JPH08306943A - Thin film solar cell and its manufacture - Google Patents
Thin film solar cell and its manufactureInfo
- Publication number
- JPH08306943A JPH08306943A JP7105145A JP10514595A JPH08306943A JP H08306943 A JPH08306943 A JP H08306943A JP 7105145 A JP7105145 A JP 7105145A JP 10514595 A JP10514595 A JP 10514595A JP H08306943 A JPH08306943 A JP H08306943A
- Authority
- JP
- Japan
- Prior art keywords
- electrode layer
- connection electrode
- hole
- layer
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、絶縁性基板の一面上に
形成された薄膜半導体層を光電変換層とする単位太陽電
池の複数個を基板他面上の裏面電極層を用いて接続する
薄膜太陽電池およびその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention connects a plurality of unit solar cells each having a thin film semiconductor layer formed on one surface of an insulating substrate as a photoelectric conversion layer by using a back electrode layer on the other surface of the substrate. The present invention relates to a thin film solar cell and a method for manufacturing the same.
【0002】[0002]
【従来の技術】原料ガスのグロー放電分解などにより形
成されるアモルファスシリコンのようなアモルファス半
導体膜は、気相成長であるため大面積化が容易で、低コ
スト太陽電池の光電変換膜として期待されている。こう
した薄膜太陽電池は、太陽光の入射する側にSnO2 膜
やZnO膜等の透明な電極を設けている。しかし、この
ような透明な電極は、シート抵抗が大きいために、電流
が透明電極を流れることによる電力ロスが大きくなって
しまう。そのため従来は、前記太陽電池を複数の太陽電
池 (ユニットセル) に分割し、分割したユニットセルを
隣接するユニットセルと電気的に接続する直列接続構造
をとっていた。これに対し、特開平6−342924号
公報に記載された薄膜太陽電池では、反光入射側にある
絶縁性基板に穴をあけ、この穴を利用して透明電極層を
基板裏面の接続電極層と接続することにより、高シート
抵抗の透明電極層を流れる電流の径路の距離を短縮でき
る。これにより寸法の限定された単位太陽電池に分割す
ることなく低電圧、大電流型にも構成でき、ジュール損
失が少なく、デッドスペースの部分が縮小して有効発電
面積が増加した薄膜単位太陽電池を得ることができた。
従って、低電圧、大電流型の薄膜太陽電池を構成するの
に極めて有効である。さらに、単位太陽電池の一部に光
電変換層の下の背後電極層の露出する領域を形成し、そ
れと基板を貫通する導体に接続される分離された接続電
極層を隣接単位太陽電池の接続電極層と連結することに
より、精密なパターニング技術を用いることなく直列接
続構造も容易に形成できる。このような構造は、SCA
F (Series-Connection throughApertures on Film)
構造と呼ばれており、図3は、特願平6−326795
号明細書に記載されたSCAF構造の薄膜太陽電池を示
す。図の (a) は上面図、(b) は下面図、 (c) は
(a) のA−A線拡大断面図である。この太陽電池の作
製は次のようにして行われる。プラスチックフィルムを
用いる可撓性基板1に、第一貫通孔11を開け、表面に
金属よりなる背後電極層3、裏面に金属よりなる接続電
極層2を形成したのち、第二貫通孔12を開ける。従っ
て、第一貫通孔11の内壁には背後電極層3と接続電極
層2の接続電極層2の延長部が形成されているが、第二
貫通孔12の内部にはこれらの電極層は形成されていな
い。次に、背後電極層3上にpin構造のアモルファス
シリコン (a−Si) 層4を形成する。この際、同時に
基板裏面の貫通孔11、12外周部にも回り込んだa−
Si層4が形成される。a−Si層4形成についで、透
明電極層5を形成する。ここで、貫通孔11、12の内
壁にも透明電極層が付着するが、基板裏面に形成された
a−Si層4のi層により、透明電極層5と接続電極層
2とが短絡されることはない。このあと、基板裏面の接
続電極層2およびa−Si層4の上に付加接続電極層6
を形成する。この付加接続電極層6は、接続電極層2と
同一金属材料からなるが、第一貫通孔11の近傍には形
成されない。このように付加接続電極6を選択的に形成
するには、マスクを用いても良いし、印刷電極法を用い
てもよい。パターニングライン8は、基板表面の透明電
極層5、a−Si層4および背後電極層3を複数の光電
変換領域に分離するものである。また、基板裏面のパタ
ーニングライン9は、接続電極層2、6を表面上の一つ
の光電変換領域と隣接光電変換領域の接続領域において
他と分離するものである。この構造は第一貫通孔11の
近傍まで透明電極層5を形成しても裏面の接続電極層と
短絡するおそれがないため、光電変換有効面積率が高い
利点がある。2. Description of the Related Art An amorphous semiconductor film such as amorphous silicon formed by glow discharge decomposition of a raw material gas is a vapor phase growth, so that it is easy to increase the area and is expected as a photoelectric conversion film for a low-cost solar cell. ing. In such a thin film solar cell, a transparent electrode such as a SnO 2 film or a ZnO film is provided on the side where sunlight is incident. However, since such a transparent electrode has a large sheet resistance, a power loss due to a current flowing through the transparent electrode becomes large. Therefore, conventionally, the solar cell is divided into a plurality of solar cells (unit cells), and the divided unit cells are electrically connected to adjacent unit cells in series connection structure. On the other hand, in the thin film solar cell described in JP-A-6-342924, a hole is made in the insulating substrate on the light incident side, and the transparent electrode layer is used as the connection electrode layer on the back surface of the substrate by utilizing this hole. By connecting, the distance of the path of the current flowing through the transparent electrode layer having a high sheet resistance can be shortened. As a result, a thin-film unit solar cell that can be configured as a low-voltage, large-current type without dividing into unit solar cells with limited dimensions, has a small Joule loss, and has a reduced dead space part to increase the effective power generation area. I was able to get it.
Therefore, it is extremely effective in constructing a low voltage, large current thin film solar cell. Further, an exposed region of the back electrode layer under the photoelectric conversion layer is formed in a part of the unit solar cell, and the separated connection electrode layer connected to the conductor penetrating the substrate and the separated electrode layer is connected to the connection electrode of the adjacent unit solar cell. By connecting the layers, a series connection structure can be easily formed without using a precise patterning technique. Such a structure is
F (Series-Connection through Apertures on Film)
It is called a structure, and FIG. 3 shows Japanese Patent Application No. 6-326795.
2 shows a thin-film solar cell having the SCAF structure described in the specification. In the figure, (a) is a top view, (b) is a bottom view, and (c) is
It is an AA line expanded sectional view of (a). This solar cell is manufactured as follows. The first through hole 11 is opened in the flexible substrate 1 using a plastic film, the back electrode layer 3 made of metal is formed on the front surface, and the connection electrode layer 2 made of metal is formed on the back surface, and then the second through hole 12 is opened. . Therefore, the back electrode layer 3 and the extension of the connection electrode layer 2 of the connection electrode layer 2 are formed on the inner wall of the first through hole 11, but these electrode layers are formed inside the second through hole 12. It has not been. Next, an amorphous silicon (a-Si) layer 4 having a pin structure is formed on the back electrode layer 3. At this time, at the same time, a-
The Si layer 4 is formed. After forming the a-Si layer 4, the transparent electrode layer 5 is formed. Here, the transparent electrode layer also adheres to the inner walls of the through holes 11 and 12, but the transparent electrode layer 5 and the connection electrode layer 2 are short-circuited by the i layer of the a-Si layer 4 formed on the back surface of the substrate. There is no such thing. Then, the additional connection electrode layer 6 is formed on the connection electrode layer 2 and the a-Si layer 4 on the back surface of the substrate.
To form. The additional connection electrode layer 6 is made of the same metal material as the connection electrode layer 2, but is not formed in the vicinity of the first through hole 11. To selectively form the additional connection electrode 6 in this way, a mask may be used or a printed electrode method may be used. The patterning line 8 separates the transparent electrode layer 5, the a-Si layer 4, and the back electrode layer 3 on the substrate surface into a plurality of photoelectric conversion regions. Further, the patterning line 9 on the back surface of the substrate separates the connection electrode layers 2 and 6 from one photoelectric conversion region on the front surface and the other in the connection region between the adjacent photoelectric conversion regions. This structure has the advantage that the photoelectric conversion effective area ratio is high because there is no risk of short-circuiting with the connection electrode layer on the back surface even if the transparent electrode layer 5 is formed up to the vicinity of the first through hole 11.
【0003】[0003]
【発明が解決しようとする課題】図2に示すSCAF構
造太陽電池を作製するため、基板1の裏面の第一、第二
貫通孔11、12外周部にa−Si層4を回り込ませる
ためには、a−Siの堆積条件、基板1の厚さ、貫通孔
11、12の寸法、形状等に制約があり、製造が困難で
あるという問題点がある。また、耐候性試験結果より、
このようなSCAF構造太陽電池の耐候性のキーポイン
トは、貫通孔11、12の外周部にあることが明らかに
なった。これは、貫通孔の部分には層構造が複雑で、層
厚さの不均一が生じやすく、貫通孔からの水蒸気が層の
薄い部分あるいは層の界面を通じて浸透して電極層の腐
食などが発生するためである。特に、a−Si層は金属
電極層との接着力が低く、その界面から水蒸気が浸入し
やすいという問題がある。In order to manufacture the SCAF structure solar cell shown in FIG. 2, in order to wrap the a-Si layer 4 around the outer peripheral portions of the first and second through holes 11 and 12 on the back surface of the substrate 1. Has a problem in that it is difficult to manufacture due to restrictions on the deposition conditions of a-Si, the thickness of the substrate 1, the sizes and shapes of the through holes 11 and 12. Also, from the weather resistance test results,
It has been clarified that the key point of the weather resistance of such a SCAF structure solar cell is the outer peripheral portions of the through holes 11 and 12. This is because the layer structure is complicated in the through-hole portion, and the layer thickness is likely to be non-uniform, and water vapor from the through-hole penetrates through the thin portion of the layer or the interface between layers to cause corrosion of the electrode layer. This is because In particular, the a-Si layer has a low adhesion to the metal electrode layer, and there is a problem that water vapor easily enters from the interface.
【0004】本発明の目的は、上述の問題を解決し、製
造が容易で耐候性も良好な薄膜太陽電池およびその製造
方法を提供することにある。An object of the present invention is to solve the above problems and provide a thin film solar cell which is easy to manufacture and has good weather resistance, and a method for manufacturing the same.
【0005】[0005]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、絶縁性の可撓性基板の一面上にそれぞ
れ基板側より背後電極層、接合を有する非晶質半導体層
および透明電極層よりなる複数の光電変換領域が配列さ
れ、基板の他面上に、隣接する二つの光電変換領域の互
いに近接した部分に対向して接続電極層が形成され、一
つの光電変換領域の背後電極層と接続電極層とが、背後
電極層、基板および接続電極層を貫通する第一貫通孔の
内壁に被着した背後電極層および接続電極層の延長部を
介して接続され、隣接する光電変換領域の透明電極層と
接続電極層とが、透明電極層、非晶質半導体層、背後電
極層および接続電極層を貫通する第二貫通孔の内壁に被
着した透明電極層および接続電極層の延長部を介して接
続されることにより、各光電変換領域が直列接続される
薄膜太陽電池において、第一貫通孔の周辺の接続電極層
の表面上から第一貫通孔の内壁上の背後電極層あるいは
接続電極層の延長部の表面上にかけて絶縁層によって覆
われたものとする。第二貫通孔の周辺の接続電極層の表
面上から第二貫通孔の内壁上の透明電極層あるいは接続
電極層の延長部の表面上にかけて絶縁層によって覆われ
たことも有効である。絶縁物がSi、Ti、W、Ni、
Mo、Ag、Al、Cu、Taのうちの一つの酸化物あ
るいは窒化物よりなることが良い。第二貫通孔の内壁上
に延長して透明電極層との接続に与える接続電極層が、
基板の他面上に形成された接続電極層上に積層され、延
長部が第二貫通孔の内壁に非晶質半導体層を介して被着
した付加接続電極層であり、この付加接続電極層は第一
貫通孔の周辺部には形成されないことが有効である。そ
のような薄膜太陽電池の本発明の製造方法は、絶縁性の
可撓性基板に複数の第一貫通孔を開ける工程と、基板の
一面上に背後電極層、他面上に接続電極層を形成し、そ
れぞれの延長部を第一貫通孔の内壁上で連結させる工程
と、第一貫通孔の周辺の接続電極層の表面上から第一貫
通孔の内壁上の背後電極層あるいは接続電極層の延長部
上にかけて絶縁層によって覆う工程と、これらの工程の
あとで、背後電極層、基板および接続電極層を貫通する
複数の第二貫通孔を開ける工程と、背後電極層を覆い、
少なくとも第一貫通孔の内壁上に電極層を介して被着し
た絶縁層の表面上まで延長される非晶質半導体層を形成
する工程と、非晶質半導体層を覆い、第二貫通孔の内壁
上の延長部が接続電極層と接続される透明電極層を形成
する工程とを備えたものとする。In order to achieve the above object, the present invention provides a back electrode layer, an amorphous semiconductor layer having a junction, and a back electrode layer on one surface of an insulating flexible substrate from the substrate side, respectively. A plurality of photoelectric conversion regions composed of transparent electrode layers are arranged, and on the other surface of the substrate, a connection electrode layer is formed so as to face parts of adjacent two photoelectric conversion regions that are close to each other. The back electrode layer and the connection electrode layer are connected via the back electrode layer, the substrate and the extension of the back electrode layer and the connection electrode layer attached to the inner wall of the first through hole penetrating the connection electrode layer, and are adjacent to each other. The transparent electrode layer and the connection electrode in which the transparent electrode layer and the connection electrode layer in the photoelectric conversion region are adhered to the inner wall of the second through hole penetrating the transparent electrode layer, the amorphous semiconductor layer, the back electrode layer and the connection electrode layer. By being connected through the extension of the layers , In a thin-film solar cell in which photoelectric conversion regions are connected in series, from the surface of the connection electrode layer around the first through hole to the surface of the back electrode layer on the inner wall of the first through hole or the surface of the extension of the connection electrode layer. It is assumed that it is covered with an insulating layer. It is also effective that the surface of the connection electrode layer around the second through hole is covered with an insulating layer from the surface of the transparent electrode layer on the inner wall of the second through hole or the surface of the extension of the connection electrode layer. Insulators are Si, Ti, W, Ni,
It is preferably made of one oxide or nitride of Mo, Ag, Al, Cu and Ta. The connection electrode layer extending on the inner wall of the second through hole and provided for connection with the transparent electrode layer,
The additional connection electrode layer is laminated on the connection electrode layer formed on the other surface of the substrate, and the extension is attached to the inner wall of the second through hole via the amorphous semiconductor layer. Is effectively not formed in the peripheral portion of the first through hole. The manufacturing method of the present invention for such a thin film solar cell comprises a step of forming a plurality of first through holes in an insulating flexible substrate, a back electrode layer on one surface of the substrate, and a connection electrode layer on the other surface. Forming and connecting the respective extension portions on the inner wall of the first through hole, and the back electrode layer or the connection electrode layer on the inner wall of the first through hole from the surface of the connection electrode layer around the first through hole. A step of covering with an insulating layer over the extended portion of, a step of forming a plurality of second through holes penetrating the back electrode layer, the substrate and the connection electrode layer after these steps, and covering the back electrode layer,
A step of forming an amorphous semiconductor layer that extends to at least the surface of the insulating layer deposited via the electrode layer on the inner wall of the first through hole, and covering the amorphous semiconductor layer, And a step of forming a transparent electrode layer in which the extension on the inner wall is connected to the connection electrode layer.
【0006】[0006]
【作用】透明電極層を全面に形成して光電変換有効面積
を拡大する際に、透明電極層が可撓性基板に開けた第一
貫通孔内に延長して基板裏面の接続電極層と短絡するの
を防止するのに、非晶質半導体層の回り込みを利用しな
いで、非晶質半導体層成膜前に形成される絶縁層を利用
する。これにより非晶質半導体層の第一貫通孔から裏面
への回り込み条件は無関係になる。また、このような絶
縁層の形成により水蒸気浸透が防止され、絶縁層は金属
電極および非晶質半導体層との接着力が高いので界面か
らの水蒸気の浸入もなくなる。さらに、基板裏面の第二
貫通孔の開口部分近傍にも絶縁層を設けることにより、
この部分の水蒸気浸透も防止され、耐候性が向上する。When the transparent electrode layer is formed on the entire surface to expand the photoelectric conversion effective area, the transparent electrode layer extends into the first through hole formed in the flexible substrate and short-circuits with the connection electrode layer on the back surface of the substrate. In order to prevent this, the insulating layer formed before forming the amorphous semiconductor layer is used without utilizing the wraparound of the amorphous semiconductor layer. As a result, the wraparound condition from the first through hole of the amorphous semiconductor layer to the back surface becomes irrelevant. Further, the formation of such an insulating layer prevents water vapor from penetrating, and since the insulating layer has a high adhesive force with the metal electrode and the amorphous semiconductor layer, invasion of water vapor from the interface is also eliminated. Furthermore, by providing an insulating layer near the opening of the second through hole on the back surface of the substrate,
Water vapor permeation in this portion is also prevented, and the weather resistance is improved.
【0007】[0007]
【実施例】以下、図3と共通の部分に同一の符号を付し
た図を引用して本発明の実施例について述べる。図1
(a) 〜 (e) および図2 (a) 〜 (e) は本発明の一
実施例の薄膜太陽電池の製造方法を製造工程の流れに従
って示したものである。図1 (a) は、基板となる絶縁
体である可撓性プラスチック基板1の断面である。基板
1としては、本実施例では厚さ50μmのアラミド、お
よびポリイミドを使用したが、他にポリエーテルサルホ
ン (PES) 、ポリエチレンナフタレート (PEN) 、
ポリエチレンテレフタレート (PET) などの絶縁性プ
ラスチックフィルムを用いることも可能である。可撓性
基板1は、ステッピングロール方式方式あるいはロール
ツーロール方式による成膜の際に、ロールに巻き取るこ
とが可能でハンドリング性に優れ、同時に機械的強度が
十分である任意の厚さのものを使用できる。この基板1
に直列接続に使用する第一貫通孔11を開ける〔図1
(b) 〕。次いで、基板1の上面と裏面にそれぞれ背後
電極層3と接続電極層2を堆積する〔図1(c) 、 (d)
〕。背後電極層3、接続電極層2は、第一貫通孔内に
回り込むため、表面と裏面の電気的接続が行われる。次
に、フィルム基板1裏面の第一貫通孔11周辺部の接続
電極層4の上に、マスク成膜により、絶縁層7を耐候性
のあるSi酸化膜により形成した〔図1 (e) 〕。この
絶縁層7は、Siの窒化物またはTi、W、Ni、M
o、Ag、Al、Cu、Taの酸化物および窒化物でも
よい。この絶縁層7の成膜は、ステッピングロール方式
あるいはロールツーロール方式を用いてのスパッタリン
グ法またはCVD法により、連続的に高い生産性を達成
させる。この絶縁層7をマスク成膜する領域は、後述の
透明電極層の第一貫通孔11を通しての裏面側への回り
込み領域より十分広ければ良く、例えば、第一貫通孔の
直径が1mmであった場合、透明電極層の第一貫通孔1
1を通しての裏面への回り込み領域は、せいぜい直径2
mm程度以下の領域なので、マスク開口幅はこれより十
分広く、例えば倍の4mm以上あればよい。次に第二貫
通孔12を開ける〔図2 (a) 〕。この第二貫通孔は、
集電用として用いられ、透明電極層と裏面の接続電極層
2および後述の付加接続電極層とを接続し、シート抵抗
の高い透明電極層による電力損失の低減を行う。この
際、背後電極層3および接続電極層2は第二貫通孔12
断面できれいに切断され、図示のように第二貫通孔内に
は電極が存在しない。この第二貫通孔12加工の後、背
後電極層3の上にa−Si光電変換層4、透明電極層5
を堆積する〔図2 (b) 、 (c) 〕。次に、裏面の接続
電極層2上に付加接続電極層6を第一貫通孔11周辺部
に堆積が起こらないようにマスク成膜する〔図2 (d)
〕。この付加接続電極層6は、第二貫通孔12部分で
の透明電極層5と裏面の接続電極層2とを接続する役割
を有し、同時に裏面接続電極層2のシート抵抗低減の役
割を持つ。続いて、レーザによる上面のパターニングラ
イン8で、背後電極層3、a−Si層4、透明電極層5
を複数の光電変換部に分離し、裏面のパターニングライ
ン9により各直列接続セルごとの分離を行う。Embodiments of the present invention will be described below with reference to the drawings in which the same parts as those in FIG. FIG.
2 (a) to (e) and FIGS. 2 (a) to (e) show a method of manufacturing a thin film solar cell according to an embodiment of the present invention in accordance with a flow of manufacturing steps. FIG. 1A is a cross section of a flexible plastic substrate 1 which is an insulator serving as a substrate. As the substrate 1, aramid and polyimide having a thickness of 50 μm were used in this embodiment, but in addition, polyether sulfone (PES), polyethylene naphthalate (PEN),
It is also possible to use an insulating plastic film such as polyethylene terephthalate (PET). The flexible substrate 1 is of an arbitrary thickness that can be wound up on a roll and has excellent handleability at the time of film formation by a stepping roll method or a roll-to-roll method, and at the same time has sufficient mechanical strength. Can be used. This board 1
First through hole 11 used for series connection is opened in [Fig. 1
(b)]. Next, a back electrode layer 3 and a connection electrode layer 2 are deposited on the upper surface and the back surface of the substrate 1, respectively (FIGS. 1C and 1D).
]. Since the back electrode layer 3 and the connection electrode layer 2 wrap around the first through hole, the front surface and the back surface are electrically connected. Next, an insulating layer 7 was formed of a weather resistant Si oxide film on the connection electrode layer 4 around the first through hole 11 on the back surface of the film substrate 1 by mask film formation [FIG. 1 (e)]. . This insulating layer 7 is made of a nitride of Si or Ti, W, Ni, M.
Oxides of Ag, Ag, Al, Cu and Ta and nitrides may be used. The insulating layer 7 is formed by a sputtering method or a CVD method using a stepping roll method or a roll-to-roll method to continuously achieve high productivity. The region where the insulating layer 7 is formed as a mask has only to be sufficiently wider than the wraparound region to the back surface side through the first through hole 11 of the transparent electrode layer described later. For example, the diameter of the first through hole is 1 mm. In this case, the first through hole 1 of the transparent electrode layer
The wraparound area to the back side through 1 has a diameter of at most 2
Since the area is about mm or less, the mask opening width is sufficiently wider than this, for example, 4 mm or more. Next, the second through hole 12 is opened [Fig. 2 (a)]. This second through hole is
Used for collecting current, the transparent electrode layer is connected to the connection electrode layer 2 on the back surface and the additional connection electrode layer described later, and the power loss is reduced by the transparent electrode layer having a high sheet resistance. At this time, the back electrode layer 3 and the connection electrode layer 2 are not connected to the second through hole 12
The cross section is cut cleanly and there are no electrodes in the second through hole as shown. After the processing of the second through hole 12, the a-Si photoelectric conversion layer 4 and the transparent electrode layer 5 are formed on the back electrode layer 3.
Are deposited [FIG. 2 (b), (c)]. Next, the additional connection electrode layer 6 is mask-formed on the back surface of the connection electrode layer 2 so as to prevent deposition around the first through hole 11 [FIG. 2 (d)].
]. The additional connection electrode layer 6 has a role of connecting the transparent electrode layer 5 in the second through hole 12 portion and the connection electrode layer 2 on the back surface, and at the same time, has a role of reducing the sheet resistance of the back surface connection electrode layer 2. . Then, the back electrode layer 3, the a-Si layer 4, the transparent electrode layer 5 are formed on the patterning line 8 on the upper surface by the laser.
Are separated into a plurality of photoelectric conversion units, and each series-connected cell is separated by the patterning line 9 on the back surface.
【0008】図4、図5は、本発明の実施例の薄膜太陽
電池における絶縁層7のパターンを示すための平面図
で、いずれも (a) が上面図、 (b) が下面図である。
わかりやすくするために、絶縁層7のみ斜線を引いて示
している。図4は、ステッピングロール方式により成膜
した場合で、ステッピングロール方式では、マスク成膜
の位置精度が高く、絶縁層7の堆積領域を第一貫通孔1
1の周辺部のみに小さく抑えることが可能である。図5
は、ロールツーロール方式により成膜した場合で、絶縁
層5を第一貫通孔11の存在する部分に帯状に形成して
いる。ロールツーロール方式は、マスク成膜の位置精度
は低いが非常に生産性が高く、図5のようなマスク成膜
パターンを用いるとこの方式の適用も可能になる。FIGS. 4 and 5 are plan views showing the pattern of the insulating layer 7 in the thin film solar cell of the embodiment of the present invention, in which (a) is a top view and (b) is a bottom view. .
For ease of understanding, only the insulating layer 7 is shown by hatching. FIG. 4 shows a case where the film is formed by the stepping roll method. In the stepping roll method, the position accuracy of the mask film formation is high, and the deposition region of the insulating layer 7 is formed in the first through hole 1.
It is possible to keep it small only in the peripheral part of 1. Figure 5
When the film is formed by the roll-to-roll method, the insulating layer 5 is formed in a band shape in the portion where the first through hole 11 exists. The roll-to-roll method has a very low position accuracy of mask film formation, but has extremely high productivity, and this method can be applied by using a mask film formation pattern as shown in FIG.
【0009】以上の実施例では、絶縁層7の形成により
第一貫通孔11部分の耐候性は向上するが、第二貫通孔
12部分の耐候性は向上しない。従って、第二貫通孔1
2部分の耐候性を高めるためには、製造工程の最後に図
6に示すように第二貫通孔12の周辺部から内壁にかけ
てSi酸化物などよりなる絶縁層7をマスク成膜する。In the above embodiments, the formation of the insulating layer 7 improves the weather resistance of the first through hole 11 portion, but does not improve the weather resistance of the second through hole 12 portion. Therefore, the second through hole 1
In order to improve the weather resistance of the two portions, as shown in FIG. 6, at the end of the manufacturing process, the insulating layer 7 made of Si oxide or the like is masked from the peripheral portion of the second through hole 12 to the inner wall.
【0010】[0010]
【発明の効果】本発明によれば、可撓性基板上の背後電
極層と基板裏面の接続電極層との接続を行う第一貫通孔
内への透明電極の回り込みによる短絡を、第一貫通孔の
基板裏面への開口部近傍を絶縁層で被覆することにより
防止する結果、非晶質半導体層の回り込みの制御が不必
要になった。また、耐候性に不利な貫通孔部分への絶縁
膜の形成は耐候性が向上し、絶縁層による短絡防止と共
に信頼性の高い薄膜太陽電池の製造を可能にした。この
ような絶縁層の堆積には、ステッピングロール方式やロ
ールツーロール方式の適用もでき、生産性を高めること
が可能である。According to the present invention, a short circuit due to the transparent electrode wrapping around in the first through hole for connecting the back electrode layer on the flexible substrate and the connection electrode layer on the back surface of the substrate is eliminated. As a result of preventing the holes by covering the vicinity of the opening to the back surface of the substrate with an insulating layer, control of the wraparound of the amorphous semiconductor layer becomes unnecessary. In addition, the formation of the insulating film on the through-hole portion, which is unfavorable to the weather resistance, improves the weather resistance and enables the production of highly reliable thin film solar cells as well as the prevention of short circuits by the insulating layer. A stepping roll method or a roll-to-roll method can be applied to the deposition of such an insulating layer, and the productivity can be improved.
【図1】本発明の一実施例の薄膜太陽電池の製造方法に
おける製造工程の前半を (a)ないし (e) の順に示す
断面図FIG. 1 is a sectional view showing the first half of a manufacturing process in a method for manufacturing a thin-film solar cell according to an embodiment of the present invention in the order of (a) to (e).
【図2】本発明の一実施例の薄膜太陽電池の製造方法に
おける製造工程の後半を (a)ないし (e) の順に示す
断面図FIG. 2 is a cross-sectional view showing the latter half of the manufacturing process in the method of manufacturing a thin-film solar cell of one embodiment of the present invention in the order of (a) to (e).
【図3】従来のSCAF構造薄膜太陽電池を示し、
(a) が上面図、 (b) が下面図、(c) が (a) のA−
A線断面図FIG. 3 shows a conventional SCAF thin film solar cell,
(a) is a top view, (b) is a bottom view, and (c) is A- in (a).
A line cross section
【図4】本発明の一実施例の薄膜太陽電池の一部を示
し、 (a) が上面図、 (b) が下面図FIG. 4 shows a part of a thin film solar cell according to an embodiment of the present invention, (a) is a top view and (b) is a bottom view.
【図5】本発明の別の実施例の薄膜太陽電池の一部を示
し、 (a) が上面図、 (b) が下面図FIG. 5 shows a part of a thin film solar cell according to another embodiment of the present invention, (a) is a top view and (b) is a bottom view.
【図6】本発明のさらに別の実施例の薄膜太陽電池の一
部を示す断面図FIG. 6 is a sectional view showing a part of a thin film solar cell according to still another embodiment of the present invention.
1 可撓性基板 11 第一貫通孔 12 第二貫通孔 2 接続電極層 3 背後電極層 4 a−Si層 5 透明電極層 6 付加接続電極層 7 絶縁層 8、9 パターニングライン 1 flexible substrate 11 1st penetration hole 12 2nd penetration hole 2 connection electrode layer 3 back electrode layer 4 a-Si layer 5 transparent electrode layer 6 additional connection electrode layer 7 insulating layers 8 and 9 patterning line
Claims (5)
板側より背後電極層、接合を有する非晶質半導体層およ
び透明電極層よりなる複数の光電変換領域が配列され、
基板の他面上に、隣接する二つの光電変換領域の互いに
近接した部分に対向して接続電極層が形成され、一つの
光電変換領域の背後電極層と接続電極層とが、背後電極
層、基板および接続電極層を貫通する第一貫通孔の内壁
に被着した背後電極層および接続電極層の延長部を介し
て接続され、隣接する光電変換領域の透明電極層と接続
電極層とが、透明電極層、非晶質半導体層、背後電極
層、基板および接続電極層を貫通する第二貫通孔の内壁
に被着した透明電極層および接続電極層の延長部を介し
て接続されることにより、各光電変換領域が直列接続さ
れる薄膜太陽電池において、第一貫通孔の周辺の接続電
極層の表面上から第一貫通孔の内壁上の背後電極層ある
いは接続電極層の延長部の表面上にかけて絶縁層によっ
て覆われたことを特徴とする薄膜太陽電池。1. A plurality of photoelectric conversion regions composed of a back electrode layer, an amorphous semiconductor layer having a junction, and a transparent electrode layer are arranged on one surface of an insulating flexible substrate from the substrate side, respectively.
On the other surface of the substrate, the connection electrode layer is formed so as to face the mutually adjacent portions of the two adjacent photoelectric conversion regions, the back electrode layer and the connection electrode layer of one photoelectric conversion region, the back electrode layer, Connected via an extension of the back electrode layer and the connection electrode layer attached to the inner wall of the first through hole penetrating the substrate and the connection electrode layer, the transparent electrode layer and the connection electrode layer of the adjacent photoelectric conversion region, By being connected through the transparent electrode layer, the amorphous semiconductor layer, the back electrode layer, the substrate and the extension of the connection electrode layer and the transparent electrode layer adhered to the inner wall of the second through hole penetrating the connection electrode layer. , In a thin-film solar cell in which photoelectric conversion regions are connected in series, from the surface of the connection electrode layer around the first through hole to the surface of the back electrode layer on the inner wall of the first through hole or the surface of the extension of the connection electrode layer. That it was covered with an insulating layer over Thin film solar cells to be.
ら第二貫通孔の内壁上の透明電極層あるいは接続電極層
の延長部の表面上にかけて絶縁層によって覆われた請求
項1記載の薄膜太陽電池。2. The insulating layer covering from the surface of the connection electrode layer around the second through hole to the surface of the transparent electrode layer on the inner wall of the second through hole or the surface of the extension of the connection electrode layer. The thin film solar cell described.
ン、ニッケル、モリブデン、銀、アルミニウム、銅およ
びタンタルのうちの一つの酸化物あるいは窒化物よりな
る請求項1あるいは2記載の薄膜太陽電池。3. The thin film solar cell according to claim 1, wherein the insulating material is one of oxides or nitrides of silicon, titanium, tungsten, nickel, molybdenum, silver, aluminum, copper and tantalum.
との接続に与かる接続電極層が、基板の他面上に形成さ
れた接続電極層上に積層され、延長部が第二貫通孔の内
壁に非晶質半導体層を介して被着した付加接続電極層で
あり、この付加接続電極層は、第一貫通孔の周辺部には
形成されない請求項1ないし3のいずれかに記載の薄膜
太陽電池。4. A connection electrode layer, which extends on the inner wall of the second through hole and contributes to connection with the transparent electrode layer, is laminated on the connection electrode layer formed on the other surface of the substrate, and the extension portion is formed. The additional connection electrode layer deposited on the inner wall of the second through hole via the amorphous semiconductor layer, and the additional connection electrode layer is not formed in the peripheral portion of the first through hole. A thin film solar cell according to the item Crab.
開ける工程と、基板の一面上に背後電極層、他面上に接
続電極層を形成し、それぞれの延長部を第一貫通孔の内
壁上で連結させる工程と、第一貫通孔の周辺の接続電極
層の表面上から第一貫通孔の内壁上の背後電極層あるい
は接続電極層の延長部上にかけて絶縁層によって覆う工
程と、これらの工程のあとに、背後電極層、基板および
接続電極層を貫通する複数の第二貫通孔を開ける工程
と、背後電極層を覆い、少なくとも第一貫通孔の内壁上
に電極層を介して被着した絶縁層の表面上まで延長され
る非晶質半導体層を形成する工程と、非晶質半導体層を
覆い第二貫通孔の内壁上の延長部が接続電極層と接続さ
れる透明電極層を形成する工程とを備えたことを特徴と
する請求項1ないし4のいずれかに記載の薄膜太陽電池
の製造方法。5. A step of forming a plurality of first through holes in an insulative flexible substrate, a back electrode layer on one surface of the substrate, and a connection electrode layer on the other surface of the substrate. One step of connecting on the inner wall of the through hole, and covering with an insulating layer from the surface of the connection electrode layer around the first through hole to the back electrode layer on the inner wall of the first through hole or the extension of the connection electrode layer. Steps, after these steps, a step of forming a plurality of second through holes penetrating the back electrode layer, the substrate and the connection electrode layer, and covering the back electrode layer, at least the electrode layer on the inner wall of the first through hole A step of forming an amorphous semiconductor layer extended to the surface of the insulating layer deposited through the, and the extension on the inner wall of the second through hole covering the amorphous semiconductor layer is connected to the connection electrode layer. And a step of forming a transparent electrode layer according to claim 1. Method of manufacturing a thin film solar cell according to any one of.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7105145A JPH08306943A (en) | 1995-04-28 | 1995-04-28 | Thin film solar cell and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7105145A JPH08306943A (en) | 1995-04-28 | 1995-04-28 | Thin film solar cell and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08306943A true JPH08306943A (en) | 1996-11-22 |
Family
ID=14399571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7105145A Pending JPH08306943A (en) | 1995-04-28 | 1995-04-28 | Thin film solar cell and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08306943A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002118272A (en) * | 2000-10-06 | 2002-04-19 | Fuji Electric Co Ltd | Thin film solar battery and its manufacturing method therefor |
JP2003060219A (en) * | 2001-06-04 | 2003-02-28 | Fuji Electric Corp Res & Dev Ltd | Thin film solar cell and manufacturing method therefor |
JP2006049541A (en) * | 2004-08-04 | 2006-02-16 | Fuji Electric Holdings Co Ltd | Solar cell module and its manufacturing method |
CN102386334A (en) * | 2011-11-24 | 2012-03-21 | 深圳市创益科技发展有限公司 | Solar cell photovoltaic building component and manufacturing method thereof |
WO2012172827A1 (en) * | 2011-06-17 | 2012-12-20 | 富士電機株式会社 | Thin film solar cell and method for manufacturing same |
-
1995
- 1995-04-28 JP JP7105145A patent/JPH08306943A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002118272A (en) * | 2000-10-06 | 2002-04-19 | Fuji Electric Co Ltd | Thin film solar battery and its manufacturing method therefor |
JP2003060219A (en) * | 2001-06-04 | 2003-02-28 | Fuji Electric Corp Res & Dev Ltd | Thin film solar cell and manufacturing method therefor |
JP2006049541A (en) * | 2004-08-04 | 2006-02-16 | Fuji Electric Holdings Co Ltd | Solar cell module and its manufacturing method |
WO2012172827A1 (en) * | 2011-06-17 | 2012-12-20 | 富士電機株式会社 | Thin film solar cell and method for manufacturing same |
CN102386334A (en) * | 2011-11-24 | 2012-03-21 | 深圳市创益科技发展有限公司 | Solar cell photovoltaic building component and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5626686A (en) | Thin-film solar cell and method of manufacturing the same | |
US5421908A (en) | Thin-film solar cell and method for the manufacture thereof | |
US5928439A (en) | Thin-film solar cell and method for the manufacture thereof | |
US5468988A (en) | Large area, through-hole, parallel-connected photovoltaic device | |
EP0482511B1 (en) | Integrated photovoltaic device | |
US4849029A (en) | Energy conversion structures | |
JPH0528512B2 (en) | ||
WO1993023880A1 (en) | Monolithic, parallel connected photovoltaic array and method for its manufacture | |
JP2986875B2 (en) | Integrated solar cell | |
JPH0983001A (en) | Integrated thin film solar battery | |
WO2019148774A1 (en) | Manufacturing method of thin film solar cell | |
JPH08306943A (en) | Thin film solar cell and its manufacture | |
CN102782874A (en) | Solar cell apparatus and method for manufacturing the same | |
US6188013B1 (en) | Solar cell | |
JPH06268241A (en) | Thin-film solar cell and manufacture thereof | |
JP3111805B2 (en) | Thin film solar cell and method of manufacturing the same | |
JP2009065022A (en) | Thin-film solar battery and method of manufacturing the same | |
JPH08116081A (en) | Thin film solar cell | |
JP4045484B2 (en) | Thin film solar cell and manufacturing method thereof | |
JPH07297436A (en) | Thin film solar battery sub-module and thin film solar battery module | |
JPS5955079A (en) | Thin film semiconductor device | |
KR102497067B1 (en) | Thin film device having additional conductive line and manufacturing method thereof | |
JPH08330612A (en) | Thin film solar cell and manufacture therof | |
JP3455364B2 (en) | Thin film solar cell and method of manufacturing the same | |
JP3762013B2 (en) | Manufacturing method of integrated thin film photoelectric conversion device |