operation, and of the expansion valve 4 during the heat radiation operation. The first flow path switching means K1 is configured to selectively connect the flow path re serving as the inlet flow path to one end and the other end of the series combination of the first and second heat source heat exchangers 2A and 2B.

【0057】また、V3,V4も夫々、双方向可能な二
方弁であり、これら二方弁V3,V4は、採熱運転にお
いて圧縮機3の吸入流路となり、かつ、放熱運転におい
て圧縮機3の吐出流路となる流路rcを、第1及び第2
熱源熱交換器2A,2Bの直列組における一端と他端と
に択一的に接続する第2の流路切換手段K2を構成す
る。
Further, V3 and V4 are also bidirectional two-way valves, and these two-way valves V3 and V4 serve as the suction flow path of the compressor 3 in the heat collecting operation and the compressor in the heat radiating operation. The flow path rc, which serves as the discharge flow path of the third
A second flow path switching means K2 is selectively connected to one end and the other end of the series combination of the heat source heat exchangers 2A and 2B.

【0058】つまり、採熱運転では蒸発対象冷媒を採熱
熱交換器としての第1及び第2熱源熱交換器2A,2B
に対し直列に通流させるにあたり、これら4個の二方弁
V1〜V4の切り換え操作により、図2(イ)において
実線の矢印で示す如く、膨張弁4を通過した蒸発対象冷
媒を第1熱源熱交換器2Aから第2熱源熱交換器2Bの
順に通流させる通流形態と、図2(ロ)において実線の
矢印で示す如く、膨張弁4を通過した蒸発対象冷媒を逆
に第2熱源熱交換器2Bから第1熱源熱交換器2Aの順
に通流させる通流形態との切り換えを行う。
That is, in the heat collecting operation, the refrigerant to be evaporated is the first and second heat source heat exchangers 2A and 2B as the heat collecting heat exchangers.
On the other hand, when the four flow valves V1 to V4 are switched in series, the refrigerant to be vaporized that has passed through the expansion valve 4 is passed through the expansion valve 4 by the switching operation of the four two-way valves V1 to V4, as shown in FIG. The flow form in which the heat exchanger 2A and the second heat source heat exchanger 2B flow in this order, and as shown by the solid arrow in FIG. Switching is performed between the heat exchanger 2B and the first heat source heat exchanger 2A in the order in which the current flows.

【0059】また、放熱運転では凝縮対象冷媒を放熱熱
交換器としての第1及び第2熱源熱交換器2A,2Bに
対し直列に通流させるにあたり、これら4個の二方弁V
1〜V4の切り換え操作により、図2(イ)において破
線の矢印で示す如く、圧縮機3から吐出した凝縮対象冷
媒を第2熱源熱交換器2Bから第1熱源熱交換器2Aの
順に通流させる通流形態と、図2(ロ)において破線の
矢印で示す如く、圧縮機3から吐出した凝縮対象冷媒を
逆に第1熱源熱交換器2Aから第2熱源熱交換器2Bの
順に通流させる通流形態との切り換えを行う。
Further, in the heat radiation operation, when the refrigerant to be condensed is caused to flow in series to the first and second heat source heat exchangers 2A and 2B as the heat radiation heat exchangers, these four two-way valves V are used.
By the switching operation from 1 to V4, the refrigerant to be condensed discharged from the compressor 3 flows from the second heat source heat exchanger 2B to the first heat source heat exchanger 2A in this order, as indicated by a dashed arrow in FIG. 2B, the refrigerant to be condensed discharged from the compressor 3 flows in reverse from the first heat source heat exchanger 2A to the second heat source heat exchanger 2B. Switch to the flow mode.

【0060】他方、8Pは冷媒の蒸発圧力に等しい蒸発
器出口圧力pe(すなわち、圧縮機3が吸入する低圧蒸
気冷媒の圧力)を検出する冷媒圧力検出器、8Tは冷媒
の蒸発温度teと過熱度shとの和に等しい蒸発器出口
温度te’(すなわち、圧縮機3が吸入する低圧蒸気冷
媒の温度)を検出する冷媒温度検出器、9Aは第1熱源
熱交換器2Aの使用採放熱源である空気G1の温度t1
を検出する空気側検出器、9Bは第2熱源熱交換器2B
の使用採放熱源である水G2の温度t2を検出する水側
検出器であり、10は各検出器8P,8T,9A,9B
の検出結果や、適当な検出手段により検出する出力熱交
換器1の熱負荷などに応じヒートポンプ運転を制御する
制御器である。
On the other hand, 8P is a refrigerant pressure detector for detecting the evaporator outlet pressure pe (that is, the pressure of the low-pressure vapor refrigerant sucked by the compressor 3) which is equal to the refrigerant evaporation pressure, and 8T is the refrigerant evaporation temperature te and overheating. Refrigerant temperature detector for detecting the evaporator outlet temperature te '(that is, the temperature of the low-pressure vapor refrigerant sucked by the compressor 3) equal to the sum of the temperature sh, 9A is a source for collecting and releasing heat from the first heat source heat exchanger 2A Temperature t1 of the air G1 that is
For detecting air, 9B is the second heat source heat exchanger 2B
Is a water-side detector that detects the temperature t2 of the water G2 that is used as a heat radiation source, and 10 is each detector 8P, 8T, 9A, 9B.
Is a controller that controls the heat pump operation according to the detection result of 1), the heat load of the output heat exchanger 1 detected by an appropriate detection means, and the like.

【0061】この制御器10は基本制御として、運転モ
ード指令に応じ四方弁7の切り換え操作により採熱運転
と放熱運転との切り換えを行い、また、採熱運転と放熱
運転との夫々において出力熱交換器1の熱負荷に応じ圧
縮機3の出力を調整し、かつ、冷媒圧力検出器8Pによ
る検出圧力peと冷媒温度検出器8Tによる検出温度t
e’とから演算する過熱度shが目標過熱度になるよう
に、膨張弁4の絞り度を調整する。
As a basic control, the controller 10 switches between the heat collection operation and the heat radiation operation by switching the four-way valve 7 in accordance with the operation mode command, and the output heat in each of the heat collection operation and the heat radiation operation. The output of the compressor 3 is adjusted according to the heat load of the exchanger 1, and the pressure pe detected by the refrigerant pressure detector 8P and the temperature t detected by the refrigerant temperature detector 8T are adjusted.
The throttling degree of the expansion valve 4 is adjusted so that the superheat degree sh calculated from e ′ becomes the target superheat degree.

【0062】なお、過熱度shは、冷媒圧力検出器8P
による検出圧力pe(蒸発圧力)のもとでの飽和蒸気冷
媒の温度(蒸発温度te)と、冷媒温度検出器8Tによ
る検出温度te’(蒸発器出口温度)との差(sh=t
e’−te)として演算される。
The superheat degree sh is determined by the refrigerant pressure detector 8P.
The difference (sh = t) between the temperature of the saturated vapor refrigerant (evaporation temperature te) under the detection pressure pe (evaporation pressure) by T.sub.e and the temperature te 'detected by the refrigerant temperature detector 8T (evaporator outlet temperature).
e'-te).

【0063】また、制御器10は上記の基本制御ととも
に、採熱運転では次記の如き「採熱源状況による基本発
停」、「冷媒昇温効果の比較判定」、並びに、「冷媒通
流及び採熱源供給の切換」の各制御(図3のフローチャ
ート参照)を実行し、放熱運転では次記の如き「放熱源
状況による基本発停」、「冷媒降温効果の比較判定」、
及び、「冷媒通流及び放熱源供給の切換」の各制御(図
4のフローチャート参照)を実行する。
In addition to the above-mentioned basic control, the controller 10 also performs the following "basic start / stop depending on the condition of the heat collecting source", "comparison judgment of refrigerant temperature increasing effect", and "refrigerant flow and Each control (refer to the flowchart in FIG. 3) of "switching of heat source supply" is executed, and in the heat radiation operation, "basic start / stop depending on heat source status", "comparison judgment of refrigerant cooling effect" as described below,
Also, each control of "switching of refrigerant flow and supply of heat radiation source" (see the flowchart of FIG. 4) is executed.

【0064】(採熱運転) 「採熱源状況による基本発停」設定された下限蒸発圧
力,下限蒸発温度を実行の蒸発圧力pe,蒸発温度te
とした場合の第1熱源熱交換器2Aでの空気採熱源G1
による冷媒加熱能力HQ1と、この空気採熱源G1の温
度t1との相関について設定された演算論理R1を用い
て、空気側検出器9Aの検出温度t1から、下限蒸発圧
力,下限蒸発温度を実行の蒸発圧力pe,蒸発温度te
とした場合の現状における第1熱源熱交換器2Aでの空
気採熱源G1による冷媒加熱能力HQ1を演算する。
(Heat collection operation) "Basic start / stop depending on heat collection source status" Evaporation pressure pe and evaporation temperature te for executing the set lower limit evaporation pressure and lower limit evaporation temperature
Air heat source G1 in the first heat source heat exchanger 2A
The lower limit evaporation pressure and the lower limit evaporation temperature are executed from the detection temperature t1 of the air side detector 9A by using the arithmetic logic R1 set for the correlation between the refrigerant heating capacity HQ1 according to the above and the temperature t1 of the air heat collection source G1. Evaporation pressure pe, evaporation temperature te
In such a case, the refrigerant heating capacity HQ1 by the air heat source G1 in the first heat source heat exchanger 2A in the present situation is calculated.

【0065】また同様に、下限蒸発圧力,下限蒸発温度
を実行の蒸発圧力pe,蒸発温度teとした場合の第2
熱源熱交換器2Bでの水採熱源G2による冷媒加熱能力
HQ2と、この水採熱源G2の温度t2との相関につい
て設定された演算論理R2を用いて、水側検出器9Bの
検出温度t2から、下限蒸発圧力,下限蒸発温度を実行
の蒸発圧力pe,蒸発温度teとした場合の現状におけ
る第2熱源熱交換器2Bでの水採熱源G2による冷媒加
熱能力HQ2を演算する。
Similarly, in the case where the lower limit evaporation pressure and the lower limit evaporation temperature are the execution evaporation pressure pe and the evaporation temperature te, respectively, the second
From the detection temperature t2 of the water side detector 9B using the arithmetic logic R2 set for the correlation between the refrigerant heating capacity HQ2 of the water heat collection source G2 in the heat source heat exchanger 2B and the temperature t2 of this water heat collection source G2. , The lower limit evaporation pressure and the lower limit evaporation temperature are used as the execution evaporation pressure pe and the evaporation temperature te, respectively, and the refrigerant heating capacity HQ2 by the water heat source G2 in the second heat source heat exchanger 2B is calculated.

【0066】そして、演算した各採熱源G1,G2によ
る冷媒加熱能力HQ1,HQ2の和と、下限蒸発圧力,
下限蒸発温度を実行の蒸発圧力pe,蒸発温度teとし
た場合の第1及び第2熱源熱交換器2A,2Bの全体と
しての設定必要加熱能力HQQとを比較し、演算した冷
媒加熱能力HQ1,HQ2の和が上記の設定必要加熱能
力HQQ未満(HQ1+HQ2<HQQ)のときには、
圧縮機3を停止してヒートポンプ運転を停止する。ま
た、演算した冷媒加熱能力HQ1,HQ2の和が上記の
設定必要加熱能力HQQ以上(HQ1+HQ2≧HQ
Q)のときには、ヒートポンプ運転を実施継続する。
Then, the sum of the calculated refrigerant heating capacities HQ1 and HQ2 by the respective heat collection sources G1 and G2, the lower limit evaporation pressure,
Refrigerant heating capacity HQ1, which is calculated by comparing the set required heating capacity HQQ of the first and second heat source heat exchangers 2A and 2B when the lower limit evaporation temperature is set to the execution evaporation pressure pe and the evaporation temperature te, When the sum of HQ2 is less than the above set required heating capacity HQQ (HQ1 + HQ2 <HQQ),
The compressor 3 is stopped and the heat pump operation is stopped. Further, the sum of the calculated refrigerant heating capacities HQ1 and HQ2 is equal to or more than the above-mentioned required heating capacity HQQ (HQ1 + HQ2 ≧ HQ
In the case of Q), the heat pump operation is continued.

【0067】「冷媒昇温効果の比較判定」各熱源熱交換
器2A,2Bでの使用採熱源G1,G2による冷媒昇温
効果HT1,HT2(すなわち、蒸発過程を経て飽和蒸
気となっている冷媒を加熱により昇温する効果、換言す
れば過熱度shの取得効果)の高低関係と、各採熱源G
1,G2の温度t1,t2との相関について設定された
判定論理R3を用いて、空気側検出器9Aの検出温度t
1と水側検出器9Bの検出温度t2とから、各熱源熱交
換器2A,2Bでの使用採熱源G1,G2による冷媒昇
温効果HT1,HT2の高低関係を判定する。
"Comparison judgment of refrigerant heating effect" Refrigerant heating effect HT1 and HT2 by the heat collecting sources G1 and G2 used in the heat source heat exchangers 2A and 2B (that is, refrigerant that has become saturated vapor through the evaporation process) The effect of raising the temperature by heating, in other words, the level relationship of the effect of obtaining the degree of superheat sh)
Using the decision logic R3 set for the correlation between the temperatures t1 and t2 of 1 and G2, the temperature t detected by the air side detector 9A is used.
From 1 and the temperature t2 detected by the water side detector 9B, the level relationship between the refrigerant temperature raising effects HT1 and HT2 by the heat collection sources G1 and G2 used in the heat source heat exchangers 2A and 2B is determined.

【0068】そして、この高低関係の判定において、使
用採熱源による冷媒昇温効果HTが他方よりも高い状況
の高効果の採熱熱交換器となる熱源熱交換器と、使用採
熱源による冷媒昇温効果HTが他方よりも低い状況の低
効果の採熱熱交換器となる熱源熱交換器とを判定すると
ともに、この高効果の採熱熱交換器となる熱源熱交換器
での冷媒昇温効果(すなわち、HT1>HT2の場合は
HT1,HT1≦HT2の場合はHT2)と設定された
下限冷媒昇温効果HTTとを比較し、高効果の採熱熱交
換器となる熱源熱交換器での冷媒昇温効果HT1ないし
HT2が下限冷媒昇温効果HTT未満(<HTT)のと
きには、圧縮機3を停止してヒートポンプ運転を停止す
る。
Then, in the determination of the level relationship, the heat source heat exchanger serving as a highly effective heat collecting heat exchanger in a situation where the refrigerant temperature raising effect HT by the used heat collecting source is higher than the other, and the refrigerant raising by the used heat collecting source. A heat source heat exchanger that is a low-effect heat-collection heat exchanger in a situation where the temperature effect HT is lower than the other is determined, and the temperature of the refrigerant is raised in the heat-source heat exchanger that is a high-effect heat-collection heat exchanger. The effect (that is, HT1 when HT1> HT2, HT2 when HT1 ≦ HT2) is compared with the set lower limit refrigerant temperature increasing effect HTT, and a heat source heat exchanger that becomes a highly effective heat-collecting heat exchanger is used. When the refrigerant temperature increasing effect HT1 or HT2 is less than the lower limit refrigerant temperature increasing effect HTT (<HTT), the compressor 3 is stopped and the heat pump operation is stopped.

【0069】また、高効果の採熱熱交換器となる熱源熱
交換器での冷媒昇温効果HT1ないしHT2が下限冷媒
昇温効果HTT以上(≧HTT)のときには、高効果の
採熱熱交換器となる熱源熱交換器と低効果の採熱熱交換
器となる熱源熱交換器との冷媒昇温効果HTの差(すな
わち、HT1>HT2の場合はHT1−HT2,HT1
≦HT2の場合はHT2−HT1)が設定差ΔHT以上
であるか否かを判定する。
Further, when the refrigerant temperature increasing effect HT1 or HT2 in the heat source heat exchanger, which is a highly effective heat collecting heat exchanger, is equal to or higher than the lower limit refrigerant temperature increasing effect HTT (≧ HTT), the highly effective heat collecting heat exchange. Of the refrigerant temperature increasing effect HT between the heat source heat exchanger that serves as a heat exchanger and the heat source heat exchanger that serves as a low-effect heat collecting heat exchanger (that is, HT1-HT2, HT1 if HT1> HT2)
If ≤HT2, it is determined whether or not (HT2-HT1) is greater than or equal to the setting difference ΔHT.

【0070】「冷媒通流及び採熱源供給の切換」冷媒昇
温効果HTについての上記判定の結果に応じて下記a〜
dの切換制御を実行する。 a.第1熱源熱交換器2Aが高効果の採熱熱交換器で第
2熱源熱交換器2Bが低効果の採熱熱交換器であり、か
つ、これら第1及び第2熱源熱交換器2A,2Bの冷媒
昇温効果HTの差が設定差ΔHT未満である場合(すな
わち、HT1>HT2、かつ、HT1−HT2<ΔH
T)には、二方弁V1〜V4の切り換えにより、第2熱
源熱交換器2Bから第1熱源熱交換器2Aの順で蒸発対
象冷媒を直列に通流する通流形態(すなわち、図2
(ロ)において実線の矢印で示す通流形態)を採るとと
もに、前記のファン5による第1熱源熱交換器2Aへの
空気採熱源G1の供給、及び、前記のポンプ6による第
2熱源熱交換器2Bへの水採熱源G2の供給の両方を継
続実施し、これにより、高効果の採熱熱交換器である第
1熱源熱交換器2Aを下流側に位置させた直列通流状態
において、これら第1及び第2熱源熱交換器2A,2B
の双方を蒸発器として実効機能させるヒートポンプ運転
を実施する。
[Switching of refrigerant flow and supply of heat collecting source] Depending on the result of the above judgment regarding the refrigerant temperature increasing effect HT, the following a to
The switching control of d is executed. a. The first heat source heat exchanger 2A is a high-effect heat collection heat exchanger, the second heat source heat exchanger 2B is a low-effect heat collection heat exchanger, and these first and second heat source heat exchangers 2A, When the difference in the refrigerant temperature increasing effect HT of 2B is less than the set difference ΔHT (that is, HT1> HT2 and HT1-HT2 <ΔH
In T), by switching the two-way valves V1 to V4, a flow mode in which the evaporation target refrigerant flows in series from the second heat source heat exchanger 2B to the first heat source heat exchanger 2A (that is, FIG. 2).
(B) the flow form indicated by the solid line arrow), and the supply of the air heat source G1 to the first heat source heat exchanger 2A by the fan 5 and the second heat source heat exchange by the pump 6. Both of the supply of the water heat collection source G2 to the vessel 2B are continuously performed, whereby the first heat source heat exchanger 2A, which is a highly effective heat collection heat exchanger, is located in the downstream side in the serial flow state, These first and second heat source heat exchangers 2A, 2B
The heat pump operation is implemented so that both of them function effectively as evaporators.

【0071】なお、図5の(イ)は、この際のヒートポ
ンプ・サイクルを示す圧力p・比エンタルピh線図(モ
リエル線図)であり、Δxは各熱源熱交換器2A,2B
での乾き度xの変化量を示す。
5A is a pressure p / specific enthalpy h diagram (Mollier diagram) showing the heat pump cycle at this time, and Δx is each heat source heat exchanger 2A, 2B.
The amount of change in dryness x is shown.

【0072】b.第1熱源熱交換器2Aが高効果の採熱
熱交換器で第2熱源熱交換器2Bが低効果の採熱熱交換
器であり、かつ、これら第1及び第2熱源熱交換器2
A,2Bの冷媒昇温効果HTの差が設定差ΔHT以上で
ある場合(すなわち、HT1>HT2、かつ、HT1−
HT2≧ΔHT)には、二方弁V1〜V4の切り換えに
より、上記aと同様、第2熱源熱交換器2Bから第1熱
源熱交換器2Aの順で蒸発対象冷媒を直列に通流する通
流形態(すなわち、図2(ロ)において実線の矢印で示
す通流形態)を採るが、ポンプ6による第2熱源熱交換
器2Bへの水採熱源G2の供給は停止して、ファン5に
よる第1熱源熱交換器2Aへの空気採熱源G1の供給の
みを継続実施し、これにより、高効果の採熱熱交換器で
ある第1熱源熱交換器2Aを下流側に位置させた直列通
流状態において、低効果の採熱熱交換器である上流側の
第2熱源熱交換器2Bの蒸発器機能は停止させ、高効果
の採熱熱交換器である下流側の第1熱源熱交換器2Aの
みを蒸発器として実効機能させるヒートポンプ運転を実
施する。
B. The first heat source heat exchanger 2A is a high-effect heat collection heat exchanger, the second heat source heat exchanger 2B is a low-effect heat collection heat exchanger, and these first and second heat source heat exchangers 2
When the difference between the refrigerant temperature increasing effects HT of A and 2B is equal to or larger than the set difference ΔHT (that is, HT1> HT2 and HT1-
HT2 ≧ ΔHT), by switching the two-way valves V1 to V4, as in the case of the above-mentioned a, the refrigerant to be evaporated flows in series in the order of the second heat source heat exchanger 2B to the first heat source heat exchanger 2A. Although the flow form (that is, the flow form shown by the solid line arrow in FIG. 2B) is adopted, the supply of the water heat source G2 to the second heat source heat exchanger 2B by the pump 6 is stopped and the fan 5 is used. Only the air heat collecting source G1 is continuously supplied to the first heat source heat exchanger 2A, whereby the first heat source heat exchanger 2A, which is a highly effective heat collecting heat exchanger, is placed on the downstream side in series connection. In the flowing state, the evaporator function of the upstream second heat source heat exchanger 2B, which is a low-effect heat-collection heat exchanger, is stopped, and the downstream first heat-source heat exchanger, which is a high-effect heat-collection heat exchanger, is stopped. The heat pump operation is performed so that only the vessel 2A effectively functions as an evaporator.

【0073】c.第2熱源熱交換器2Bが高効果の採熱
熱交換器で第1熱源熱交換器2Aが低効果の採熱熱交換
器であり、かつ、これら第1及び第2熱源熱交換器2
A,2Bの冷媒昇温効果HTの差が設定差ΔHT未満で
ある場合(すなわち、HT2≧HT1、かつ、HT2−
HT1<ΔHT)には、二方弁V1〜V4の切り換えに
より、第1熱源熱交換器2Aから第2熱源熱交換器2B
の順で蒸発対象冷媒を直列に通流する通流形態(すなわ
ち、図2(イ)において実線の矢印で示す通流形態)を
採るとともに、ファン5による第1熱源熱交換器2Aへ
の空気採熱源G1の供給、及び、ポンプ6による第2熱
源熱交換器2Bへの水採熱源G2の供給の両方を継続実
施し、これにより、高効果の採熱熱交換器である第2熱
源熱交換器2Bを下流側に位置させた直列通流状態にお
いて、これら第1及び第2熱源熱交換器2A,2Bの双
方を蒸発器として実効機能させるヒートポンプ運転を実
施する。
C. The second heat source heat exchanger 2B is a high-effect heat collection heat exchanger, the first heat source heat exchanger 2A is a low-effect heat collection heat exchanger, and the first and second heat source heat exchangers 2 are
When the difference between the refrigerant temperature increasing effects HT of A and 2B is less than the setting difference ΔHT (that is, HT2 ≧ HT1 and HT2-
For HT1 <ΔHT), by switching the two-way valves V1 to V4 from the first heat source heat exchanger 2A to the second heat source heat exchanger 2B.
And the air to the first heat source heat exchanger 2A by the fan 5 while adopting the flow form in which the refrigerant to be evaporated flows in series in the order of (i.e., the flow form shown by the solid arrow in FIG. 2 (a)). Both the supply of the heat collection source G1 and the supply of the water heat collection source G2 to the second heat source heat exchanger 2B by the pump 6 are continuously performed, whereby the second heat source heat which is a highly effective heat collection heat exchanger. In a serial flow state in which the exchanger 2B is located on the downstream side, heat pump operation is performed in which both the first and second heat source heat exchangers 2A and 2B effectively function as evaporators.

【0074】なお、図5の(ロ)は、この際のヒートポ
ンプ・サイクルを示す圧力p・比エンタルピh線図(モ
リエル線図)である。
5B is a pressure p / specific enthalpy h diagram (Mollier diagram) showing the heat pump cycle at this time.

【0075】d.第2熱源熱交換器2Bが高効果の採熱
熱交換器で第1熱源熱交換器2Aが低効果の採熱熱交換
器であり、かつ、これら第1及び第2熱源熱交換器2
A,2Bの冷媒昇温効果HTの差が設定差ΔHT以上で
ある場合(すなわち、HT2≧HT1、かつ、HT2−
HT1≧ΔHT)には、二方弁V1〜V4の切り換えに
より、上記cと同様、第1熱源熱交換器2Aから第2熱
源熱交換器2Bの順で蒸発対象冷媒を直列に通流する通
流形態(すなわち、図2(イ)において実線の矢印で示
す通流形態)を採るが、ファン5による第1熱源熱交換
器2Aへの空気採熱源G1の供給は停止して、ポンプ6
による第2熱源熱交換器2Bへの水採熱源G2の供給の
みを継続実施し、これにより、高効果の採熱熱交換器で
ある第2熱源熱交換器2Bを下流側に位置させた直列通
流状態において、低効果の採熱熱交換器である上流側の
第1熱源熱交換器2Aの蒸発器機能は停止させ、高効果
の採熱熱交換器である下流側の第2熱源熱交換器2Bの
みを蒸発器として実効機能させるヒートポンプ運転を実
施する。
D. The second heat source heat exchanger 2B is a high-effect heat collection heat exchanger, the first heat source heat exchanger 2A is a low-effect heat collection heat exchanger, and the first and second heat source heat exchangers 2 are
When the difference between the refrigerant temperature increasing effects HT of A and 2B is equal to or greater than the set difference ΔHT (that is, HT2 ≧ HT1 and HT2-
HT1 ≧ ΔHT), by switching the two-way valves V1 to V4, as in the case of the above-described c, the refrigerant to be evaporated is allowed to flow in series in the order of the first heat source heat exchanger 2A to the second heat source heat exchanger 2B. Although the flow form (that is, the flow form shown by the solid arrow in FIG. 2A) is adopted, the supply of the air heat source G1 to the first heat source heat exchanger 2A by the fan 5 is stopped, and the pump 6
The second heat source heat exchanger 2B is continuously supplied only to the second heat source heat exchanger 2B by this, whereby the second heat source heat exchanger 2B, which is a highly effective heat collecting heat exchanger, is located on the downstream side in series. In the flow state, the evaporator function of the upstream first heat source heat exchanger 2A, which is a low-effect heat-collection heat exchanger, is stopped, and the downstream second heat-source heat, which is a high-effect heat-collection heat exchanger, is stopped. A heat pump operation is performed in which only the exchanger 2B functions effectively as an evaporator.

【0076】(放熱運転) 「放熱源状況による基本発停」設定された上限凝縮圧
力,上限凝縮温度を実行の凝縮圧力pc,凝縮温度tc
とした場合の第1熱源熱交換器2Aでの空気放熱源G1
による冷媒冷却能力LQ1と、この空気放熱源G1の温
度t1との相関について設定された演算論理R4を用い
て、空気側検出器9Aの検出温度t1から、上限凝縮圧
力,上限凝縮温度を実行の凝縮圧力pc,凝縮温度tc
とした場合の現状における第1熱源熱交換器2Aでの空
気放熱源G1による冷媒冷却能力LQ1を演算する。
(Heat radiation operation) Condensation pressure pc and condensation temperature tc for executing the upper limit condensing pressure and the upper limit condensing temperature set to "basic start / stop depending on the condition of the heat radiating source"
Air heat radiating source G1 in the first heat source heat exchanger 2A
The upper limit condensing pressure and the upper limit condensing temperature are executed from the detection temperature t1 of the air side detector 9A using the arithmetic logic R4 set for the correlation between the refrigerant cooling capacity LQ1 according to the above and the temperature t1 of the air heat radiation source G1. Condensation pressure pc, condensation temperature tc
Then, the refrigerant cooling capacity LQ1 by the air heat radiation source G1 in the first heat source heat exchanger 2A in the present situation is calculated.

【0077】また同様に、上限凝縮圧力,上限凝縮温度
を実行の凝縮圧力pc,凝縮温度tcとした場合の第2
熱源熱交換器2Bでの水放熱源G2による冷媒冷却能力
LQ2と、その水放熱源G2の温度t2との相関につい
て設定された演算論理R5を用いて、水側検出器9Bの
検出温度t2から、上限凝縮圧力,上限凝縮温度を実行
の凝縮圧力pc,凝縮温度tcとした場合の現状におけ
る第2熱源熱交換器2Bでの水放熱源G2による冷媒冷
却能力LQ2を演算する。
Similarly, in the second case where the upper limit condensing pressure and the upper limit condensing temperature are the condensing pressure pc and the condensing temperature tc, respectively.
From the detection temperature t2 of the water side detector 9B using the arithmetic logic R5 set for the correlation between the refrigerant cooling capacity LQ2 of the water heat radiation source G2 in the heat source heat exchanger 2B and the temperature t2 of the water heat radiation source G2. , The refrigerant cooling capacity LQ2 by the water heat radiating source G2 in the second heat source heat exchanger 2B at the present time when the upper limit condensing pressure and the upper limit condensing temperature are the condensing pressure pc and the condensing temperature tc for execution.

【0078】そして、演算した各放熱源G1,G2によ
る冷媒冷却能力LQ1,LQ2の和と、上限凝縮圧力,
上限凝縮温度を実行の凝縮圧力pc,凝縮温度tcとし
た場合の第1及び第2熱源熱交換器2A,2Bの全体と
しての設定必要冷却能力LQQとを比較し、演算した冷
媒冷却能力LQ1,LQ2の和が上記の設定必要冷却能
力LQQ未満(LQ1+LQ2<LQQ)のときには、
圧縮機3を停止してヒートポンプ運転を停止する。ま
た、演算した冷媒冷却能力LQ1,LQ2の和が上記の
設定必要冷却能力LQQ以上(LQ1+LQ2≧LQ
Q)のときには、ヒートポンプ運転を実施継続する。
Then, the sum of the calculated refrigerant cooling capacities LQ1 and LQ2 by the respective heat radiation sources G1 and G2 and the upper limit condensing pressure,
Refrigerant cooling capacity LQ1, calculated by comparing the required cooling capacity LQQ of the first and second heat source heat exchangers 2A, 2B as a whole when the upper limit condensation temperature is set to the actual condensation pressure pc and condensation temperature tc When the sum of LQ2 is less than the above set required cooling capacity LQQ (LQ1 + LQ2 <LQQ),
The compressor 3 is stopped and the heat pump operation is stopped. Further, the sum of the calculated refrigerant cooling capacities LQ1 and LQ2 is equal to or more than the above-mentioned required cooling capacity LQQ (LQ1 + LQ2 ≧ LQ).
In the case of Q), the heat pump operation is continued.

【0079】「冷媒降温効果の比較判定」各熱源熱交換
器2A,2Bでの使用放熱源G1,G2による冷媒降温
効果LT1,LT2(すなわち、凝縮過程を経て飽和液
となっている冷媒を冷却により降温する効果、換言すれ
ば過冷却度scの取得効果)の高低関係と、各放熱源G
1,G2の温度t1,t2との相関について設定された
判定論理R6を用いて、空気側検出器9Aの検出温度t
1と水側検出器9Bの検出温度t2とから、各熱源熱交
換器2A,2Bでの使用放熱源G1,G2による冷媒降
温効果LT1,LT2の高低関係を判定する。
"Comparison judgment of refrigerant cooling effect" Refrigerant cooling effect LT1, LT2 by heat radiation sources G1, G2 used in each heat source heat exchanger 2A, 2B (that is, cooling the refrigerant which becomes a saturated liquid through the condensation process) The effect of lowering the temperature by, that is, the level relationship of the effect of obtaining the supercooling degree sc), and the heat radiation source G
Using the decision logic R6 set for the correlation with the temperatures t1 and t2 of 1 and G2, the detected temperature t of the air side detector 9A
From 1 and the temperature t2 detected by the water side detector 9B, the level relationship of the refrigerant temperature lowering effects LT1, LT2 by the heat radiation sources G1, G2 used in the heat source heat exchangers 2A, 2B is determined.

【0080】そして、この高低関係の判定において、使
用放熱源による冷媒降温効果LTが他方よりも高い状況
の高効果の放熱熱交換器となる熱源熱交換器と、使用放
熱源による冷媒降温効果LTが他方よりも低い状況の低
効果の放熱熱交換器となる熱源熱交換器とを判定すると
ともに、この高効果の放熱熱交換器となる熱源熱交換器
での冷媒降温効果(すなわち、LT1>LT2の場合は
LT1,LT1≦LT2の場合はLT2)と設定された
下限冷媒降温効果LTTとを比較し、高効果の放熱熱交
換器となる熱源熱交換器での冷媒降温効果LT1ないし
LT2が下限冷媒降温効果LTT未満(<LTT)のと
きには、圧縮機3を停止してヒートポンプ運転を停止す
る。
In the determination of the relationship between the high and low, the heat source heat exchanger which is a highly effective heat radiating heat exchanger in a situation where the refrigerant temperature lowering effect LT due to the heat radiating source used is higher than the other, and the refrigerant temperature lowering effect LT due to the heat radiating source used Is determined to be a heat-source heat exchanger that is a low-efficiency heat-radiation heat exchanger in a situation where is lower than the other, and the refrigerant cooling effect (that is, LT1> (LT1 in the case of LT2, LT2 in the case of LT1 ≦ LT2) is compared with the set lower limit refrigerant temperature lowering effect LTT, and the refrigerant temperature lowering effect LT1 or LT2 in the heat source heat exchanger which is a high-efficiency heat radiating heat exchanger is compared. When the lower limit refrigerant cooling effect LTT is less than (<LTT), the compressor 3 is stopped and the heat pump operation is stopped.

【0081】また、高効果の放熱熱交換器となる熱源熱
交換器での冷媒降温効果LT1ないしLT2が下限冷媒
降温効果LTT以上(≧LTT)のときには、高効果の
放熱熱交換器となる熱源熱交換器と低効果の放熱熱交換
器となる熱源熱交換器との冷媒降温効果LTの差(すな
わち、LT1>LT2の場合はLT1−LT2,LT1
≦LT2の場合はLT2−LT1)が設定差ΔLT以上
であるか否かを判定する。
Further, when the refrigerant cooling effect LT1 or LT2 in the heat source heat exchanger which is a highly effective heat radiation heat exchanger is equal to or higher than the lower limit refrigerant temperature cooling effect LTT (≧ LTT), the heat source which becomes a highly effective heat radiation heat exchanger. The difference in the refrigerant cooling effect LT between the heat exchanger and the heat source heat exchanger, which is a heat-dissipating heat exchanger having a low effect (that is, LT1-LT2, LT1 when LT1> LT2).
If ≤LT2, it is determined whether or not (LT2-LT1) is equal to or greater than the setting difference ΔLT.

【0082】「冷媒通流及び放熱源供給の切換」冷媒降
温効果LTについての上記判定の結果に応じて下記e〜
hの切換制御を実行する。 e.第1熱源熱交換器2Aが高効果の放熱熱交換器で第
2熱源熱交換器2Bが低効果の放熱熱交換器であり、か
つ、これら第1及び第2熱源熱交換器2A,2Bの冷媒
降温効果LTの差が設定差ΔLT未満である場合(すな
わち、LT1>LT2、かつ、LT1−LT2<ΔL
T)には、二方弁V1〜V4の切り換えにより、第2熱
源熱交換器2Bから第1熱源熱交換器2Aの順で凝縮対
象冷媒を直列に通流する通流形態(すなわち、図2
(イ)において破線の矢印で示す通流形態)を採るとと
もに、ファン5による第1熱源熱交換器2Aへの空気放
熱源G1の供給、及び、ポンプ6による第2熱源熱交換
器2Bへの水放熱源G2の供給の両方を継続実施し、こ
れにより、高効果の放熱熱交換器である第1熱源熱交換
器2Aを下流側に位置させた直列通流状態において、こ
れら第1及び第2熱源熱交換器2A,2Bの双方を凝縮
器として実効機能させるヒートポンプ運転を実施する。
"Switching between refrigerant flow and heat radiation source supply" In accordance with the result of the above judgment regarding the refrigerant temperature lowering effect LT, the following e to
The switching control of h is executed. e. The first heat source heat exchanger 2A is a high effect heat radiation heat exchanger, the second heat source heat exchanger 2B is a low effect heat radiation heat exchanger, and these first and second heat source heat exchangers 2A, 2B are When the difference in the refrigerant cooling effect LT is less than the set difference ΔLT (that is, LT1> LT2 and LT1-LT2 <ΔL
In (T), by switching the two-way valves V1 to V4, a flow mode in which the refrigerant to be condensed flows in series from the second heat source heat exchanger 2B to the first heat source heat exchanger 2A (that is, FIG. 2).
(A) The flow form shown by the dashed arrow in (a) is adopted, and the supply of the air heat radiation source G1 to the first heat source heat exchanger 2A by the fan 5 and the second heat source heat exchanger 2B by the pump 6 are performed. Both of the supply of the water heat radiation source G2 are continuously performed, whereby the first and the second heat source heat exchangers 2A, which are highly effective heat radiation heat exchangers, are positioned in the downstream side in a serial flow state. The heat pump operation is performed so that both the two heat source heat exchangers 2A and 2B effectively function as condensers.

【0083】なお、図6の(イ)は、この際のヒートポ
ンプ・サイクルを示す圧力p・比エンタルピh線図(モ
リエル線図)であり、Δmは各熱源熱交換器2A,2B
での湿り度m(=1−乾き度x)の変化量を示す。
6 (a) is a pressure p / specific enthalpy h diagram (Mollier diagram) showing the heat pump cycle at this time, and Δm is each heat source heat exchanger 2A, 2B.
The amount of change in the wetness m (= 1-dryness x) is shown.

【0084】f.第1熱源熱交換器2Aが高効果の放熱
熱交換器で第2熱源熱交換器2Bが低効果の放熱熱交換
器であり、かつ、これら第1及び第2熱源熱交換器2
A,2Bの冷媒降温効果LTの差が設定差ΔLT以上で
ある場合(すなわち、LT1>LT2、かつ、LT1−
LT2≧ΔLT)には、二方弁V1〜V4の切り換えに
より、上記eと同様、第2熱源熱交換器2Bから第1熱
源熱交換器2Aの順で凝縮対象冷媒を直列に通流する通
流形態(すなわち、図2(イ)において破線の矢印で示
す通流形態)を採るが、ポンプ6による第2熱源熱交換
器2Bへの水放熱源G2の供給は停止して、ファン5に
よる第1熱源熱交換器2Aへの空気放熱源G1の供給の
みを継続実施し、これにより、高効果の放熱熱交換器で
ある第1熱源熱交換器2Aを下流側に位置させた直列通
流状態において、低効果の放熱熱交換器である上流側の
第2熱源熱交換器2Bの凝縮器機能は停止させ、高効果
の放熱熱交換器である下流側の第1熱源熱交換器2Aの
みを凝縮器として実効機能させるヒートポンプ運転を実
施する。
F. The first heat source heat exchanger 2A is a high effect heat radiation heat exchanger, the second heat source heat exchanger 2B is a low effect heat radiation heat exchanger, and these first and second heat source heat exchangers 2
When the difference between the refrigerant cooling effects LT of A and 2B is equal to or greater than the set difference ΔLT (that is, LT1> LT2 and LT1-
LT2 ≧ ΔLT), by switching the two-way valves V1 to V4, as in the case of the above e, the refrigerant to be condensed is allowed to flow in series in the order of the second heat source heat exchanger 2B to the first heat source heat exchanger 2A. Although the flow form (that is, the flow form shown by the dashed arrow in FIG. 2A) is adopted, the supply of the water heat radiation source G2 to the second heat source heat exchanger 2B by the pump 6 is stopped and the fan 5 is used. Only the supply of the air heat radiation source G1 to the first heat source heat exchanger 2A is continuously performed, whereby the first heat source heat exchanger 2A, which is a highly effective heat radiation heat exchanger, is placed in the downstream side in series flow. In this state, the condenser function of the upstream second heat source heat exchanger 2B, which is a low-efficiency heat radiation heat exchanger, is stopped, and only the downstream first heat source heat exchanger 2A, which is a high-effect heat radiation heat exchanger, is stopped. The heat pump is operated to effectively function as a condenser.

【0085】g.第2熱源熱交換器2Bが高効果の放熱
熱交換器で第1熱源熱交換器2Aが低効果の放熱熱交換
器であり、かつ、これら第1及び第2熱源熱交換器2
A,2Bの冷媒降温効果LTの差が設定差ΔLT未満で
ある場合(すなわち、LT2≧LT1、かつ、LT2−
LT1<ΔHT)には、二方弁V1〜V4の切り換えに
より、第1熱源熱交換器2Aから第2熱源熱交換器2B
の順で凝縮対象冷媒を直列に通流する通流形態(すなわ
ち、図2(ロ)において破線の矢印で示す通流形態)を
採るとともに、ファン5による第1熱源熱交換器2Aへ
の空気放熱源G1の供給、及び、ポンプ6による第2熱
源熱交換器2Bへの水放熱源G2の供給の両方を継続実
施し、これにより、高効果の放熱熱交換器である第2熱
源熱交換器2Bを下流側に位置させた直列通流状態にお
いて、これら第1及び第2熱源熱交換器2A,2Bの双
方を凝縮器として実効機能させるヒートポンプ運転を実
施する。
G. The second heat source heat exchanger 2B is a high effect heat radiation heat exchanger, the first heat source heat exchanger 2A is a low effect heat radiation heat exchanger, and these first and second heat source heat exchangers 2
When the difference between the refrigerant cooling effects LT of A and 2B is less than the set difference ΔLT (that is, LT2 ≧ LT1 and LT2-
For LT1 <ΔHT), by switching the two-way valves V1 to V4 from the first heat source heat exchanger 2A to the second heat source heat exchanger 2B.
And the air to the first heat source heat exchanger 2A by the fan 5 while adopting a flow form (that is, a flow form indicated by a dashed arrow in FIG. Both the supply of the heat radiation source G1 and the supply of the water heat radiation source G2 to the second heat source heat exchanger 2B by the pump 6 are continuously performed, whereby the second heat source heat exchange, which is a highly effective heat radiation heat exchanger. A heat pump operation is performed in which both the first and second heat source heat exchangers 2A and 2B effectively function as condensers in a serial flow state in which the vessel 2B is located on the downstream side.

【0086】なお、図6の(ロ)は、この際のヒートポ
ンプ・サイクルを示す圧力p・比エンタルピh線図(モ
リエル線図)である。
FIG. 6B is a pressure p-specific enthalpy h diagram (Mollier diagram) showing the heat pump cycle at this time.

【0087】h.第2熱源熱交換器2Bが高効果の放熱
熱交換器で第1熱源熱交換器2Aが低効果の放熱熱交換
器であり、かつ、これら第1及び第2熱源熱交換器2
A,2Bの冷媒降温効果LTの差が設定差ΔLT以上で
ある場合(すなわち、LT2≧LT1、かつ、LT2−
LT1≧ΔLT)には、二方弁V1〜V4の切り換えに
より、上記gと同様、第1熱源熱交換器2Aから第2熱
源熱交換器2Bの順で凝縮対象冷媒を直列に通流する通
流形態(すなわち、図2(ロ)において破線の矢印で示
す通流形態)を採るが、ファン5による第1熱源熱交換
器2Aへの空気放熱源G1の供給は停止して、ポンプ6
による第2熱源熱交換器2Bへの水放熱源G2の供給の
みを継続実施し、これにより、高効果の放熱熱交換器で
ある第2熱源熱交換器2Bを下流側に位置させた直列通
流状態において、低効果の放熱熱交換器である上流側の
第1熱源熱交換器2Aの凝縮器機能は停止させ、高効果
の放熱熱交換器である下流側の第2熱源熱交換器2Bの
みを凝縮器として実効機能させるヒートポンプ運転を実
施する。
H. The second heat source heat exchanger 2B is a high effect heat radiation heat exchanger, the first heat source heat exchanger 2A is a low effect heat radiation heat exchanger, and these first and second heat source heat exchangers 2
When the difference between the refrigerant cooling effects LT of A and 2B is equal to or greater than the set difference ΔLT (that is, LT2 ≧ LT1 and LT2-
For LT1 ≧ ΔLT), by switching the two-way valves V1 to V4, the refrigerant to be condensed is allowed to flow in series in the order of the first heat source heat exchanger 2A to the second heat source heat exchanger 2B as in the case of the above g. Although the flow form (that is, the flow form shown by the broken line arrow in FIG. 2B) is adopted, the supply of the air heat radiation source G1 to the first heat source heat exchanger 2A by the fan 5 is stopped, and the pump 6
The continuous supply of the water heat radiation source G2 to the second heat source heat exchanger 2B is carried out, whereby the second heat source heat exchanger 2B, which is a highly effective heat radiation heat exchanger, is placed in the downstream side. In the flowing state, the condenser function of the upstream first heat source heat exchanger 2A, which is a low-effect heat radiation heat exchanger, is stopped, and the downstream second heat source heat exchanger 2B, which is a high-effect heat radiation heat exchanger, is stopped. Perform heat pump operation that effectively functions only as a condenser.

【0088】以上要するに、本実施例において制御器1
0は、個別の採放熱源G1,G2により通流冷媒を加熱
又は冷却する直列接続の第1及び第2熱源熱交換器2
A,2Bについて、「採熱運転」では、使用採放熱源に
よる冷媒昇温効果HTが他方よりも高い状況で高効果の
採熱熱交換器となる熱源熱交換器と、使用採放熱源によ
る冷媒昇温効果HTが他方よりも低い状況で低効果の採
熱熱交換器となる熱源熱交換器とを判定するとともに、
これら採熱熱交換器としての熱源熱交換器2A,2Bの
冷媒昇温効果HT1,HT2の差が設定差ΔHT以上で
あるか否かを判定し、一方、「放熱運転」では、使用採
放熱源による冷媒降温効果LTが他方よりも高い状況で
高効果の放熱熱交換器となる熱源熱交換器と、使用採放
熱源による冷媒降温効果LTが他方よりも低い状況で低
効果の放熱熱交換器となる熱源熱交換器とを判定すると
ともに、これら放熱熱交換器としての熱源熱交換器2
A,2Bの冷媒降温効果LT1,LT2の差が設定差Δ
LT以上であるか否かを判定する判定手段Xを構成す
る。
In summary, in the present embodiment, the controller 1
0 is the first and second heat source heat exchangers 2 connected in series for heating or cooling the circulating refrigerant by the individual heat collecting and radiating sources G1 and G2.
Regarding A and 2B, in the "heat collection operation", depending on the heat source heat exchanger to be a highly effective heat collection heat exchanger in a situation where the refrigerant temperature raising effect HT by the used heat collection and radiation source is higher than the other, In the situation where the refrigerant temperature increasing effect HT is lower than the other, it is determined that the heat source heat exchanger is a low effect heat collecting heat exchanger,
It is determined whether or not the difference between the refrigerant temperature increasing effects HT1 and HT2 of the heat source heat exchangers 2A and 2B as the heat collecting heat exchangers is equal to or more than the set difference ΔHT, while in the “heat radiation operation”, the use and discharge A heat source heat exchanger that becomes a highly effective radiant heat exchanger when the refrigerant temperature lowering effect LT due to the heat source is higher than the other, and a low heat radiative heat exchange when the refrigerant temperature lowering effect LT due to the used heat radiating source is lower than the other Source heat exchanger 2 as a heat radiation heat exchanger
The difference between the refrigerant cooling effects LT1 and LT2 of A and 2B is the setting difference Δ.
A determination means X for determining whether or not it is equal to or higher than LT is configured.

【0089】また、制御器10は、上記判定手段Xを構
成するとともに、高成績係数copでの運転を目的とし
て、この判定手段Xの判定結果に基づき、「採熱運転」
では、膨張手段としての膨張弁4を通過した蒸発対象冷
媒を、低効果の採熱熱交換器となる熱源熱交換器から高
効果の採熱熱交換器となる熱源熱交換器の順に通流する
ように、かつ、「放熱運転」では、圧縮機3から吐出し
た凝縮対象冷媒を、低効果の放熱熱交換器となる熱源熱
交換器から高効果の放熱熱交換器となる熱源熱交換器の
順に通流するように、「採熱運転」及び「放熱運転」の
夫々で、第1及び第2流路切換手段K1,K2としての
二方弁V1〜V4を切り換え制御し、さらに、「採熱運
転」において採熱熱交換器としての両熱源熱交換器2
A,2Bの冷媒昇温効果HTの差が設定差ΔHT以上の
ときには、低効果の採熱熱交換器となる熱源熱交換器へ
の採放熱源の供給(すなわち、冷却源として作用してし
まう虞のある採熱源の供給)を停止し、かつ、「放熱運
転」において放熱熱交換器としての両熱源熱交換器2
A,2Bの冷媒降温効果LTの差が設定差ΔLT以上の
ときには、低効果の放熱熱交換器となる熱源熱交換器へ
の採放熱源の供給(すなわち、加熱源として作用してし
まう虞のある放熱源の供給)を停止する制御手段Yを構
成する。
Further, the controller 10 constitutes the above-mentioned judging means X and, for the purpose of operation with a high coefficient of performance cop, based on the judgment result of this judging means X, "heat collecting operation".
Then, the evaporation target refrigerant that has passed through the expansion valve 4 as the expansion means flows in the order of the heat source heat exchanger which becomes the low effect heat collecting heat exchanger and the heat source heat exchanger which becomes the high effect heat collecting heat exchanger. As described above, and in the "heat radiation operation", the refrigerant to be condensed discharged from the compressor 3 is changed from the heat source heat exchanger which is a low heat radiation heat exchanger to the high heat radiation heat exchanger which is a high heat radiation heat exchanger. The two-way valves V1 to V4 as the first and second flow path switching means K1 and K2 are switched and controlled by the "heat collection operation" and the "heat radiation operation", respectively, so as to flow in the order of ". Heat source heat exchanger 2 as heat collecting heat exchanger in heat collecting operation "
When the difference between the refrigerant temperature increasing effects HT of A and 2B is equal to or larger than the set difference ΔHT, the heat source heat exchanger serving as a heat collecting heat exchanger having a low effect is supplied with the heat collecting and radiating source (that is, acts as a cooling source). The supply of the heat source that may cause heat) is stopped, and both heat source heat exchangers 2 as the heat radiation heat exchangers in the “heat radiation operation”
When the difference between the refrigerant cooling effects LT of A and 2B is equal to or greater than the set difference ΔLT, the heat source heat exchanger serving as a heat-effect heat exchanger having a low effect is supplied with a heat-radiation source (that is, may act as a heating source). A control means Y for stopping the supply of a certain heat radiation source is configured.

【0090】なお、採熱運転における前記bの切り換え
制御において、低効果の採熱熱交換器である第2熱源熱
交換器2Bへの水採熱源G2の供給を停止した場合、停
滞した水採熱源G2が第2熱源熱交換器2Bの周りで凍
結する虞があることから、前記bの切り換え制御に伴い
第2熱源熱交換器2Bの周りから停滞した水採熱源G2
を排出する操作(いわゆる水抜き)を実施したり、ある
いは、水採熱源G1にブライン(不凍水溶液)を採用し
ておく等の凍結防止処置を講じるのが良い。
In the switching control of b in the heat collection operation, when the supply of the water collection source G2 to the second heat source heat exchanger 2B, which is a heat collection heat exchanger having a low effect, is stopped, the stagnant water collection is stopped. Since the heat source G2 may freeze around the second heat source heat exchanger 2B, the water collection heat source G2 stagnant from around the second heat source heat exchanger 2B due to the switching control of b.
It is advisable to carry out an operation of discharging water (so-called water removal), or to take anti-freezing measures such as employing brine (antifreeze solution) as the water heat source G1.

【0091】〔別実施例〕次に別実施例を列記する。前
述の実施例における採熱運転と放熱運転のうち、放熱運
転は実施せず、図3のフローチャートに示す制御を伴う
採熱運転のみを実施する装置構成としてもよい。また、
採熱運転は実施せず、図4のフローチャートに示す制御
を伴う放熱運転のみを実施する装置構成としてもよい。
[Other Examples] Next, other examples will be listed. Of the heat collecting operation and the heat radiating operation in the above-described embodiment, the heat radiating operation may not be performed, and only the heat collecting operation with the control shown in the flowchart of FIG. 3 may be performed. Also,
The heat collecting operation may not be performed, and only the heat radiation operation with the control shown in the flowchart of FIG. 4 may be performed.

【0092】第1及び第2の採熱熱交換器2A,2Bで
使用する個別の採熱源G1,G2は、液体、気体、固体
のいずれであっても良く、さらに、これら採熱源は互い
に同種のもの、あるいは、異種のもの、いずれであって
も良い。また同様に、第1及び第2の放熱熱交換器2
A,2Bで使用する個別の放熱源G1,G2は、液体、
気体、固体のいずれであっても良く、さらに、これら放
熱源は互いに同種のもの、あるいは、異種のもの、いず
れであっても良い。
The individual heat-collecting sources G1 and G2 used in the first and second heat-collecting heat exchangers 2A and 2B may be any of liquid, gas, and solid, and these heat-collecting sources are of the same kind. It may be a different one or a different one. Similarly, the first and second radiation heat exchangers 2
The individual heat radiation sources G1 and G2 used in A and 2B are liquid,
It may be either a gas or a solid, and these heat radiation sources may be the same kind or different kinds.

【0093】第1及び第2の流路切換手段K1,K2
を、前述の実施例で示す如く、それぞれ2個の双方向可
能な二方弁で構成するに代え、図7の(イ),(ロ)に
示す如く、それぞれ1個の双方向可能な三方弁V5,V
6で構成してもよい。
First and second flow path switching means K1, K2
Instead of being constituted by two bidirectional valves each capable of bidirectional operation as shown in the above-mentioned embodiment, one bidirectional valve capable of bidirectional operation as shown in (a) and (b) of FIG. Valves V5, V
It may be configured with 6.

【0094】第1採熱熱交換器2Aでの使用採熱源G1
による冷媒昇温効果HT1と、第2採熱熱交換器2Bで
の使用採熱源G2による冷媒昇温効果HT2との高低関
係を、前述の実施例の如く、各採熱源G1,G2の検出
温度t1,t2に基づき判定する形態に代え、各採熱源
G1,G2の複数種の検出状態値(例えば温度tや湿度
r、あるいは、比エンタルピh等)に基づき判定した
り、あるいは、各採熱源G1,G2の一種ないし複数種
の検出状態値と各採熱源G1,G2の検出流量とに基づ
き判定する等の判定形態を採用してもよい。また同様
に、第1放熱熱交換器2Aでの使用放熱源G1による冷
媒降温効果LT1と、第2放熱熱交換器2Bでの使用放
熱源G2による冷媒降温効果LT2との高低関係を、前
述の実施例の如く、各放熱源G1,G2の検出温度t
1,t2に基づき判定する形態に代え、各放熱源G1,
G2の複数種の検出状態値(例えば温度tや湿度r、あ
るいは、比エンタルピh等)に基づき判定したり、ある
いは、各放熱源G1,G2の一種ないし複数種の検出状
態値と各放熱源G1,G2の検出流量とに基づき判定す
る等の判定形態を採用してもよい。
Heat collecting source G1 used in the first heat collecting heat exchanger 2A
The refrigerant temperature increasing effect HT1 by the second heat collecting heat exchanger 2B and the refrigerant temperature increasing effect HT2 by the heat collecting source G2 used in the second heat collecting heat exchanger 2B are compared with each other by the detected temperature of each heat collecting source G1, G2 as in the above-described embodiment. Instead of determining based on t1 and t2, determination based on a plurality of detection state values of each heat collecting source G1 and G2 (for example, temperature t, humidity r, or specific enthalpy h), or each heat collecting source A determination form such as determination based on one or a plurality of detection state values of G1 and G2 and the detected flow rate of each heat collection source G1 and G2 may be adopted. Similarly, the level relationship between the refrigerant temperature lowering effect LT1 by the heat radiation source G1 used in the first heat radiation heat exchanger 2A and the refrigerant temperature lowering effect LT2 by the heat radiation source G2 used in the second heat radiation heat exchanger 2B is described above. As in the embodiment, the detected temperature t of each heat radiation source G1, G2
1, heat radiation sources G1, instead of the form based on t2
It is judged based on a plurality of detection state values of G2 (for example, temperature t, humidity r, or specific enthalpy h), or one or a plurality of detection state values of each heat radiation source G1 and G2 and each heat radiation source. A determination form such as determination based on the detected flow rates of G1 and G2 may be adopted.

【0095】採熱運転において、図3のフローチャート
における〔HT1≧HTT?〕,〔HT2≧HTT?〕
の部分を省略した制御形態を採用してもよく、同様に、
放熱運転において、図4のフローチャートにおける〔L
T1≧LTT?〕,〔LT2≧LTT?〕の部分を省略
した制御形態を採用してもよい。
In the heat collecting operation, [HT1 ≧ HTT? ], [HT2 ≧ HTT? ]
A control form in which the part of is omitted may be adopted, and similarly,
In the heat radiation operation, [L
T1 ≧ LTT? ], [LT2 ≧ LTT? A control mode in which the part [] is omitted may be adopted.

【0096】前述の実施例においては、各放熱源G1,
G2の冷媒冷却能力LQ1,LQ2の和が第1及び第2
熱源熱交換器2A,2Bの全体としての設定必要冷却能
力LQQ以上であることを運転条件とすることにより、
適当な過冷却度scが確保されるようにしているが、放
熱源用のファン5やポンプ6の調整により過冷却度sc
を目標過冷却度に調整する制御や、あるいは、蒸発器出
口冷媒と凝縮器通過最終段階の冷媒との熱交換により過
冷却度を増大させる方式において、その熱交換量の調整
により過冷却度scを目標過冷却度に調整する制御を実
施するようにしてもよい。
In the above embodiment, each heat radiation source G1,
The sum of the refrigerant cooling capacities LQ1 and LQ2 of G2 is the first and second
By setting the operating condition that the total required cooling capacity LQQ of the heat source heat exchangers 2A, 2B is greater than or equal to
Although an appropriate subcooling degree sc is ensured, the subcooling degree sc is adjusted by adjusting the fan 5 and the pump 6 for the heat radiation source.
Control to adjust the supercooling degree to the target supercooling degree or to increase the subcooling degree by heat exchange between the evaporator outlet refrigerant and the refrigerant at the final stage of passage through the condenser. You may make it implement the control which adjusts to a target supercooling degree.

【0097】尚、特許請求の範囲の項に図面との対照を
便利にするため符号を記すが、該記入により本発明は添
付図面の構成に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】装置構成を示す図FIG. 1 is a diagram showing a device configuration.

【図2】冷媒通流の切換形態を示す図FIG. 2 is a diagram showing a switching mode of refrigerant flow.

【図3】採熱運転の制御フローチャート[Fig. 3] Control flowchart of heat collection operation

【図4】放熱運転の制御フローチャート[Fig. 4] Control flowchart of heat radiation operation

【図5】運転サイクルを示すモリエル線図FIG. 5: Mollier diagram showing the driving cycle

【図6】運転サイクルを示すモリエル線図FIG. 6 is a Mollier diagram showing a driving cycle.

【図7】別実施例の装置構成及び冷媒通流の切換形態を
示す図
FIG. 7 is a diagram showing an apparatus configuration and a refrigerant flow switching mode of another embodiment.

【図8】従来の装置構成を示す図FIG. 8 is a diagram showing a configuration of a conventional device.

【図9】流路切換構成の比較例を示す図FIG. 9 is a diagram showing a comparative example of a flow path switching configuration.

【図10】流路切換構成の他の比較例を示す図FIG. 10 is a diagram showing another comparative example of the flow path switching configuration.

【符号の説明】[Explanation of symbols]

G1,G2 採熱源,放熱源,採放熱源 2A,2B 採熱熱交換器,放熱熱交換
器,熱源熱交換器 1 出力熱交換器 3 圧縮機 4 膨張手段 7 循環方向切換手段 K1,K2 流路切換手段 re 膨張手段の出口流路ないし入
口流路 rc 圧縮機の吸入流路ないし吐出
流路 HT(HT1,HT2) 冷媒昇温効果 ΔHT 冷媒昇温効果の設定差 LT(LT1,LT2) 冷媒降温効果 ΔLT 冷媒降温効果の設定差 X 判定手段 Y 制御手段
G1, G2 heat collection source, heat radiation source, heat radiation source 2A, 2B heat collection heat exchanger, heat radiation heat exchanger, heat source heat exchanger 1 output heat exchanger 3 compressor 4 expansion means 7 circulation direction switching means K1, K2 flow Channel switching means re Outlet passage or inlet passage of expansion means rc Suction passage or discharge passage of compressor HT (HT1, HT2) Refrigerant temperature raising effect ΔHT Refrigerant temperature raising effect setting difference LT (LT1, LT2) Refrigerant Cooling effect ΔLT Refrigerant cooling effect setting difference X Judging means Y Control means

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 蒸発器として個別の採熱源(G1),
(G2)により通流冷媒を加熱する第1及び第2の採熱
熱交換器(2A),(2B)を直列に接続した圧縮式ヒ
ートポンプであって、 膨張手段(4)の出口流路(re)を前記第1及び第2
採熱熱交換器(2A),(2B)の直列組における一端
と他端とに択一的に接続する第1の流路切換手段(K
1)と、 圧縮機(3)の吸入流路(rc)を前記第1及び第2採
熱熱交換器(2A),(2B)の直列組における一端と
他端とに択一的に接続する第2の流路切換手段(K2)
と、 前記第1及び第2採熱熱交換器(2A),(2B)につ
いて、使用採熱源による冷媒昇温効果(HT)が他方よ
りも高い状況にある高効果の採熱熱交換器と、使用採熱
源による冷媒昇温効果(HT)が他方よりも低い状況に
ある低効果の採熱熱交換器とを判定する判定手段(X)
と、 この判定手段(X)の判定結果に基づき、前記膨張手段
(4)を通過した蒸発対象冷媒を、前記低効果の採熱熱
交換器から前記高効果の採熱熱交換器の順で通流するよ
うに、前記第1及び第2流路切換手段(K1),(K
2)を切り換え制御する制御手段(Y)を設けた圧縮式
ヒートポンプ。
1. An individual heat source (G1) as an evaporator,
A compression type heat pump in which first and second heat collecting heat exchangers (2A) and (2B) for heating the flowing refrigerant by (G2) are connected in series, and the outlet flow path (of the expansion means (4) ( re) to the first and second
First flow path switching means (K) selectively connected to one end and the other end of the series combination of the heat collection heat exchangers (2A) and (2B).
1) and the suction flow path (rc) of the compressor (3) are selectively connected to one end and the other end of the series combination of the first and second heat collecting heat exchangers (2A) and (2B). Second flow path switching means (K2)
And a high-efficiency heat-collection heat exchanger in which the first and second heat-collection heat exchangers (2A) and (2B) have a higher refrigerant temperature increasing effect (HT) due to the heat-collection source used than the other. Determination means (X) for determining a heat collecting heat exchanger having a low effect in which the refrigerant temperature increasing effect (HT) by the used heat collecting source is lower than the other
Based on the determination result of the determination means (X), the refrigerant to be evaporated that has passed through the expansion means (4) is transferred in order from the low-effect heat collection heat exchanger to the high-effect heat collection heat exchanger. The first and second flow path switching means (K1), (K
A compression heat pump provided with a control means (Y) for switching and controlling 2).
【請求項2】 前記判定手段(X)は、前記低効果及び
高効果の採熱熱交換器を判定するとともに、これら採熱
熱交換器(2A),(2B)の冷媒昇温効果(HT
1),(HT2)の差が設定差(ΔHT)以上であるか
否かを判定する構成とし、 前記制御手段(Y)は、この判定結果に基づいて、両採
熱熱交換器(2A),(2B)の冷媒昇温効果(HT
1),(HT2)の差が設定差(ΔHT)以上であると
き、前記低効果の採熱熱交換器に対する採熱源の供給を
停止する構成としてある請求項1記載の圧縮式ヒートポ
ンプ。
2. The determining means (X) determines the low-effect and high-effect heat-collecting heat exchangers, and the refrigerant temperature-raising effect (HT) of these heat-collecting heat exchangers (2A), (2B).
1) and (HT2) are configured to determine whether or not the difference is equal to or greater than a set difference (ΔHT), and the control means (Y), based on the determination result, both heat collection heat exchangers (2A). , (2B) refrigerant heating effect (HT
The compression heat pump according to claim 1, wherein when the difference between (1) and (HT2) is equal to or larger than a set difference (ΔHT), the supply of the heat collection source to the low-effect heat collection heat exchanger is stopped.
【請求項3】 凝縮器として個別の放熱源(G1),
(G2)により通流冷媒を冷却する第1及び第2の放熱
熱交換器(2A),(2B)を直列に接続した圧縮式ヒ
ートポンプであって、 膨張手段(4)の入口流路(re)を前記第1及び第2
放熱熱交換器(2A),(2B)の直列組における一端
と他端とに択一的に接続する第1の流路切換手段(K
1)と、 圧縮機(3)の吐出流路(rc)を前記第1及び第2放
熱熱交換器(2A),(2B)の直列組における一端と
他端とに択一的に接続する第2の流路切換手段(K2)
と、 前記第1及び第2放熱熱交換器(2A),(2B)につ
いて、使用放熱源による冷媒降温効果(LT)が他方よ
りも高い状況にある高効果の放熱熱交換器と、使用放熱
源による冷媒降温効果(LT)が他方よりも低い状況に
ある低効果の放熱熱交換器とを判定する判定手段(X)
と、 この判定手段(X)の判定結果に基づき、前記圧縮機
(3)から吐出した凝縮対象冷媒を、前記低効果の放熱
熱交換器から前記高効果の放熱熱交換器の順で通流する
ように、前記第1及び第2流路切換手段(K1),(K
2)を切り換え制御する制御手段(Y)を設けた圧縮式
ヒートポンプ。
3. An individual heat source (G1) as a condenser,
A compression type heat pump in which first and second radiant heat exchangers (2A) and (2B) for cooling the flowing refrigerant by (G2) are connected in series, and the inlet flow path (re) of the expansion means (4) is ) Is the first and second
First flow path switching means (K) selectively connected to one end and the other end of the series set of the radiant heat exchangers (2A) and (2B).
1) and the discharge flow path (rc) of the compressor (3) are selectively connected to one end and the other end of the series combination of the first and second radiant heat exchangers (2A) and (2B). Second flow path switching means (K2)
A high-efficiency heat radiation heat exchanger in which the refrigerant cooling effect (LT) by the heat radiation source used is higher than the other in the first and second heat radiation heat exchangers (2A), (2B). Judgment means (X) for judging a heat-refrigerant cooling effect (LT) by the heat source which is lower than that of the other one
Based on the determination result of the determination means (X), the refrigerant to be condensed discharged from the compressor (3) flows in the order of the low-effect heat radiation heat exchanger to the high-effect heat radiation heat exchanger. So that the first and second flow path switching means (K1), (K
A compression heat pump provided with a control means (Y) for switching and controlling 2).
【請求項4】 前記判定手段(X)は、前記低効果及び
高効果の放熱熱交換器を判定するとともに、これら放熱
熱交換器(2A),(2B)の冷媒降温効果(LT
1),(LT2)の差が設定差(ΔLT)以上であるか
否かを判定する構成とし、 前記制御手段(Y)は、この判定結果に基づいて、両放
熱熱交換器(2A),(2B)の冷媒降温効果(LT
1),(LT2)の差が設定差(ΔLT)以上であると
き、前記低効果の放熱熱交換器に対する放熱源の供給を
停止する構成としてある請求項3記載の圧縮式ヒートポ
ンプ。
4. The judging means (X) judges the low-effect and high-effect radiant heat exchangers, and the refrigerant cooling effect (LT) of these radiant heat exchangers (2A), (2B).
1), (LT2) is configured to determine whether or not the difference is equal to or greater than the set difference (ΔLT), the control means (Y), based on the result of this determination, both the heat radiation heat exchanger (2A), Refrigerant cooling effect of (2B) (LT
4. The compression heat pump according to claim 3, wherein when the difference between 1) and (LT2) is equal to or greater than a set difference ([Delta] LT), the supply of the heat radiation source to the low heat radiation heat exchanger is stopped.
【請求項5】 個別の採放熱源(G1),(G2)によ
り通流冷媒を加熱又は冷却する第1及び第2の熱源熱交
換器(2A),(2B)を直列に接続し、 冷媒を圧縮機(3)、出力熱交換器(1)、膨張手段
(4)、前記第1及び第2熱源熱交換器(2A),(2
B)の直列組の順に循環させて、前記出力熱交換器
(1)を凝縮器機能させ、かつ、前記第1及び第2熱源
熱交換器(2A),(2B)を採熱熱交換器として蒸発
器機能させる採熱運転と、冷媒を前記圧縮機(3)、前
記第1及び第2熱源熱交換器(2A),(2B)の直列
組、前記膨張手段(4)、前記出力熱交換器(1)の順
に循環させて、前記出力熱交換器(1)を蒸発器機能さ
せ、かつ、前記第1及び第2熱源熱交換器(2A),
(2B)を放熱熱交換器として凝縮器機能させる放熱運
転とに、運転状態を切り換える循環方向切換手段(7)
と、 採熱運転では前記膨張手段(4)の出口流路となり、か
つ、放熱運転では前記膨張手段(4)の入口流路となる
流路(re)を、前記第1及び第2熱源熱交換器(2
A),(2B)の直列組における一端と他端とに択一的
に接続する第1の流路切換手段(K1)と、 採熱運転では前記圧縮機(3)の吸入流路となり、か
つ、放熱運転では前記圧縮機(3)の吐出流路となる流
路(rc)を、前記第1及び第2熱源熱交換器(2
A),(2B)の直列組における一端と他端とに択一的
に接続する第2の流路切換手段(K2)と、 採熱運転では、前記第1及び第2熱源熱交換器(2
A),(2B)について、使用採放熱源による冷媒昇温
効果(HT)が他方よりも高い状況で高効果の採熱熱交
換器となる熱源熱交換器と、使用採放熱源による冷媒昇
温効果(HT)が他方よりも低い状況で低効果の採熱熱
交換器となる熱源熱交換器とを判定し、かつ、放熱運転
では、前記第1及び第2熱源熱交換器(2A),(2
B)について、使用採放熱源による冷媒降温効果(L
T)が他方よりも高い状況で高効果の放熱熱交換器とな
る熱源熱交換器と、使用採放熱源による冷媒降温効果
(LT)が他方よりも低い状況で低効果の放熱熱交換器
となる熱源熱交換器とを判定する判定手段(X)と、 この判定手段(X)の判定結果に基づき、採熱運転では
前記膨張手段(4)を通過した蒸発対象冷媒を、前記低
効果の採熱熱交換器となる熱源熱交換器から前記高効果
の採熱熱交換器となる熱源熱交換器の順に通流するよう
に、かつ、放熱運転では前記圧縮機(3)から吐出した
凝縮対象冷媒を、前記低効果の放熱熱交換器となる熱源
熱交換器から前記高効果の放熱熱交換器となる熱源熱交
換器の順に通流するように、採熱運転及び放熱運転の夫
々で前記第1及び第2流路切換手段(K1),(K2)
を切り換え制御する制御手段(Y)を設けた圧縮式ヒー
トポンプ。
5. A first and a second heat source heat exchangers (2A), (2B) for heating or cooling the flowing refrigerant by individual heat-radiation sources (G1), (G2) are connected in series, A compressor (3), an output heat exchanger (1), an expansion means (4), the first and second heat source heat exchangers (2A), (2)
The output heat exchanger (1) is made to function as a condenser, and the first and second heat source heat exchangers (2A) and (2B) are circulated in the order of the series combination of B) and the heat collection heat exchanger. Heat collection operation to function as an evaporator as a refrigerant, a refrigerant (3), a series combination of the first and second heat source heat exchangers (2A) and (2B), the expansion means (4), and the output heat. The output heat exchanger (1) is caused to function as an evaporator by circulating the heat in the order of the exchanger (1), and the first and second heat source heat exchangers (2A),
Circulation direction switching means (7) for switching the operating state between the heat radiation operation in which (2B) functions as a heat radiation heat exchanger and the condenser function.
And a flow path (re) which becomes the outlet flow path of the expansion means (4) in the heat collection operation and becomes the inlet flow path of the expansion means (4) in the heat radiation operation. Exchanger (2
A) and (2B), a first flow path switching means (K1) that is selectively connected to one end and the other end of the series set, and a suction flow path of the compressor (3) in heat collection operation, In addition, in the heat radiation operation, the flow path (rc) that is the discharge flow path of the compressor (3) is connected to the first and second heat source heat exchangers (2).
A), a second flow path switching means (K2) that is selectively connected to one end and the other end of the series combination of (2B), and in the heat collecting operation, the first and second heat source heat exchangers ( Two
Regarding A) and (2B), a heat source heat exchanger that becomes a highly effective heat collection heat exchanger in a situation where the refrigerant temperature raising effect (HT) by the used heat radiation source is higher than the other, and the refrigerant rise by the used heat radiation source. In a situation where the temperature effect (HT) is lower than the other, it is determined that the heat source heat exchanger is a heat collecting heat exchanger having a low effect, and in the heat radiation operation, the first and second heat source heat exchangers (2A). , (2
Regarding B), the cooling effect of the refrigerant by the used heat radiation source (L
A heat source heat exchanger that becomes a highly effective radiant heat exchanger when T) is higher than the other, and a less effective radiant heat exchanger when the refrigerant cooling effect (LT) by the used heat radiating source is lower than the other. Determination means (X) for determining the heat source heat exchanger, and based on the determination result of the determination means (X), the evaporation target refrigerant that has passed through the expansion means (4) in the heat collection operation is Condensation discharged from the compressor (3) in such a manner that the heat source heat exchanger serving as the heat collecting heat exchanger flows in the order of the heat source heat exchanger serving as the highly effective heat collecting heat exchanger, and in the heat radiation operation. In order for the target refrigerant to flow in the order of the heat source heat exchanger to be the high effect heat radiation heat exchanger from the heat source heat exchanger to be the low effect heat radiation heat exchanger, in each of the heat collection operation and the heat radiation operation. The first and second flow path switching means (K1), (K2)
A compression heat pump provided with a control means (Y) for switching control.
【請求項6】 前記判定手段(X)は、採熱運転では前
記低効果及び高効果の採熱熱交換器となる熱源熱交換器
を判定するとともに、これら採熱熱交換器としての熱源
熱交換器(2A),(2B)の冷媒昇温効果(HT
1),(HT2)の差が設定差(ΔHT)以上であるか
否かを判定し、かつ、放熱運転では前記低効果及び高効
果の放熱熱交換器となる熱源熱交換器を判定するととも
に、これら放熱熱交換器としての熱源熱交換器(2
A),(2B)の冷媒降温効果(LT1),(LT2)
の差が設定差(ΔLT)以上であるか否かを判定する構
成とし、 前記制御手段(Y)は、この判定結果に基づいて、採熱
運転では両熱源熱交換器(2A),(2B)の冷媒昇温
効果(HT1),(HT2)の差が設定差(ΔHT)以
上であるとき、前記低効果の採熱熱交換器となる熱源熱
交換器への採放熱源の供給を停止し、かつ、放熱運転で
は両熱源熱交換器(2A),(2B)の冷媒降温効果
(LT1),(LT2)の差が設定差(ΔLT)以上で
あるとき、前記低効果の放熱熱交換器となる熱源熱交換
器への採放熱源の供給を停止する構成としてある請求項
5記載の圧縮式ヒートポンプ。
6. The determining means (X) determines the heat source heat exchangers that will be the low-effect and high-effect heat collecting heat exchangers in the heat collecting operation, and the heat source heats as these heat collecting heat exchangers. Refrigerant temperature raising effect (HT) of the exchangers (2A) and (2B)
1), it is determined whether or not the difference between (HT2) is a set difference (ΔHT) or more, and in heat dissipation operation, the heat source heat exchanger to be the low and high effects heat dissipation heat exchanger is determined. , A heat source heat exchanger (2
A), (2B) refrigerant cooling effect (LT1), (LT2)
Of the heat source heat exchangers (2A) and (2B) in the heat collection operation based on the result of this determination. When the difference between the refrigerant temperature increasing effects (HT1) and (HT2) in (1) is equal to or greater than the set difference (ΔHT), the supply of the heat collection and radiation source to the heat source heat exchanger, which is the heat collection heat exchanger with low effect, is stopped. In the heat radiation operation, when the difference between the refrigerant cooling effects (LT1) and (LT2) of the two heat source heat exchangers (2A) and (2B) is equal to or more than the set difference (ΔLT), the heat radiation heat exchange with the low effect is performed. The compression type heat pump according to claim 5, wherein the supply of the heat radiation source to the heat source heat exchanger that serves as a container is stopped.
JP11437795A 1995-05-12 1995-05-12 Compression heat pump Expired - Fee Related JP3300197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11437795A JP3300197B2 (en) 1995-05-12 1995-05-12 Compression heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11437795A JP3300197B2 (en) 1995-05-12 1995-05-12 Compression heat pump

Publications (2)

Publication Number Publication Date
JPH08303884A true JPH08303884A (en) 1996-11-22
JP3300197B2 JP3300197B2 (en) 2002-07-08

Family

ID=14636170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11437795A Expired - Fee Related JP3300197B2 (en) 1995-05-12 1995-05-12 Compression heat pump

Country Status (1)

Country Link
JP (1) JP3300197B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010197035A (en) * 2009-01-28 2010-09-09 Omron Corp Heat exchanging system for drying and drying device
JP2016176672A (en) * 2015-03-23 2016-10-06 パナソニックIpマネジメント株式会社 Air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010197035A (en) * 2009-01-28 2010-09-09 Omron Corp Heat exchanging system for drying and drying device
JP2016176672A (en) * 2015-03-23 2016-10-06 パナソニックIpマネジメント株式会社 Air conditioner

Also Published As

Publication number Publication date
JP3300197B2 (en) 2002-07-08

Similar Documents

Publication Publication Date Title
KR101343711B1 (en) Air conditioning/hot­water supply system and heat pump unit
US9322562B2 (en) Air-conditioning apparatus
US20230092215A1 (en) Air conditioning system with capacity control and controlled hot water generation
US7716943B2 (en) Heating/cooling system
US7185505B2 (en) Refrigerant circuit and heat pump type hot water supply apparatus
JP5951109B2 (en) Air conditioner with additional unit for heating capacity enhancement
KR101758179B1 (en) Heat pump type speed heating apparatus
JP4269323B2 (en) Heat pump water heater
KR20080009953A (en) Co-generation and control method of the same
WO2013005424A1 (en) Refrigeration cycle device
US20110138839A1 (en) Water circulation apparatus associated with refrigerant system
KR100502283B1 (en) Air conditioning system
CN101469911B (en) Air conditioner
JP2009052880A (en) Heat pump water heater
JPH08303884A (en) Compression type heat pump
KR20210093560A (en) Air Conditioner System for Simultaneous Cooling, Heating and hot water supplying and Control Method of the Same
KR20110117974A (en) Heat pump type speed heating apparatus
JP2002349987A (en) Absorption refrigeration unit
JP4929519B2 (en) Chilling refrigeration system
US20240027077A1 (en) Hybrid multi-air conditioning system and method for controlling a hybrid multi-air conditioning system
KR101605909B1 (en) Method for controlling heating apparatus associated with heat pump
JP3300188B2 (en) Compression heat pump
JP2737543B2 (en) Heat pump water heater
JP2863474B2 (en) Thermal storage type air conditioner
KR101155471B1 (en) Heat pump type speed heating apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees