[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08306683A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH08306683A
JPH08306683A JP10530395A JP10530395A JPH08306683A JP H08306683 A JPH08306683 A JP H08306683A JP 10530395 A JP10530395 A JP 10530395A JP 10530395 A JP10530395 A JP 10530395A JP H08306683 A JPH08306683 A JP H08306683A
Authority
JP
Japan
Prior art keywords
gas
substrate
insulating film
silicon oxide
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10530395A
Other languages
Japanese (ja)
Inventor
Junichi Sato
淳一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP10530395A priority Critical patent/JPH08306683A/en
Publication of JPH08306683A publication Critical patent/JPH08306683A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE: To make it possible to form a silicon oxide insulating film, which is superior in self-reflow properties and is high in gap filling characteristics, by a method wherein the silicon oxide insulating film is formed on a substrate to be treated by a normal pressure CVD method, which is performed using raw gas containing organic silane gas, oxidizing gas and water vapor as its main components. CONSTITUTION: A substrate 11 to be treated and to be formed with a silicon oxide insulating film is set on a substrate stage 12 provided with a built-in heater 13. Raw gas, which is introduced in a gas introducing hole 16, is diffused by a gas diffusion plate 15 and is uniformly jetted on the surface of the substrate 11 through a gas shower head 14 having porous plate-shaped gas blow-off holes to the substrate 11. Here, as the raw gas, raw gas containing organic silane gas, oxidizing gas and water vapor its main components is used and the silicon oxide insulating film is formed on the substrate 11 to be treated by a normal pressure CVD method using the raw gas. As the oxidizing gas, gas containing ozone or containing ozone as its main component is desirable and it is also desirable to apply ultrasonic waves to the substrate to be treated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、更に詳しくは、段差や凹部を有する被処理基板上
に形成して平坦な表面を得ることができるとともに、膜
質に優れた酸化シリコン系絶縁膜を形成する工程を含む
半導体装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more specifically, it is capable of forming a flat surface on a substrate to be processed having a step or a recess and obtaining a silicon oxide excellent in film quality. The present invention relates to a method for manufacturing a semiconductor device including a step of forming a system insulating film.

【0002】[0002]

【従来の技術】LSI等の半導体装置の高集積化が進展
し、そのデザインルールがサブハーフミクロンからクォ
ータミクロンのレベルへと微細化されるに伴い、内部配
線のパターン幅も縮小されつつある。一方配線抵抗を低
いレベルに保ち信号伝播の遅延や各種マイグレーション
を防止するには配線の断面積を確保する必要がある。す
なわち配線の高さはある程度必要であることから、配線
のアスペクト比、および隣り合う配線間のギャップ(凹
部)のアスペクト比は増加の傾向にある。
2. Description of the Related Art With the progress of higher integration of semiconductor devices such as LSI and the miniaturization of the design rule from sub-half micron to quarter micron, the pattern width of internal wiring is being reduced. On the other hand, in order to keep the wiring resistance at a low level and prevent signal propagation delay and various migrations, it is necessary to secure the wiring cross-sectional area. That is, since the height of the wiring is required to some extent, the aspect ratio of the wiring and the aspect ratio of the gap (recess) between the adjacent wirings tend to increase.

【0003】かかる微細配線を多層配線として用いる場
合には、下層配線により形成された段差やギャップ上に
平坦化層間絶縁膜を形成してフラットな表面を確保し、
この上に上層配線を形成するプロセスを繰り返すことが
必要となる。このため平坦性と膜質にすぐれた層間絶縁
膜の形成方法が高集積度半導体装置のキープロセスの1
つとなっている。
When such fine wiring is used as a multilayer wiring, a flattened interlayer insulating film is formed on a step or a gap formed by the lower wiring to secure a flat surface,
It is necessary to repeat the process of forming the upper layer wiring on this. Therefore, a method of forming an interlayer insulating film excellent in flatness and film quality is one of the key processes for highly integrated semiconductor devices.
It has become one.

【0004】従来より各種の平坦化層間絶縁膜の形成方
法が開発されており、例えば月刊セミコンダクター・ワ
ールド誌(プレスジャーナル社刊)1989年11月号
81ページにはこれら形成方法の総説が掲載されてい
る。このうち、TEOS(Tetraethyl or
thosilicate、あるいは Tetraeth
oxy silane)等の有機系シランガスと、O2
またはO3 等の酸化性ガスとを原料ガスとしたCVD法
による酸化シリコン系の絶縁膜は、成膜時に下地段差を
吸収して良好なステップカバリッジを得ることができ
る、いわゆるセルフフロープロセスとして注目されてい
る。
Conventionally, various methods for forming a planarized interlayer insulating film have been developed. For example, a monthly review of these forming methods can be found in page 81 of the November 1989 issue of Semiconductor World magazine (published by Press Journal). ing. Of these, TEOS (Tetraethyl or
thosilicate, or Tetraeth
organic silane gas such as oxysilane) and O 2
Alternatively, a silicon oxide-based insulating film formed by a CVD method using an oxidizing gas such as O 3 as a raw material gas is a so-called self-flow process that can absorb a step difference in a base during film formation to obtain a good step coverage. Attention has been paid.

【0005】有機シラン系ガスと酸化性ガスによるCV
Dは、その反応設計の違いにより、プラズマCVDと常
圧CVDに大別される。このうちプラズマCVDは、2
50℃程度まで反応温度を下げられることから、低融点
金属であるAl系金属配線上の層間絶縁膜としての利用
も可能である。特に酸化性ガスとしてH2 O(水蒸気)
を用いれば、高アスペクト比のAl系金属配線上の層間
絶縁膜を、ボイドを発生することなく形成することがで
きるとされている。これは、H2 Oの添加により下地材
料層表面と中間生成物との親和性を高め、層間絶縁膜の
セルフフローを促進するためと考えられる。この種のプ
ラズマCVDに関しては、第38回応用物理学関係連合
講演会(1991年春季年会)講演予稿集p632、講
演番号29p−V−8および29p−V−9、あるいは
特開平5−121568号公報で提案されている。
CV using an organic silane-based gas and an oxidizing gas
D is roughly classified into plasma CVD and atmospheric pressure CVD depending on the difference in reaction design. Of these, plasma CVD is 2
Since the reaction temperature can be lowered to about 50 ° C., it can be used as an interlayer insulating film on Al-based metal wiring which is a low melting point metal. Especially, H 2 O (steam) as oxidizing gas
It is said that, by using the above method, an interlayer insulating film on a high aspect ratio Al-based metal wiring can be formed without generating voids. It is considered that this is because the addition of H 2 O enhances the affinity between the surface of the base material layer and the intermediate product and promotes the self-flow of the interlayer insulating film. Regarding this type of plasma CVD, the proceedings of the 38th Joint Lecture on Applied Physics (1991 Spring Annual Meeting) p632, Lecture Nos. 29p-V-8 and 29p-V-9, or JP-A-5-121568. It has been proposed in the publication.

【0006】一方の常圧CVDは、反応温度はプラズマ
CVDより若干高いものの、デポジションレートが大き
く、特に有機シラン系ガスと無機酸を原料ガスとする常
圧CVDは加水分解速度が向上して低水酸基含有量の層
間絶縁膜が形成される旨が、特開平3−116835公
報に開示されている。
On the other hand, the atmospheric pressure CVD has a reaction temperature slightly higher than that of the plasma CVD, but has a large deposition rate. In particular, the atmospheric pressure CVD using an organic silane-based gas and an inorganic acid as a source gas has an improved hydrolysis rate. JP-A-3-116835 discloses that an interlayer insulating film having a low hydroxyl content is formed.

【0007】[0007]

【発明が解決しようとする課題】しかしながらH2 Oは
酸化作用が弱く、形成された層間絶縁膜中に水酸基や有
機成分が多く残留する。このため層間絶縁膜中からのガ
ス脱離や、これに起因する膜の収縮やクラックの発生、
絶縁耐圧の低下、さらにはAl系金属配線を使用した場
合のアフターコロージョン発生の問題等が残る。
However, H 2 O has a weak oxidizing action, and a large amount of hydroxyl groups and organic components remain in the formed interlayer insulating film. For this reason, gas desorption from the interlayer insulating film, shrinkage or cracking of the film due to this,
There are still problems such as a decrease in withstand voltage and the occurrence of after-corrosion when an Al-based metal wiring is used.

【0008】さらに無機酸を用いる常圧CVDにおいて
は加水分解速度が非常に大きく、しかもその制御が困難
なことから、低分子量の加水分解生成物が優先的に被処
理基板上に堆積し、肝心のセルフフロー形状を得にくい
場合があった。
Further, in atmospheric pressure CVD using an inorganic acid, the hydrolysis rate is very high, and its control is difficult. Therefore, the hydrolysis products of low molecular weight are preferentially deposited on the substrate to be processed, which is important. In some cases, it was difficult to obtain the self-flow shape.

【0009】そこで本願出願人は先に出願した特願平5
−022197号明細書において、原料ガス中に反応触
媒として塩基性ガスを添加することにより、脱水縮合の
反応速度を高める方法を提案した。このプロセスによ
り、膜中の水酸基を減少するとともに、ある程度分子量
の大きいセルフフロー形状に優れた反応生成物を得てス
テップカバリッジを向上することが可能となった。
Therefore, the applicant of the present application filed Japanese Patent Application No.
No. 022197 proposes a method of increasing the reaction rate of dehydration condensation by adding a basic gas as a reaction catalyst to a raw material gas. By this process, it became possible to reduce the hydroxyl groups in the film and obtain a reaction product having a large self-flow shape with a relatively large molecular weight to improve the step coverage.

【0010】しかしながら、塩基性触媒を用いるこの方
法は、同一の材料表面をもつ被処理基板上でのセルフフ
ロー形状は極めて優れているものの、例えば金属と絶縁
材料のように、異なる材料表面を有する被処理基板にお
いては、時として成長速度やセルフフロー形状が影響を
うける場合があった。
However, this method using a basic catalyst has a very good self-flow shape on a substrate to be processed having the same material surface, but has different material surfaces such as metal and insulating material. In the substrate to be processed, the growth rate and the self-flow shape were sometimes affected.

【0011】本発明の課題は上記従来技術を更に改良
し、有機シラン系ガスを用いた常圧CVDによる酸化シ
リコン系絶縁膜を形成するにあたり、セルフフロー性に
優れ、ギャップフィル特性の高い酸化シリコン系絶縁膜
を形成する工程を含む半導体装置の製造方法を提供する
ことである。
An object of the present invention is to further improve the above-mentioned conventional technique and to form a silicon oxide type insulating film by atmospheric pressure CVD using an organic silane type gas, which is excellent in self-flow property and has a high gap fill characteristic. A method of manufacturing a semiconductor device including a step of forming a system insulating film.

【0012】本発明の他の課題は、膜中の水酸基や有機
物が低減され、成膜後のガス脱離やこれに伴う膜の収縮
やクラックの発生のない、信頼性に優れた酸化シリコン
系絶縁膜を形成する工程を含む半導体装置の製造方法を
提供することである。
Another object of the present invention is to reduce the number of hydroxyl groups and organic substances in the film, to prevent gas desorption after film formation and to prevent shrinkage and cracks of the film, which is highly reliable, and to be highly reliable. It is an object of the present invention to provide a method for manufacturing a semiconductor device including a step of forming an insulating film.

【0013】[0013]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、上記の課題を解決するために提案するもので
あり、有機シラン系ガス、酸化性ガスおよびH2 O(水
蒸気)とを主体とする原料ガスを用いた常圧CVD法に
より、被処理基板上に酸化シリコン系絶縁膜を形成する
工程を含むことを特徴とする、半導体装置の製造方法で
ある。
A method of manufacturing a semiconductor device according to the present invention is proposed to solve the above-mentioned problems, and an organic silane-based gas, an oxidizing gas and H 2 O (steam) are used. A method of manufacturing a semiconductor device, comprising a step of forming a silicon oxide insulating film on a substrate to be processed by an atmospheric pressure CVD method using a source gas as a main component.

【0014】酸化性ガスとしてはオゾンまたはオゾンを
主体として含むガスであることが望ましい。また被処理
基板に超音波を印加することも、望ましい態様の一つで
ある。
The oxidizing gas is preferably ozone or a gas mainly containing ozone. Applying ultrasonic waves to the substrate to be processed is also one of desirable modes.

【0015】また本発明の半導体装置の製造方法は、有
機シラン系ガス、酸化性ガス、H2O(水蒸気)および
塩基性ガスとを主体とする原料ガスを用いた常圧CVD
法により、被処理基板上に酸化シリコン系絶縁膜を形成
する工程を含むことを特徴とする、半導体装置の製造方
法である。
Further, the method for manufacturing a semiconductor device of the present invention is an atmospheric pressure CVD method using a source gas mainly containing an organic silane-based gas, an oxidizing gas, H 2 O (steam) and a basic gas.
And a step of forming a silicon oxide type insulating film on the substrate to be processed by a method.

【0016】この場合も、酸化性ガスとしてはオゾンま
たはオゾンを主体として含むガスであることが望まし
い。塩基性ガスとしては、NH3 、N2 2 、N2 2
誘導体およびアルキルアミンのうちのいずれかであるこ
とが望ましい。また被処理基板に超音波を印加すること
も、望ましい態様の一つである。超音波は基板ステージ
に印加して被処理基板を励振してもよいが、他に原料ガ
スノズルやCVDチャンバ内の原料ガスを励振してもよ
い。
Also in this case, it is desirable that the oxidizing gas is ozone or a gas containing ozone as a main component. As the basic gas, NH 3 , N 2 H 2 , N 2 H 2
It is preferably either a derivative or an alkylamine. Applying ultrasonic waves to the substrate to be processed is also one of desirable modes. The ultrasonic waves may be applied to the substrate stage to excite the substrate to be processed, but alternatively, the source gas nozzle or the source gas in the CVD chamber may be excited.

【0017】本発明で採用する有機シラン系ガスとして
は、TEOSをはじめとし、Tetramethyl
orthosilicate(TMOS)、Diace
toxy ditertialybutoxy sil
ane(DADBS)、Tetraethyl sil
ane(TES)、Tetramethyl sila
ne(TMS)、Octamethyl cyclo−
tetrasiloxane(OMCTS)、Tetr
apropoxy silane(TPOS)、Tet
ramethyl cyclo−tetrasilox
ane(TMCTS)等、他の有機シラン系ガスを適宜
使用することができる。置換基としてフッ素を有する有
機シラン系ガスを採用してもよい。またこれら有機シラ
ン系ガスにSiH4 、Si2 6 等無機系のシランガス
を添加してもよい。
Examples of the organic silane-based gas used in the present invention include TEOS and Tetramethyl.
orthosilicate (TMOS), Diace
toxy digitally butoxy sil
ane (DADBS), Tetraethyl sil
one (TES), Tetramethyl sila
ne (TMS), Octamethyl cyclo-
tetrasiloxane (OMCTS), Tetr
apropoxy silane (TPOS), Tet
ramethyl cyclo-tetrasilox
Other organic silane-based gas such as ane (TMCTS) can be appropriately used. An organic silane-based gas having fluorine as a substituent may be adopted. Inorganic silane gases such as SiH 4 and Si 2 H 6 may be added to these organic silane gases.

【0018】なお、本発明における常圧CVDは1気圧
(1.01×105 Pa)に限定されることなく、多少
の減圧雰囲気や加圧雰囲気であってもよい。
The atmospheric pressure CVD in the present invention is not limited to 1 atm (1.01 × 10 5 Pa) and may be a slightly reduced pressure atmosphere or a pressurized atmosphere.

【0019】[0019]

【作用】本発明の骨子は、有機シラン系ガスを用いた常
圧CVDにおいて、原料ガスにH2 Oを添加することに
より、下地材料層の表面性に依存することなく、下地材
料層と反応中間生成物との親和性(濡れ性)を向上しセ
ルフフロー性とギャップフィル性を高めることである。
さらに酸化性ガスとして別途オゾンを主体とするガスを
添加し、酸化反応を徹底して酸化シリコン系材料層中の
残留有機物や水酸基を低減し膜質を向上する。かかる原
料ガス組成の選択により、常圧CVDのデポジションレ
ートの高さ、ギャップフィル性および膜質を共に満足す
る酸化シリコン系材料層が形成できる。
The essence of the present invention is that, in atmospheric pressure CVD using an organic silane-based gas, H 2 O is added to the raw material gas to react with the base material layer without depending on the surface property of the base material layer. It is to improve the affinity (wettability) with the intermediate product and enhance the self-flow property and the gap fill property.
Further, a gas mainly containing ozone is added as an oxidizing gas to thoroughly carry out the oxidation reaction to reduce the residual organic substances and hydroxyl groups in the silicon oxide-based material layer and improve the film quality. By selecting the composition of the raw material gas, it is possible to form a silicon oxide-based material layer that satisfies the high deposition rate of atmospheric pressure CVD, the gap fill property, and the film quality.

【0020】さらに、上述した原料ガスに塩基性ガスを
添加すれば、脱水縮合の反応速度を促進し、膜中の水酸
基を減少して、一層膜質を向上することが可能となる。
Furthermore, if a basic gas is added to the above-mentioned raw material gas, the reaction rate of dehydration condensation is accelerated, the hydroxyl groups in the film are reduced, and the film quality can be further improved.

【0021】さらに、被処理基板に超音波振動を印加す
ることにより、被処理基板の振動エネルギや、原料ガス
分子の並進ないしは回転等の振動エネルギレベルが高ま
り、加水分解反応が活性化される。このため、従来より
低温でも効率良く、ステップカバレッジのよい成膜が可
能となる。
Further, by applying ultrasonic vibration to the substrate to be processed, the vibration energy of the substrate to be processed and the vibration energy level such as translation or rotation of the source gas molecules are increased and the hydrolysis reaction is activated. Therefore, it is possible to form a film with good step coverage and with good efficiency even at a lower temperature than in the past.

【0022】[0022]

【実施例】以下、本発明の具体的実施例につき図面を参
照しながら説明する。始めに本発明の各実施例で用いる
枚葉式CVD装置の構成例につき、図2に示す概略断面
図を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described below with reference to the drawings. First, a configuration example of a single-wafer CVD apparatus used in each embodiment of the present invention will be described with reference to the schematic sectional view shown in FIG.

【0023】酸化シリコン系絶縁膜を形成すべき被処理
基板11は、ヒータ13を内蔵する基板ステージ12上
にセッティングする。ガス導入孔16に導入する原料ガ
スは、ガス拡散板15で拡散され、被処理基板11に対
向して多孔板状のガス吹き出し孔を有するガスシャワー
ヘッド14を経由して被処理基板11表面に均一に噴出
する。符号17は被処理基板の外周上面に配設したガス
リングで、多数のガス噴出孔をもつ中空円環状の部材で
あり、必要に応じて原料ガスの1部や、希釈ガス等を添
加するものであり、符号18はガス排出孔である。
The substrate 11 to be processed on which the silicon oxide type insulating film is to be formed is set on the substrate stage 12 having the heater 13 built therein. The raw material gas introduced into the gas introduction hole 16 is diffused by the gas diffusion plate 15, passes through the gas shower head 14 having a perforated plate-like gas blowing hole facing the substrate 11 to be processed, and then is directed to the surface of the substrate 11 to be processed. Ejects uniformly. Reference numeral 17 is a gas ring arranged on the upper surface of the outer periphery of the substrate to be processed, which is a hollow annular member having a large number of gas ejection holes, to which a part of the raw material gas, a diluent gas or the like is added if necessary And reference numeral 18 is a gas discharge hole.

【0024】本発明のCVD装置の特徴部分は、基板ス
テージ12内に組み込まれ、被処理基板11を励振する
超音波振動印加手段であり、必要に応じて被処理基板1
1を励振することが可能である。超音波振動印加手段と
しては、圧電素子、磁歪素子、磁気回路とコイルによる
動電型等、各種の電気/音響変換器を任意に用いてよ
い。
A characteristic part of the CVD apparatus of the present invention is an ultrasonic vibration applying means which is incorporated in the substrate stage 12 and excites the substrate 11 to be processed.
It is possible to excite 1. As the ultrasonic vibration applying means, various electric / acoustic transducers such as a piezoelectric element, a magnetostrictive element, an electrodynamic type using a magnetic circuit and a coil may be arbitrarily used.

【0025】実施例1 次に、酸化シリコン系絶縁膜形成工程の具体的実施例を
説明する。本実施例は、原料ガスとしてTEOS、H2
OおよびO3 を用いた常圧CVDにより、Al系金属配
線上に平坦化膜を形成した例であり、これを図1(a)
〜(b)を参照して説明する。
Example 1 Next, a specific example of the silicon oxide insulating film forming step will be described. In this embodiment, TEOS and H 2 are used as raw material gases.
This is an example of forming a planarization film on an Al-based metal wiring by atmospheric pressure CVD using O and O 3 , which is shown in FIG.
This will be described with reference to (b).

【0026】まずSi等の半導体基板1上の層間絶縁膜
2上に例えばAl系金属からなる配線層3を形成し、こ
れを被処理基板とする。図1(a)に示すこの被処理基
板は、その表面に幅の異なる複数の段差凹凸部を有する
ので、次工程で上層配線を形成する場合には平坦化層間
絶縁膜を形成する必要がある。なお図1(a)では幅
0.5μm以下の狭い段差凹部のみを示すが、被処理基
板上にはこの他に図示しない例えば幅1μm以上の広い
段差凹部も形成されている。
First, the wiring layer 3 made of, for example, an Al-based metal is formed on the interlayer insulating film 2 on the semiconductor substrate 1 made of Si or the like, and this is used as a substrate to be processed. Since the substrate to be processed shown in FIG. 1A has a plurality of stepped uneven portions having different widths on its surface, it is necessary to form a planarization interlayer insulating film when forming an upper layer wiring in the next step. . Although FIG. 1A shows only a narrow stepped recess having a width of 0.5 μm or less, a wide stepped recess having a width of 1 μm or more, which is not shown, is also formed on the substrate to be processed.

【0027】図2に示したCVD装置の基板ステージ1
2にこの被処理基板11を載置し、酸化シリコン系絶縁
膜の常圧CVDを次の条件により施す。 TEOS 150 sccm H2 O 50 sccm O3 100 sccm ガス圧力 常圧 基板温度 300 ℃ なおH2 Oの沸点は100℃であるので、TEOSと同
様、加熱したH2 OバブラをHe等のキャリアガスでバ
ブリングしてCVDチャンバに供給する。H2O容器を
沸点近傍まで加熱して気化させ、キャリアガスレスで導
入してもよい。その他バーニング法、超音波霧化法等任
意の気化法を採用する。いずれの場合であっても、導入
配管系を加熱し、H2 Oの結露を防止することが望まし
い。
The substrate stage 1 of the CVD apparatus shown in FIG.
The substrate 11 to be processed is placed on the substrate 2 and atmospheric pressure CVD of a silicon oxide insulating film is performed under the following conditions. TEOS 150 sccm H 2 O 50 sccm O 3 100 sccm Gas pressure Normal pressure Substrate temperature 300 ° C. Since H 2 O has a boiling point of 100 ° C., a heated H 2 O bubbler is used with a carrier gas such as He as in TEOS. Bubbling and supply to the CVD chamber. The H 2 O container may be heated to near the boiling point to be vaporized and introduced without a carrier gas. Other vaporization methods such as burning method and ultrasonic atomization method are adopted. In any case, it is desirable to heat the introduction pipe system to prevent dew condensation of H 2 O.

【0028】上記常圧CVD工程は、原料ガス組成の基
本的特性として、中間生成物である重合体の分子量が適
度であり、また水酸基や有機物の除去効果が高いという
特長を有するものである。このため、被処理基板11の
表面依存性のない、均一に平坦化された酸化シリコン系
絶縁膜4が、比較的低い低温で形成された。この状態を
図1(b)に示す。
The above-mentioned atmospheric pressure CVD process is characterized in that, as basic characteristics of the raw material gas composition, the polymer as an intermediate product has an appropriate molecular weight and the effect of removing hydroxyl groups and organic substances is high. For this reason, the uniformly planarized silicon oxide insulating film 4 having no surface dependence of the substrate 11 to be processed was formed at a relatively low temperature. This state is shown in FIG.

【0029】本実施例によれば、TEOS、H2 Oおよ
びO3 を用た常圧CVDにより、被処理基板上の0.5
μm以下の微細な段差凹部はもとより、広い段差凹部も
均一に埋め込まれ平坦化された膜質のよい酸化シリコン
系絶縁膜4が形成された。
According to the present embodiment, the atmospheric pressure CVD using TEOS, H 2 O and O 3 is performed to obtain 0.5 on the substrate to be processed.
Not only fine stepped recesses having a size of μm or less but also wide stepped recesses were uniformly buried and the silicon oxide insulating film 4 with good film quality was formed.

【0030】実施例2 本実施例は原料ガスとしてTEOS、H2 O、O3 およ
び塩基性ガスとしてNH3 を用た常圧CVDにより、A
l系金属配線上に平坦化膜を形成した例であり、これを
同じく図1(a)〜(b)を参照して説明する。
Example 2 In this example, AOS was performed by atmospheric pressure CVD using TEOS, H 2 O and O 3 as source gases and NH 3 as a basic gas.
This is an example in which a flattening film is formed on the 1-system metal wiring, which will be described with reference to FIGS. 1 (a) and 1 (b).

【0031】図1(a)に示す被処理基板は前実施例と
同じであるので重複する説明を省略する。図2に示した
CVD装置の基板ステージ12にこの被処理基板11を
載置し、酸化シリコン系絶縁膜の常圧CVDを次の条件
により施す。 TEOS 150 sccm H2 O 50 sccm O3 100 sccm NH3 10 sccm ガス圧力 常圧 基板温度 300 ℃
Since the substrate to be processed shown in FIG. 1 (a) is the same as that of the previous embodiment, duplicate description will be omitted. The substrate 11 to be processed is placed on the substrate stage 12 of the CVD apparatus shown in FIG. 2, and the atmospheric pressure CVD of the silicon oxide insulating film is performed under the following conditions. TEOS 150 sccm H 2 O 50 sccm O 3 100 sccm NH 3 10 sccm Gas pressure Normal pressure Substrate temperature 300 ° C.

【0032】上記した常圧CVD工程では、塩基性触媒
としてNH3 を添加したことにより、実施例1の効果に
加え、脱水縮合の反応速度を促進することにより膜中の
水酸基を減少して、一層の膜質向上が可能である。
In the above atmospheric pressure CVD step, NH 3 is added as a basic catalyst to obtain the effect of Example 1, and in addition to promoting the reaction rate of dehydration condensation, the hydroxyl groups in the film are reduced, It is possible to further improve the film quality.

【0033】実施例3 本実施例は前実施例1に準拠し、さらに被処理基板に対
し超音波を印加したものであり、これを同じく図1
(a)〜(b)を参照して説明する。なお本実施例で用
いた図1(a)に示す被処理基板は、実施例1と同じも
のである。
Example 3 This example is based on the previous Example 1, and ultrasonic waves were further applied to the substrate to be processed.
This will be described with reference to (a) and (b). The substrate to be processed shown in FIG. 1A used in this embodiment is the same as that in the first embodiment.

【0034】図2に示したCVD装置の基板ステージ1
2にこの被処理基板11を載置し、酸化シリコン系絶縁
膜の常圧CVDを次の条件により行う。 TEOS 150 sccm H2 O 50 sccm O3 100 sccm ガス圧力 常圧 基板温度 270 ℃ 超音波振動 50 W(200KHz)
Substrate stage 1 of the CVD apparatus shown in FIG.
The substrate 11 to be processed is placed on the substrate 2 and atmospheric pressure CVD of the silicon oxide insulating film is performed under the following conditions. TEOS 150 sccm H 2 O 50 sccm O 3 100 sccm Gas pressure Normal pressure Substrate temperature 270 ° C. Ultrasonic vibration 50 W (200 KHz)

【0035】本実施例によれば基板温度を下げたにもか
かわらず、実施例1の効果に加えて、中間生成物の被処
理基板上における流動性が高まり、ギャップフィル特性
はさらに向上して平坦な酸化シリコン系材料層4を形成
することが可能である。
According to the present embodiment, in addition to the effect of the first embodiment, the fluidity of the intermediate product on the substrate to be processed is enhanced, and the gap fill characteristic is further improved, although the substrate temperature is lowered. It is possible to form the flat silicon oxide based material layer 4.

【0036】以上、本発明を3例の実施例をもって説明
したが、本発明はこれら実施例に何ら限定されるもので
はない。
Although the present invention has been described with reference to the three examples, the present invention is not limited to these examples.

【0037】有機シラン系ガスとしてTEOSを例示し
たが、先述したように他の有機シラン系ガスを適宜使用
することができる。置換基としてFを有する有機シラン
系ガスを用いれば、低誘電率特性を有するSiOF系の
酸化シリコン系材料層を形成することもできる。またこ
れら有機シラン系ガスにSiH4 、Si2 6 等無機系
のシランガスを添加してもよい。
Although TEOS is used as an example of the organic silane-based gas, other organic silane-based gas can be appropriately used as described above. By using an organic silane-based gas having F as a substituent, a SiOF-based silicon oxide-based material layer having a low dielectric constant characteristic can be formed. Inorganic silane gases such as SiH 4 and Si 2 H 6 may be added to these organic silane gases.

【0038】またPH3 、B2 6 、AsH3 やTri
methyl phosphate(TMP)、Tti
methyl borate(TMB)等の不純物ソー
スガスを添加してPSG、BSG、BPSG、AsSG
等のシリケートガラスを形成することも可能である。
PH 3 , B 2 H 6 , AsH 3 and Tri
methyl phosphate (TMP), Tti
By adding an impurity source gas such as methyl borate (TMB), PSG, BSG, BPSG, AsSG
It is also possible to form silicate glass such as.

【0039】酸化性ガスとしてO3 を用いたが、勿論他
の酸化性ガスであるO2 、NO2 やH2 2 を用いた
り、混合してもよい。
Although O 3 was used as the oxidizing gas, it is needless to say that other oxidizing gases such as O 2 , NO 2 and H 2 O 2 may be used or mixed.

【0040】塩基性ガスとしてNH3 を例示したが、H
ydrazine(N2 2 )やその誘導体、CH3
2 、C2 5 NH3 、NH2 (CH2 2 NH2 等の
アルキルアミンを使用することも可能である。
NH 3 was used as an example of the basic gas.
hydrazine (N 2 H 2 ) and its derivatives, CH 3 N
It is also possible to use H 2, C 2 H 5 NH 3, NH 2 (CH 2) 2 NH 2 and alkyl amines.

【0041】その他、希釈ガスとしてHe、Ar、Xe
等の希ガスやN2 を混合して用いてもよい。
In addition, He, Ar, Xe are used as diluent gases.
It may be mixed and used noble gas or N 2 and the like.

【0042】前述の各実施例は、Al系金属配線上の層
間絶縁膜を形成する場合について例示したが、他の配線
材料層を用いる場合や、最終パッシベーション膜として
用いる場合、さらにはトレンチアイソレーションをボイ
ドの発生なく平坦に埋め込む場合等に適用することもで
きることは言うまでもない。
In each of the above-described embodiments, the case of forming the interlayer insulating film on the Al-based metal wiring has been exemplified, but the case of using another wiring material layer, the case of using as the final passivation film, and further the trench isolation. It is needless to say that the present invention can be applied to the case where the layer is embedded flat without generating voids.

【0043】[0043]

【発明の効果】以上の説明から明らかなように、本発明
によれば有機シラン系ガス、酸化性ガスおよびH2 Oを
主体とした常圧CVDにより、平坦性と膜質を両立し
た、安定なセルフフロー形状が得られる酸化シリコン系
材料層を形成できる。
As is apparent from the above description, according to the present invention, the atmospheric pressure CVD mainly containing an organic silane-based gas, an oxidizing gas and H 2 O enables stable and stable flatness and film quality. It is possible to form a silicon oxide-based material layer having a self-flow shape.

【0044】上記組成の原料ガスにさらに塩基性ガスを
添加すれば、水酸基の含有量をさらに低減した酸化シリ
コン系材料層が形成できる。
If a basic gas is further added to the raw material gas having the above composition, a silicon oxide type material layer having a further reduced content of hydroxyl groups can be formed.

【0045】さらに、常圧CVD工程中に被処理基板に
超音波を印加することにより、被処理基板上の中間生成
物のマイグレーションを促進し、狭隘なギャップをボイ
ドの発生なく平坦に埋め込むことが可能となる。
Furthermore, by applying ultrasonic waves to the substrate to be processed during the atmospheric pressure CVD process, migration of intermediate products on the substrate to be processed can be promoted and a narrow gap can be filled flat without generating voids. It will be possible.

【0046】酸化シリコン系絶縁膜の膜質が向上したこ
とにより、成膜された酸化シリコン系絶縁膜は水分の放
出や膜収縮、クラックの発生がないので、Al系金属配
線上の層間絶縁膜として用いた場合にもアフターコロー
ジョンやマイグレーションの発生の虞れがない。
Since the quality of the silicon oxide-based insulating film is improved, the formed silicon oxide-based insulating film does not release moisture, shrinks, or cracks. Therefore, it can be used as an interlayer insulating film on an Al-based metal wiring. Even when used, there is no fear of occurrence of after-corrosion or migration.

【0047】以上の効果により、多層配線の多用により
高段差を有する半導体装置の平坦化層間絶縁膜等の信頼
性を高めることが可能となり、本発明が高集積度半導体
装置の製造プロセスに与える効果は極めて大きい。
With the above effects, it becomes possible to increase the reliability of the flattening interlayer insulating film or the like of the semiconductor device having a high step due to the heavy use of the multilayer wiring, and the effect of the present invention on the manufacturing process of the highly integrated semiconductor device. Is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1ないし3の常圧CVDプロセ
スを説明する概略断面図であり、(a)は層間絶縁膜上
に段差を有する配線層を形成した状態、(b)は平坦化
された酸化シリコン系絶縁膜を形成した状態である。
FIG. 1 is a schematic cross-sectional view illustrating an atmospheric pressure CVD process according to Examples 1 to 3 of the present invention, in which (a) is a state in which a wiring layer having a step is formed on an interlayer insulating film, and (b) is flat. This is a state in which a converted silicon oxide insulating film is formed.

【図2】本発明の実施例1ないし3で用いた枚葉式常圧
CVD装置の構成例を示す概略断面図である。
FIG. 2 is a schematic cross-sectional view showing a configuration example of a single wafer type atmospheric pressure CVD apparatus used in Examples 1 to 3 of the present invention.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 層間絶縁膜 3 配線層 4 酸化シリコン系絶縁膜 11 被処理基板 12 基板ステージ 13 ヒータ 14 ガスシャワーヘッド 15 ガス拡散板 16 ガス導入孔 17 ガスリング 18 ガス排出孔 19 超音波振動印加手段 DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Interlayer insulating film 3 Wiring layer 4 Silicon oxide type insulating film 11 Processed substrate 12 Substrate stage 13 Heater 14 Gas shower head 15 Gas diffusion plate 16 Gas introduction hole 17 Gas ring 18 Gas discharge hole 19 Ultrasonic vibration applying means

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 有機シラン系ガス、酸化性ガスおよびH
2 O(水蒸気)とを主体とする原料ガスを用いた常圧C
VD法により、被処理基板上に酸化シリコン系絶縁膜を
形成する工程を含むことを特徴とする、半導体装置の製
造方法。
1. An organic silane-based gas, an oxidizing gas and H
Atmospheric pressure C using raw material gas mainly composed of 2 O (steam)
A method of manufacturing a semiconductor device, comprising a step of forming a silicon oxide insulating film on a substrate to be processed by a VD method.
【請求項2】 酸化性ガスはオゾンを含むことを特徴と
する、請求項1記載の半導体装置の製造方法。
2. The method for manufacturing a semiconductor device according to claim 1, wherein the oxidizing gas contains ozone.
【請求項3】 被処理基板に超音波を印加することを特
徴とする、請求項1記載の半導体装置の製造方法。
3. The method of manufacturing a semiconductor device according to claim 1, wherein ultrasonic waves are applied to the substrate to be processed.
【請求項4】 有機シラン系ガス、酸化性ガス、H2
(水蒸気)および塩基性ガスとを主体とする原料ガスを
用いた常圧CVD法により、被処理基板上に酸化シリコ
ン系絶縁膜を形成する工程を含むことを特徴とする、半
導体装置の製造方法。
4. An organic silane-based gas, an oxidizing gas, H 2 O
A method of manufacturing a semiconductor device, comprising a step of forming a silicon oxide insulating film on a substrate to be processed by an atmospheric pressure CVD method using a source gas mainly composed of (steam) and a basic gas. .
【請求項5】 酸化性ガスはオゾンを含むことを特徴と
する、請求項4記載の半導体装置の製造方法。
5. The method of manufacturing a semiconductor device according to claim 4, wherein the oxidizing gas contains ozone.
【請求項6】 塩基性ガスは、NH3 、N2 2 、N2
2 誘導体およびアルキルアミンからなる群から選ばれ
る少なくとも1種であることを特徴とする、請求項4記
載の半導体装置の製造方法。
6. The basic gas is NH 3 , N 2 H 2 , N 2
The method for manufacturing a semiconductor device according to claim 4, wherein the method is at least one selected from the group consisting of H 2 derivatives and alkylamines.
【請求項7】 被処理基板に超音波を印加することを特
徴とする、請求項4記載の半導体装置の製造方法。
7. The method of manufacturing a semiconductor device according to claim 4, wherein ultrasonic waves are applied to the substrate to be processed.
JP10530395A 1995-04-28 1995-04-28 Manufacture of semiconductor device Pending JPH08306683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10530395A JPH08306683A (en) 1995-04-28 1995-04-28 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10530395A JPH08306683A (en) 1995-04-28 1995-04-28 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH08306683A true JPH08306683A (en) 1996-11-22

Family

ID=14403939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10530395A Pending JPH08306683A (en) 1995-04-28 1995-04-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH08306683A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099909A (en) * 2007-10-19 2009-05-07 Toshiba Corp Method of manufacturing semiconductor device
JP2010040754A (en) * 2008-08-05 2010-02-18 Toshiba Corp Semiconductor device and method of manufacturing the same
JP2010123627A (en) * 2008-11-17 2010-06-03 Mitsubishi Heavy Ind Ltd Vacuum processing equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099909A (en) * 2007-10-19 2009-05-07 Toshiba Corp Method of manufacturing semiconductor device
JP2010040754A (en) * 2008-08-05 2010-02-18 Toshiba Corp Semiconductor device and method of manufacturing the same
JP2010123627A (en) * 2008-11-17 2010-06-03 Mitsubishi Heavy Ind Ltd Vacuum processing equipment

Similar Documents

Publication Publication Date Title
CN1839468B (en) Repairing damage to low-K dielectric materials using silylating agents
JP3930840B2 (en) Low-κ dielectric inorganic / organic hybrid film
KR100602469B1 (en) Mechanical enhancer additives for low dielectric films
KR100192937B1 (en) Spin-on glass processing technique for the fabrication of semiconductor device
US6828258B2 (en) Method of forming an insulating film having SI-C, SI-O and SI-H bonds to cover wiringlines of a semiconductor device
US20090148964A1 (en) METHOD FOR FORMING DIELECTRIC SiOCH FILM HAVING CHEMICAL STABILITY
JPH05226480A (en) Manufacture of semiconductor device
JPH08153784A (en) Manufacture of semiconductor device
CN102770580A (en) Ultra-low dielectric materials formed by plasma enhanced chemical vapor deposition using hybrid precursors containing silicon with organofunctional groups
JPH098032A (en) Formation of insulation film
JPH09186146A (en) Semiconductor device and manufacturing method
US5998303A (en) Semiconductor device making method
US9698095B2 (en) Interconnect structure
JPH10163192A (en) Semiconductor device and its manufacture
JPH10340899A (en) Silica insulation film and semiconductor device, and manufacturing method thereof
JPH08306683A (en) Manufacture of semiconductor device
JP2000077399A (en) Silica based porous film and production thereof
JPH08115911A (en) Manufacture of semiconductor device
JPH07288251A (en) Manufacture of semiconductor device
JPH05279856A (en) Vapor growth method
JPH09167766A (en) Plasma chemical vapor growth device and manufacturing method of semiconductor device
JP2666681B2 (en) Method for manufacturing semiconductor device
JP3641866B2 (en) Manufacturing method of semiconductor device
JP2006024670A (en) Manufacturing method for semiconductor device
JP3228251B2 (en) CVD apparatus and semiconductor device manufacturing method using the same