[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0829247A - Buried object detection method and device - Google Patents

Buried object detection method and device

Info

Publication number
JPH0829247A
JPH0829247A JP16676494A JP16676494A JPH0829247A JP H0829247 A JPH0829247 A JP H0829247A JP 16676494 A JP16676494 A JP 16676494A JP 16676494 A JP16676494 A JP 16676494A JP H0829247 A JPH0829247 A JP H0829247A
Authority
JP
Japan
Prior art keywords
vibration
frequency
cylindrical casing
obstacle
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16676494A
Other languages
Japanese (ja)
Other versions
JP3211574B2 (en
Inventor
Masashi Sato
正志 佐藤
Katsuhiko Honjo
克彦 本庄
Junichi Masuda
順一 増田
Kanichi Ogawa
寛一 小川
Masahiro Komoritani
雅博 籠谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP16676494A priority Critical patent/JP3211574B2/en
Publication of JPH0829247A publication Critical patent/JPH0829247A/en
Application granted granted Critical
Publication of JP3211574B2 publication Critical patent/JP3211574B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Earth Drilling (AREA)

Abstract

PURPOSE:To provide a method and device for detecting underground buried object for positively detecting a concrete pipe or a plastic pipe made of, for example, vinyl chloride as well as a metal buried pipe and at the same time discriminating stone and pebble during boring a hole using an earth auger boring machine. CONSTITUTION:The detection device is provided with a vibration sensor 5 for measuring the vibration in up/down directions of a cylindrical casing which is mounted to the inner wall of an earth auger cylindrical casing with a boring blade 3 and a frequency analyzer 6 connected to the vibration sensor 5 and compares not only the spectrum distribution of vibration and the vibration level at a fundamental frequency but also the integral value and peak value of spectrum at a frequency region (a second frequency band) generated when contacting an obstacle with criterion reference values, thus identifying an obstacle and a buried pipe.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、掘削機に用いられる地
中埋設物の探知に関し、特にアースオーガなどの穴掘削
機による既設埋設管の衝突破損事故を防止するための掘
削機用地中埋設物探知方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the detection of underground buried objects used in excavators, and in particular, underground embedding for excavators for preventing collision damage accidents of existing buried pipes by hole excavators such as earth augers. The present invention relates to an object detection method and device.

【0002】[0002]

【従来の技術】電柱類の設置工事では、穴掘削作業を機
械掘りで行う場合、アースオーガなどの穴掘削機が使用
されている。しかし、近年、特に都市部においては、通
信ケーブルの他、ガス、水道、電力などライフライン用
の管路設備が輻輳している状況にあり、しかもこれらの
地下埋設物のほとんどが地中2m程度以内の深さに存在
するため、穴掘削機による既設埋設管への衝突破損事故
がしばしば起きている。
2. Description of the Related Art In the installation work of electric poles, a hole excavator such as an earth auger is used when the hole excavation work is performed by mechanical excavation. However, in recent years, especially in urban areas, pipeline facilities for lifelines such as gas, water, and electric power are congested in addition to communication cables, and most of these underground buried items are about 2 m underground. Since it exists at a depth within the range, there are often collision damage accidents to the existing buried pipe by the hole excavator.

【0003】従来、このような既設埋設管の衝突破損事
故を防止するための方法は、地下埋設物の設備記録図を
参照するとともに、パイプ・ロケーターなど電磁誘導方
式の金属埋設物探知装置や地中レーダなど電磁波方式の
地下埋設物探知装置を用いて工事箇所の事前調査を行う
ことであった。
[0003] Conventionally, as a method for preventing such a collision damage accident of an existing buried pipe, referring to a facility recording map of an underground buried object, an electromagnetic induction type metal buried object detecting device such as a pipe locator or a ground It was to conduct a preliminary survey of the construction site using an electromagnetic underground detection device such as a medium radar.

【0004】また、回転部の先端部に掘削刃と当該掘削
刃より下方に下端周縁部を所定ピッチの波状に形成した
円筒型ケーシングを有し、かつ、回転軸内に振動センサ
を内蔵したアースオーガで、アースオーガの回転数と円
筒型ケーシングの下端周縁部の1周あたりの波数から地
中埋設物との接触時に発生する振動の基本周波数を求
め、その基本周波数の振動レベルが所定の振動判定レベ
ルより大きい場合に地中埋設物を探知したと判定する方
法があった。
Further, an earthing tool having a digging blade at the tip of the rotating portion and a cylindrical casing having a lower end peripheral portion formed in a wave shape with a predetermined pitch below the digging blade and having a vibration sensor built in the rotating shaft is provided. With an auger, find the fundamental frequency of vibration that occurs when it comes into contact with a buried object from the number of revolutions of the earth auger and the number of waves per round at the lower edge of the cylindrical casing, and the vibration level at that fundamental frequency is the prescribed vibration. There was a method of judging that an underground buried object was detected when it was higher than the judgment level.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前述し
た既設埋設管の衝突破損事故を防止するための事前調査
においては、参照できる設備記録図が、不正確であった
り、最新データに更改されていなかったりする場合や、
古い埋設管については設備記録図の入手が困難である場
合が多々あった。
However, in the above-mentioned preliminary investigation for preventing the collision damage accident of the existing buried pipe, the equipment record map that can be referred to is inaccurate or has not been updated to the latest data. Or when
It was often difficult to obtain equipment record maps for old buried pipes.

【0006】このため、埋設物探知装置による事前調査
はやはり必要であると考えられる。しかし、電磁誘導方
式の場合、原理的に探知できる対象が金属埋設管に限ら
れることが大きな欠点であった。また、電磁雑音の多い
場所では使用できないうえ、埋設管の位置及び深度の測
定精度が優れているとはいえない。一方、地中レーダな
ど電磁波方式の場合は、送信アンテナから地中に電波を
発射し、埋設管からの反射波を受信アンテナにより捕ら
えられるため金属管に限らず、コンクリート管、塩化ビ
ニル等のプラスチック管も探知可能である。ところが、
電磁波法では、埋設管が交差あるいは接近している場
合、反射波が干渉するため正確な位置の把握が困難とな
る。また、土質が不均一であったり、水分が多い場合は
埋設管の正確な位置及び深度を知ることが難しいなどの
問題点があった。
Therefore, it is considered necessary to carry out a preliminary survey by the buried object detection device. However, in the case of the electromagnetic induction method, a major drawback is that the object that can be detected in principle is limited to the metal buried pipe. In addition, it cannot be used in a place where there is a lot of electromagnetic noise, and it cannot be said that the measurement accuracy of the position and depth of the buried pipe is excellent. On the other hand, in the case of electromagnetic waves such as underground radar, radio waves are emitted from the transmitting antenna to the ground, and the reflected waves from the buried pipe can be captured by the receiving antenna, so not only metal pipes but also concrete pipes, plastics such as vinyl chloride The pipe is also detectable. However,
In the electromagnetic wave method, when buried pipes intersect or approach each other, reflected waves interfere with each other, which makes it difficult to accurately determine the position. In addition, there are problems that it is difficult to know the exact position and depth of the buried pipe if the soil quality is uneven or if the water content is high.

【0007】したがって、穴掘削中にその掘り進む先に
存在しうる既設埋設管を探知する方法が、既設埋設管の
衝突破損事故防止には非常に有効となる。しかし、前述
した円筒型ケーシングと振動センサを備えたアースオー
ガで埋設管を検知する方法は、石に接触したときでも所
定の振動判定レベルに達する場合があるため、掘削を一
時中止し、埋設管か否かを確認する必要があった。すな
わち、埋設管と石との区別が非常に困難であるといえ、
作業性が著しく低下するといった欠点があった。
Therefore, the method of detecting the existing buried pipe that may exist at the destination of the digging during the hole excavation is very effective in preventing the collision damage accident of the existing buried pipe. However, the method of detecting a buried pipe with an earth auger equipped with a cylindrical casing and a vibration sensor as described above may reach a predetermined vibration judgment level even when it comes into contact with stones, so excavation is temporarily stopped and the buried pipe It was necessary to confirm whether or not. In other words, it can be said that it is very difficult to distinguish the buried pipe from the stone,
There was a drawback that workability was significantly reduced.

【0008】以上のように、穴掘削作業における既設埋
設管の衝突破損事故を未然に防止するための従来の方法
は、信頼性の高い事前調査が困難な場合が多いこと、探
知可能な埋設物が金属管に限られる場合がほとんどであ
ることなどの欠点を有していた。このため、穴掘削中
に、埋設管の材質によらず、的確にこれを探知できる方
法が従来より望まれていた。
As described above, in the conventional method for preventing the collision damage accident of the existing buried pipe in the hole excavation work, it is often difficult to carry out the reliable preliminary investigation, and the detectable buried object. However, it has a drawback that it is limited to metal tubes in most cases. Therefore, there has been a long-felt demand for a method capable of accurately detecting this during drilling a hole, regardless of the material of the buried pipe.

【0009】そこで、本発明は上記の事情に鑑みてなさ
れたもので、アースオーガなどの掘削機による穴掘削中
に、金属埋設管のみならず、コンクリート管や塩化ビニ
ル等のプラスチック管も確実に探知でき、かつ、石や礫
との判別も可能となる地中埋設物探知方法および装置を
提供することを目的とする。
Therefore, the present invention has been made in view of the above circumstances, and during drilling a hole by an earth auger or the like, not only a metal buried pipe, but also a concrete pipe or a plastic pipe such as vinyl chloride can be reliably performed. An object of the present invention is to provide a method and an apparatus for detecting an underground buried object that can be detected and can be distinguished from stones and gravel.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に本発明の埋設物探知方法は、第1に、回転軸の先端部
に掘削刃と該掘削刃より下方に下端周辺部を所定のピッ
チの波状に形成した円筒形ケーシングを有し、該回転軸
に沿って排土用の螺旋状ブレードを有するアースオーガ
で穴を掘削する際に、前記円筒形ケーシングの振動を測
定して地中埋設物との衝突を探知する方法であって、前
記円筒形ケーシングと前記地中埋設物との衝突時に生ず
る振動の基本周波数を含む周波数領域である第1周波数
領域における前記地中埋設物との接触を判定する第1の
接触判定振動レベル(L0)と、前記円筒形ケーシング
の下端周縁部が石または礫などの障害物との接触時に発
生する振動の周波数領域である第2周波数領域において
前記障害物との接触を判定する接触判定スペクトル積分
値(S0)とを備え、前記円筒型ケーシングの振動のス
ペクトル分布を求め、前記第1周波数領域における振動
レベル(L1)と、前記第2周波数領域におけるスペク
トル積分値(S1)を算出し、前記第1の接触判定振動
レベル(L0)と前記第1周波数領域における振動レベ
ル(L1)及び前記接触判定スペクトル積分値(S0)
と前記第2周波数領域におけるスペクトル積分値(S
1)を比較することによって地中埋設物か、石または礫
などの障害物かを判定することを特徴とする。
In order to achieve the above object, the buried object detecting method according to the present invention firstly comprises a drilling blade at the tip of the rotary shaft and a lower end peripheral portion below the drilling blade. When digging a hole with an earth auger having a pitch-shaped cylindrical casing and a spiral blade for earth removal along the rotation axis, the vibration of the cylindrical casing is measured to measure the underground. A method for detecting a collision with an underground object, comprising: a method for detecting a collision with the underground casing in the first frequency region, which is a frequency region including a fundamental frequency of vibration generated at the time of the collision between the cylindrical casing and the underground object. In the first contact determination vibration level (L0) for determining contact, in the second frequency region which is a frequency region of vibration generated when the lower end peripheral portion of the cylindrical casing comes into contact with an obstacle such as stone or gravel. Contact with obstacles And a contact determination spectrum integral value (S0) for determining the vibration distribution of the cylindrical casing, and a vibration level (L1) in the first frequency region and a spectrum integral value (L1) in the second frequency region. S1) is calculated, and the first contact determination vibration level (L0), the vibration level in the first frequency region (L1), and the contact determination spectrum integral value (S0).
And the spectral integration value (S
It is characterized by judging whether it is an underground buried object or an obstacle such as stone or gravel by comparing 1).

【0011】第2に、本発明の埋設物探知方法は、前記
第1の接触判定振動レベル(L0)と前記接触判定スペ
クトル積分値(S0)に加えて、前記円筒型ケーシング
の下端周縁部が石または礫などの障害物との接触時に発
生する振動の周波数領域である第2周波数領域において
前記障害物との接触を判定する第2の接触判定振動レベ
ル(P0)を備え、前記スペクトル分布から前記振動レ
ベル(L1)とスペクトル積分値(S1)に加えて前記
第2の周波数領域における前記スペクトル分布のピーク
値(P1)を算出し、前記第2の接触判定振動レベル
(P0)と前記スペクトル分布のピーク値(P1)の比
較を加えて、地中埋設物か、石または礫などの障害物か
を判定することを特徴とする。
Secondly, according to the buried object detecting method of the present invention, in addition to the first contact determination vibration level (L0) and the contact determination spectrum integral value (S0), the lower end peripheral portion of the cylindrical casing is A second contact determination vibration level (P0) for determining contact with the obstacle is provided in a second frequency region, which is a frequency region of vibration generated when contacting with an obstacle such as stone or gravel, and from the spectral distribution In addition to the vibration level (L1) and the spectrum integral value (S1), the peak value (P1) of the spectrum distribution in the second frequency region is calculated, and the second contact determination vibration level (P0) and the spectrum are calculated. It is characterized in that it is determined whether it is an underground buried object or an obstacle such as stone or gravel by adding comparison of distribution peak values (P1).

【0012】第3に、本発明の埋設物探知方法は、前記
回転軸の回転数を測定する回転数測定手段を備え、前記
円筒型ケーシングと前記地中埋設物との衝突時に生ずる
振動の基本周波数を前記回転数より算出し、前記基本周
波数を基に前記第1周波数領域と前記第2周波数領域を
求め、少なくとも前記振動レベル(L1)及び前記第2
周波数領域におけるスペクトル積分値(S1)を算出す
ることを特徴とする。
Thirdly, the buried object detecting method of the present invention is provided with a rotation speed measuring means for measuring the rotation speed of the rotary shaft, and the basic vibration of the vibration occurring when the cylindrical casing and the underground buried object collide with each other. The frequency is calculated from the rotation speed, the first frequency region and the second frequency region are obtained based on the fundamental frequency, and at least the vibration level (L1) and the second frequency region are calculated.
It is characterized in that a spectrum integral value (S1) in the frequency domain is calculated.

【0013】第4に、本発明の埋設物探知装置は、回転
軸の先端部に掘削刃と該掘削刃より下方に下端周辺部を
所定のピッチの波状に形成した円筒形ケーシングを有
し、該回転軸の先端部近傍に前記円筒形ケーシングの振
動を測定する振動センサを備え、前記振動センサの出力
を解析する解析手段は、前記円筒形ケーシングと前記地
中埋設物との衝突時に生ずる振動の周波数領域である第
1周波数領域における前記地中埋設物との接触を判定す
る第1の接触判定振動レベル(L0)と、前記円筒型ケ
ーシングの下端周縁部が石または礫などの障害物との接
触時に発生する振動の周波数領域である第2周波数領域
において前記障害物との接触を判定する接触判定スペク
トル積分値(S0)を記憶した記憶部と、前記円筒型ケ
ーシングの上下方向の振動を測定してスペクトル分布を
求め、前記第1の周波数領域における振動レベル(L
1)を算出する振動レベル算出部と、前記第2の周波数
領域におけるスペクトル積分値(S1)を算出するスペ
クトル積分値算出部と、前記第1の接触判定振動レベル
(L0)および前記接触判定スペクトル積分値(S0)
と、前記振動レベル算出部および前記スペクトル積分値
算出部で算出した前記振動レベル(L1)および前記ス
ペクトル積分値(S1)をそれぞれ比較して、埋設管と
石または礫などの障害物との識別をする比較判定部とを
備えたことを特徴とする。
Fourthly, the buried object detecting apparatus of the present invention has an excavating blade at the tip of the rotary shaft and a cylindrical casing below the excavating blade in which a lower end peripheral portion is formed in a wave shape with a predetermined pitch. A vibration sensor for measuring the vibration of the cylindrical casing is provided in the vicinity of the tip of the rotary shaft, and the analysis means for analyzing the output of the vibration sensor is a vibration generated when the cylindrical casing collides with the underground buried object. The first contact determination vibration level (L0) for determining contact with the underground buried object in the first frequency region, which is the frequency region of No. 1, and the lower end peripheral portion of the cylindrical casing is an obstacle such as stone or gravel. And a vertical direction of the cylindrical casing that stores a contact determination spectrum integral value (S0) for determining contact with the obstacle in a second frequency region that is a frequency region of vibration that occurs when Obtains a spectral distribution by measuring the vibration, the vibration level in the first frequency range (L
1) a vibration level calculation unit, a spectrum integration value calculation unit that calculates a spectrum integration value (S1) in the second frequency region, the first contact determination vibration level (L0) and the contact determination spectrum Integrated value (S0)
And the vibration level (L1) and the spectrum integral value (S1) calculated by the vibration level calculator and the spectrum integral value calculator, respectively, to identify the buried pipe and the obstacle such as stone or gravel. And a comparison / determination unit that performs

【0014】第5に、本発明の埋設物探知装置は、上記
第4の構成に加えて、第2の接触判定振動レベルを前記
記憶部に記憶し、前記第2の周波数領域における前記ス
ペクトル分布のピーク値(P1)を算出するスペクトル
分布のピーク値算出部を備え、請求項2記載の埋設物探
知方法により、埋設物か、石または礫などの障害物かを
判定することを特徴とする。
Fifth, in addition to the above-mentioned fourth structure, the buried object detecting apparatus of the present invention stores a second contact determination vibration level in the storage unit, and the spectrum distribution in the second frequency region. 3. A peak value calculating unit for calculating a peak value (P1) of the spectrum distribution is provided, and it is determined by the buried object detecting method according to claim 2 whether it is an buried object or an obstacle such as stone or gravel. .

【0015】第6に、本発明の埋設物探知装置は、前記
回転軸の回転数を測定する回転数測定手段と、前記円筒
型ケーシングと前記地中埋設物との衝突時に生ずる振動
の基本周波数を前記回転数より算出し、前記基本周波数
を基に前記第1周波数領域と前記第2周波数領域を求め
る周波数領域算出部を備えたことを特徴とする。
Sixthly, the buried object detecting apparatus of the present invention comprises a rotation speed measuring means for measuring the rotation speed of the rotary shaft, and a fundamental frequency of vibration generated when the cylindrical casing and the underground buried object collide. Is calculated from the number of revolutions, and a frequency domain calculation unit for determining the first frequency domain and the second frequency domain based on the fundamental frequency is provided.

【0016】第7に、本発明の埋設物探知装置は、前記
振動センサを、前記円筒形ケーシングの内壁側に備えた
ことを特徴とする。
Seventhly, the buried object detecting apparatus of the present invention is characterized in that the vibration sensor is provided on the inner wall side of the cylindrical casing.

【0017】[0017]

【作用】アースオーガで穴を掘削する際に掘削刃より下
方に有する円筒型ケーシングの上下方向の振動を測定す
ることにより、穴掘削中にアースオーガの振動状態を常
時監視できる。もし、掘削途中にその掘削半径内に埋設
管が存在した場合、上記円筒型ケーシングの下端が最初
にその埋設管に突き当たることになる。しかし、円筒型
ケーシングの下端周縁部が所定ピッチの波状に形成され
ているため即座に埋設管を破損することはない。この
時、アースオーガは、その軸回転数と所定ピッチの波状
の円筒型ケーシング下端周縁部に依存する周波数スペク
トルを持つ上下振動を生じる。
When the hole is excavated with the earth auger, the vibration state of the earth auger can be constantly monitored during the hole excavation by measuring the vertical vibration of the cylindrical casing below the excavating blade. If an embedded pipe exists within the excavation radius during excavation, the lower end of the cylindrical casing first abuts the embedded pipe. However, since the peripheral edge of the lower end of the cylindrical casing is formed in a wavy shape with a predetermined pitch, the embedded pipe is not immediately damaged. At this time, the earth auger produces vertical vibration having a frequency spectrum depending on the number of rotations of the shaft and the peripheral portion of the lower end of the wavy cylindrical casing having a predetermined pitch.

【0018】本発明は、石や礫等の障害物と接触した場
合に、振動のスペクトル分布の中で、下記に示す振動の
基本周波数より高い周波数帯に特有の振動のスペクトル
が発生することを利用して、埋設管との接触と、石や礫
等の障害物との接触を識別することが可能となった。
According to the present invention, when a contact is made with an obstacle such as stones or gravel, a spectrum of vibration peculiar to a frequency band higher than the fundamental frequency of vibration shown below is generated in the spectrum distribution of vibration. It has become possible to distinguish between contact with buried pipes and contact with obstacles such as stones and gravel.

【0019】 振動の基本周波数f=(a×N)/60[Hz] 但し、aは波数、Nは回転数(rpm)である。Nは通
常20〜25回転/毎分程度で掘削するので、およその
基本周波数は予め想定できる。そこでこの想定した基本
周波数付近を第1周波数帯とし、これより高い周波数帯
(15〜50Hz)を第2周波数帯としてスペクトル分
布のレベルや第2周波数帯のスペクトル積分値を比較す
れば、埋設管か障害物か判定できる。
Fundamental frequency of vibration f = (a × N) / 60 [Hz] where a is the wave number and N is the rotation number (rpm). Since N is normally excavated at about 20 to 25 revolutions / minute, an approximate fundamental frequency can be assumed in advance. Therefore, by comparing the level of the spectrum distribution and the spectrum integral value of the second frequency band with the higher frequency band (15 to 50 Hz) as the second frequency band in the vicinity of the assumed fundamental frequency, the buried pipe You can judge whether it is an obstacle or an obstacle.

【0020】つまり、本発明は、石や礫等の障害物と埋
設管との識別をするために、振動のスペクトル分布から
基本周波数での振動レベルの他に、障害物との接触時に
発生する周波数帯域(第2周波数帯域)でのスペクトル
の積分値とピーク値を判定基準値と比較して、障害物と
埋設管との識別をする。
That is, according to the present invention, in order to distinguish an obstacle such as a stone or a gravel from a buried pipe, the vibration level occurs at the fundamental frequency in addition to the vibration level at the fundamental frequency based on the spectrum distribution of the vibration. The integral value and the peak value of the spectrum in the frequency band (second frequency band) are compared with the determination reference value to identify the obstacle and the buried pipe.

【0021】[0021]

【実施例】以下、本発明の実施例について、図面に基づ
き説明する。図1(a)は本発明の一実施例におけるア
ースオーガの概略構成図であり、図1(b)は本発明の
一実施例における円筒型ケーシング部を示す斜視図であ
る。図1(a),(b)において、1はアースオーガの
回転軸、2は回転軸1に沿って設けられた排土用の螺旋
状ブレード、3は回転軸1の先端部に設けられた掘削
刃、4は螺旋状ブレード2の外周部に掘削刃3より下方
に設けられた下端周縁部を所定ピッチの波状に形成した
円筒型ケーシング、5は円筒型ケーシングの内壁に取り
付けた円筒型ケーシングの上下方向の振動を測定する振
動センサ、6は振動センサ5に接続された例えばFFT
(高速フーリエ変換)アナライザ等の周波数解析装置で
ある。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1A is a schematic configuration diagram of an earth auger in one embodiment of the present invention, and FIG. 1B is a perspective view showing a cylindrical casing portion in one embodiment of the present invention. In FIGS. 1A and 1B, 1 is a rotating shaft of an earth auger, 2 is a spiral blade for earth removal provided along the rotating shaft 1, and 3 is provided at a tip end portion of the rotating shaft 1. The digging blade 4 is a cylindrical casing in which the lower end peripheral portion provided below the digging blade 3 on the outer peripheral portion of the spiral blade 2 is formed in a wave shape with a predetermined pitch, and 5 is a cylindrical casing attached to the inner wall of the cylindrical casing. A vibration sensor for measuring the vertical vibration of the vehicle, and 6 is, for example, an FFT connected to the vibration sensor 5.
(Fast Fourier transform) A frequency analysis device such as an analyzer.

【0022】また、本実施例では、振動センサ5と周波
数解析装置6の間を接続し、振動センサ5の出力を外部
に取り出すための信号ケーブル7を回転軸1から外部に
取り出す部品として、図2に示すように回転軸1の上部
にスリップリング8を介在させている。このスリップリ
ング8は図2に示すように振動センサ5に接続された固
定電極9を設け、この回転軸1の周囲にベアリング10
を介して摺動電極11を固定電極9に摺動するようにし
て設けて構成される。この摺動電極11には周波数解析
装置6が接続される。
In the present embodiment, the vibration sensor 5 and the frequency analysis device 6 are connected to each other, and a signal cable 7 for extracting the output of the vibration sensor 5 to the outside is taken out from the rotary shaft 1 as a component. As shown in FIG. 2, a slip ring 8 is interposed above the rotary shaft 1. As shown in FIG. 2, the slip ring 8 is provided with a fixed electrode 9 connected to the vibration sensor 5, and a bearing 10 is provided around the rotary shaft 1.
The sliding electrode 11 is provided so as to slide on the fixed electrode 9 via. The frequency analysis device 6 is connected to the sliding electrode 11.

【0023】また、本実施例では、アースオーガの回転
数を測定するため、図示しない軸回転数測定部を備え、
この軸回転数と円筒型ケーシング4の下端周縁部の1周
当たりの波数aから、前述したように、振動の基本周波
数fを求めるようになっている。なお、前記軸回転数測
定部を備えていない場合であっても掘削時の回転数は通
常20〜25rpmなので、基本周波数fの変動は小さ
い。例えば波数を8とすれば、20rpmでf=2.6
Hz、25rpmでf=3.3Hzであり、基本周波数
の変動は0.7Hzと小さい。従って、振動レベル算出
部は、2Hzから4Hzの周波数領域(すなわち第1周
波数領域)において、検出したスペクトルのレベル(L
1)を出力するようにし、スペクトル積分値算出部とピ
ーク値算出部には基本周波数fを含まない第2周波数領
域として、例えば15Hz〜50Hzに設定して、各々
のスペクトル積分値、スペクトルピーク値を出力するよ
うに構成すればよい。
In addition, in this embodiment, in order to measure the rotation speed of the earth auger, a shaft rotation speed measuring unit (not shown) is provided,
As described above, the fundamental frequency f of vibration is obtained from the number of rotations of the shaft and the number of waves a per revolution of the lower peripheral portion of the cylindrical casing 4. Even if the shaft rotation speed measurement unit is not provided, the rotation speed during excavation is usually 20 to 25 rpm, so the fluctuation of the fundamental frequency f is small. For example, if the wave number is 8, f = 2.6 at 20 rpm.
F = 3.3 Hz at Hz and 25 rpm, and the fluctuation of the fundamental frequency is small at 0.7 Hz. Therefore, the vibration level calculation unit detects the level (L of the detected spectrum) in the frequency range of 2 Hz to 4 Hz (that is, the first frequency range).
1) is output, and the spectrum integration value calculation unit and the peak value calculation unit set the second frequency region that does not include the fundamental frequency f to, for example, 15 Hz to 50 Hz, and each spectrum integration value and spectrum peak value. May be configured to output.

【0024】なお、波数が変われば、上述した第1周波
数領域と第2周波数領域を変更できるようにしている。
一方、軸回転数測定部を備えた埋設物探知装置の場合に
は、その回転数に対応する基本周波数を求めることがで
きるので、第1周波数領域は、基本周波数を中心に1H
zの周波数偏移とし、第2周波数領域は、前記基本周波
数に応じて設定するように構成する。例えば、波数が8
の場合、回転数が15rpmであれば、基本周波数は2
Hzなので、第1周波数領域は1Hz〜3Hz、第2周
波数領域は15Hz〜50Hz、回転数が25rpmで
あれば、第1周波数領域を2.3Hz〜4.3Hz、第
2周波数領域はそのままといった具合に変化させるよう
にする。軸回転数を測定するようにすれば、回転数に応
じて適切な周波数領域を設定できるので、障害物の判定
精度を向上することができる。
If the wave number changes, the above-mentioned first frequency region and second frequency region can be changed.
On the other hand, in the case of an embedded object detection device equipped with a shaft rotation speed measurement unit, the fundamental frequency corresponding to the rotation speed can be obtained, so that the first frequency region is centered on the fundamental frequency by 1H.
The frequency shift of z, and the second frequency region is set according to the fundamental frequency. For example, the wave number is 8
In case of, if the rotation speed is 15 rpm, the fundamental frequency is 2
Since it is Hz, the first frequency range is 1 Hz to 3 Hz, the second frequency range is 15 Hz to 50 Hz, and the rotation frequency is 25 rpm, the first frequency range is 2.3 Hz to 4.3 Hz, and the second frequency range is the same. Change to. If the shaft rotation speed is measured, an appropriate frequency range can be set according to the rotation speed, so that the accuracy of obstacle determination can be improved.

【0025】実施例として示した図1(a),(b)の
ようなアースオーガを用いた場合、地中埋設物探知の手
順は次のようになる。即ち本方法よれば、振動センサ5
の出力信号を周波数解析し、穴掘削中のアースオーガの
振動状態を常時監視することができる。もし、掘削途中
にその掘削半径内に埋設管が存在した場合、上記円筒型
ケーシング4の下端が最初にその埋設管に突き当たるこ
とになる。しかし、円筒型ケーシング4の下端周縁部が
正弦波状等であるため、即座に埋設管を破損することは
ない。この時、アースオーガは、その軸回転数と正弦波
状等の円筒型ケーシング4の下端周縁部形状に依存する
周波数スペクトルを持つ上下振動を生じる。そこで、ア
ースオーガの振動を円筒型ケーシングの内壁側に設けた
振動センサで測定し、周波数分析して周波数スペクトル
を得る。そして円筒型ケーシング4の下端周縁部形状に
由来する振動のうち基本周波数fにおけるスペクトルの
強度(L1)と石や礫等の障害物に衝突したときのみ発
生する特定周波数領域(すなわち、第2周波数領域)に
おける少なくともスペクトル積分値を求め、所定の基準
値と比較することにより、埋設管か障害物か判別でき
る。しかも埋設管に致命的な損傷を与えることもない。
この埋設管判定の流れは図3、図4のようになる。
When the earth auger shown in FIGS. 1 (a) and 1 (b) shown as an example is used, the procedure for detecting an underground buried object is as follows. That is, according to this method, the vibration sensor 5
It is possible to constantly analyze the vibration status of the earth auger during hole excavation by frequency analysis of the output signal of. If an embedded pipe exists within the excavation radius during excavation, the lower end of the cylindrical casing 4 first comes into contact with the embedded pipe. However, since the peripheral edge of the lower end of the cylindrical casing 4 has a sinusoidal shape, the buried pipe is not immediately damaged. At this time, the earth auger produces vertical vibration having a frequency spectrum depending on the number of rotations of the shaft and the shape of the lower end peripheral portion of the cylindrical casing 4 such as a sine wave. Therefore, the vibration of the earth auger is measured by a vibration sensor provided on the inner wall side of the cylindrical casing, and frequency analysis is performed to obtain a frequency spectrum. Then, among the vibrations derived from the shape of the lower end peripheral portion of the cylindrical casing 4, the spectrum intensity (L1) at the fundamental frequency f and the specific frequency region (that is, the second frequency By determining at least the spectrum integral value in the area) and comparing it with a predetermined reference value, it is possible to determine whether it is a buried pipe or an obstacle. Moreover, it does not cause fatal damage to the buried pipe.
The flow of this buried pipe determination is as shown in FIGS.

【0026】図3は請求項1に対応した請求項3の埋設
物探知方法のフローチャートである。 [1]周波数解析装置6のFFTアナライザは振動セン
サ5からの受信波形を一定時間でサンプリングする。
FIG. 3 is a flow chart of the buried object detecting method of claim 3 corresponding to claim 1. [1] The FFT analyzer of the frequency analysis device 6 samples the waveform received from the vibration sensor 5 at a fixed time.

【0027】[2]振動スペクトル分布の算出を行う。 [2−1]回転数Nと波数aから基本周波数fを算出
し、第1周波数領域と第2周波数領域を決定する。
[2] The vibration spectrum distribution is calculated. [2-1] The fundamental frequency f is calculated from the rotation speed N and the wave number a to determine the first frequency region and the second frequency region.

【0028】[3]振動スペクトル分布から、第2周波
数領域のスペクトル分布のみを抽出する。 [4]スペクトル積分値(S1)を算出する。
[3] Only the spectral distribution in the second frequency domain is extracted from the vibration spectral distribution. [4] Calculate the spectrum integration value (S1).

【0029】[5]基本周波数の振動レベル(L1)を
算出する。 [6]振動レベルのしきい値(L0)と[5]で得られ
た(L1)を比較する。
[5] The vibration level (L1) of the fundamental frequency is calculated. [6] The vibration level threshold (L0) is compared with (L1) obtained in [5].

【0030】[7]スペクトル積分値のしきい値(S
0)と[4]で得られた(S1)を比較する。 [8](L1<L0)のときに埋設管は存在しないと判
定する。
[7] Threshold value of spectral integration value (S
0) and (S1) obtained in [4] are compared. When [8] (L1 <L0), it is determined that there is no buried pipe.

【0031】[9](L1>L0)かつ(S1<S0)
のときに石あるいは礫等の障害物と判定する。 [10](L1>L0)かつ(S1>S0)のときに埋
設管と判定する。
[9] (L1> L0) and (S1 <S0)
When it is, it is judged as an obstacle such as stone or gravel. [10] When (L1> L0) and (S1> S0), it is determined that the pipe is a buried pipe.

【0032】上記[1]〜[10]が所定の時間間隔で
繰り返されることになる。図4は請求項2に対応した請
求項3の埋設物探知方法のフローチャートである。
The above [1] to [10] are repeated at predetermined time intervals. FIG. 4 is a flowchart of the buried object detection method according to claim 3 corresponding to claim 2.

【0033】[1]周波数解析装置6のFFTアナライ
ザは振動センサ5からの受信波形を一定時間でサンプリ
ングする。 [2]振動スペクトル分布の算出を行う。
[1] The FFT analyzer of the frequency analysis device 6 samples the waveform received from the vibration sensor 5 at a fixed time. [2] The vibration spectrum distribution is calculated.

【0034】[2−1]回転数Nと波数aから基本周波
数fを算出し、第1周波数領域と第2周波数領域を決定
する。 [3]振動スペクトル分布から、第2周波数領域のスペ
クトル分布のみを抽出する。
[2-1] The fundamental frequency f is calculated from the rotation speed N and the wave number a to determine the first frequency region and the second frequency region. [3] Only the spectrum distribution in the second frequency domain is extracted from the vibration spectrum distribution.

【0035】[4]スペクトル積分値(S1)を算出す
る。 [11]第2周波数領域のスペクトルのピークレベル
(P1)を算出する。 [5]基本周波数の振動レベル(L1)を算出する。
[4] The spectrum integral value (S1) is calculated. [11] The peak level (P1) of the spectrum in the second frequency domain is calculated. [5] The vibration level (L1) of the fundamental frequency is calculated.

【0036】[6]振動レベルのしきい値(L0)と
[5]で得られた(L1)を比較する。 [7]スペクトル積分値のしきい値(S0)と[4]で
得られた(S1)を比較する。
[6] The vibration level threshold (L0) is compared with (L1) obtained in [5]. [7] The threshold value (S0) of the spectrum integrated value is compared with (S1) obtained in [4].

【0037】[12]スペクトルのピークレベルのしき
い値(P0)と[11]で得られた(P1)を比較す
る。 [13](L1<L0)のとき、または(L1>L0)
かつ(S1>S0)かつ(P1>P0)のときに埋設管
は存在しないと判定する。
[12] The peak level threshold value (P0) of the spectrum is compared with (P1) obtained in [11]. [13] When (L1 <L0) or (L1> L0)
When (S1> S0) and (P1> P0), it is determined that there is no buried pipe.

【0038】[14](L1>L0)かつ(S1<S
0)かつ(P1>P0)のときに石あるいは礫等の障害
物と判定する。 [15](L1>L0)かつ(S1>S0)かつ(P1
<P0)のときに埋設管と判定する。
[14] (L1> L0) and (S1 <S
When 0) and (P1> P0), it is determined to be an obstacle such as stone or gravel. [15] (L1> L0) and (S1> S0) and (P1
When <P0), it is judged as a buried pipe.

【0039】上記[1]〜[15]が所定の時間間隔で
繰り返されることになる。図5(a),(b),
(c)、図6(a),(b),(c)は本実施例のアー
スオーガによる実験で得られた埋設管衝突前後における
アースオーガの振動特性を示す周波数スペクトルの例で
ある。測定結果は図1に示すように円筒型ケーシング4
の下端周縁部を正弦波状に形成したものを用い、波の振
幅hp-p =1cmの場合のデータである。掘削時の軸回
転数は、土質の不均一性や土圧の影響を受けるための多
少の回転ムラを生じるが、20〜25rpmであった。
図5(a)、図6(a)は土中掘削時の埋設管衝突前の
アースオーガの振動スペクトルである。これは、アース
オーガ先端が埋設管に衝突する前のいわゆるバックグラ
ンド信号となる。これに対し、埋設管に衝突した時には
図5(b)、図6(b)に示すような振動スペクトルが
得られた。また、石に衝突した時には図5(c)、図6
(c)に示すような振動スペクトルが得られた。図5
(b)、図6(b)に示すような振動スペクトルとの違
いは、10数Hz〜50数Hzの範囲のスペクトルであ
ることが判る。図5(b)は埋設管が水道用などの塩化
ビニル管の場合、図6(b)は埋設管がガス管用などの
鋼管の場合である。また図中、波数を示す数値は、前記
円筒型ケーシング4の下端周縁部における一周あたりの
波の繰り返し数(以下、ケーシング波数と記す。)のこ
とである。実験で得られた埋設管衝突前後におけるアー
スオーガの振動スペクトルの差に関して、基本周波数f
におけるスペクトル強度がバックグランドに比べて数倍
から数十倍に増加することに加えて、さらには、石に衝
突したときのみ発生する周波数領域に特有のスペクトル
が存在することなどがわかった。従って、本実施例の地
中埋設物探知方法によれば、埋設管に接触したのか、石
や礫等の障害物に接触したのか識別することが可能にな
った。
The above [1] to [15] are repeated at predetermined time intervals. 5 (a), (b),
6C, FIG. 6A, FIG. 6B, and FIG. 6C are examples of frequency spectra showing the vibration characteristics of the earth auger before and after the collision with the buried pipe obtained in the experiment by the earth auger of this embodiment. The measurement results are as shown in FIG.
The data is obtained in the case where the lower end peripheral portion of the is formed in a sine wave shape and the wave amplitude is h pp = 1 cm. The shaft rotation speed at the time of excavation was 20 to 25 rpm, although some rotation unevenness was generated due to the influence of soil unevenness and earth pressure.
FIGS. 5A and 6A are vibration spectra of the earth auger before the buried pipe collision at the time of excavating in the soil. This becomes a so-called background signal before the tip of the earth auger collides with the buried pipe. On the other hand, when it collided with the buried pipe, vibration spectra as shown in FIGS. 5B and 6B were obtained. Also, when the vehicle collides with a stone, FIG.
A vibration spectrum as shown in (c) was obtained. Figure 5
It can be seen that the difference from the vibration spectrum as shown in (b) and FIG. 6 (b) is the spectrum in the range of 10's Hz to 50's Hz. FIG. 5 (b) shows the case where the buried pipe is a vinyl chloride pipe for water supply, and FIG. 6 (b) shows the case where the buried pipe is a steel pipe for gas pipe. In addition, in the figure, the numerical value indicating the wave number is the number of repeated waves per round at the lower edge portion of the cylindrical casing 4 (hereinafter referred to as the casing wave number). Regarding the difference in the vibration spectrum of the earth auger before and after the buried pipe collision obtained in the experiment, the fundamental frequency f
In addition to the fact that the spectral intensity at the slab increases from several times to several tens of times that of the background, it was also found that there is a unique spectrum in the frequency region that occurs only when a stone collides with it. Therefore, according to the underground buried object detection method of the present embodiment, it is possible to identify whether the contact is with the buried pipe or the obstacle such as stones and gravel.

【0040】[0040]

【発明の効果】以上説明したように、本発明によれば、
埋設管と石の判別が可能であるため、たびたび掘削を中
止して穴の中の埋設管の有無を確認する必要がないなど
作業性が大幅に向上する。
As described above, according to the present invention,
Since it is possible to distinguish between a buried pipe and a stone, it is not necessary to frequently stop excavation and check for the presence of a buried pipe in the hole, which greatly improves workability.

【0041】従って、埋設物探知装置で掘削中に、何ら
かの衝突を検知した場合に、地下管路設備が輻輳してい
るような都市部では、これまでは埋設管か、石や礫等の
障害物か確認するために手堀りで行う必要があったが、
本発明を採用すれば、石や礫等の障害物との衝突による
誤判定がなくなるので機械堀の適用範囲が拡がり3K
(きつい、危険、汚い)といわれる作業環境の改善や、
近年深刻化しつつある作業員不足などの問題解消にも貢
献できるという効果がある。
Therefore, when some kind of collision is detected during excavation by the buried object detection device, in an urban area where underground pipeline facilities are congested, until now there have been obstacles such as buried pipes, stones and gravel. I had to do it by hand to check if it was something,
Adopting the present invention eliminates erroneous determination due to collision with obstacles such as stones and gravel, so that the range of application of mechanical moat is expanded to 3K.
To improve the work environment, which is said to be (tight, dangerous, dirty),
There is an effect that it can also contribute to solving problems such as a shortage of workers, which is becoming more serious in recent years.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成説明図である。FIG. 1 is a configuration explanatory view showing one embodiment of the present invention.

【図2】本発明の一実施例に係わるスリップリングを示
す構成図である。
FIG. 2 is a configuration diagram showing a slip ring according to an embodiment of the present invention.

【図3】本発明の一実施例に係わる振動解析と埋設管判
定の流れの一例を示すフローチャートである。
FIG. 3 is a flowchart showing an example of the flow of vibration analysis and buried pipe determination according to an embodiment of the present invention.

【図4】本発明の一実施例に係わる振動解析と埋設管判
定の流れの他の例を示すフローチャートである。
FIG. 4 is a flowchart showing another example of the flow of vibration analysis and buried pipe determination according to the embodiment of the present invention.

【図5】本発明の一実施例に係わるアースオーガによる
実験で得られた埋設管衝突前後におけるアースオーガの
振動特性を示す周波数スペクトル図である。
FIG. 5 is a frequency spectrum diagram showing the vibration characteristics of the earth auger before and after the collision with the buried pipe, which was obtained in the experiment by the earth auger according to the embodiment of the present invention.

【図6】本発明の一実施例に係わるアースオーガによる
実験で得られた埋設管衝突前後におけるアースオーガの
振動特性を示す周波数スペクトル図である。
FIG. 6 is a frequency spectrum diagram showing the vibration characteristics of the earth auger before and after the collision with the buried pipe, which is obtained by an experiment using the earth auger according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…アースオーガの回転軸、2…螺旋状ブレード、3…
掘削刃、4…円筒型ケーシング、5…振動センサ、6…
周波数解析装置、7…信号ケーブル、8…スリップリン
グ、9…固定電極、10…ベアリング、11…摺動電
極。
1 ... Rotation axis of earth auger, 2 ... Helical blade, 3 ...
Drilling blade, 4 ... Cylindrical casing, 5 ... Vibration sensor, 6 ...
Frequency analysis device, 7 ... Signal cable, 8 ... Slip ring, 9 ... Fixed electrode, 10 ... Bearing, 11 ... Sliding electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小川 寛一 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 (72)発明者 籠谷 雅博 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kanichi Ogawa 1-6, Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation (72) Inventor Masahiro Kagoya 1-6, Uchisaiwaicho, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 回転軸の先端部に掘削刃と該掘削刃より
下方に下端周辺部を所定のピッチの波状に形成した円筒
形ケーシングを有し、該回転軸に沿って排土用の螺旋状
ブレードを有するアースオーガで穴を掘削する際に、前
記円筒形ケーシングの振動を測定して地中埋設物との衝
突を探知する方法であって、 前記円筒形ケーシングと前記地中埋設物との衝突時に生
ずる振動の周波数領域である第1周波数領域における前
記地中埋設物との接触を判定する第1の接触判定振動レ
ベル(L0)と、前記円筒形ケーシングの下端周縁部が
石または礫などの障害物との接触時に発生する振動の周
波数領域である第2周波数領域において前記障害物との
接触を判定する接触判定スペクトル積分値(S0)とを
備え、 前記円筒型ケーシングの上下方向の振動を測定してスペ
クトル分布を求め、 前記第1の周波数領域における振動レベル(L1)と、
前記第2の周波数領域におけるスペクトル積分値(S
1)を算出し、 (L1>L0)且つ(S1<S0)の場合には埋設管と
接触したと判定し、 (L1>L0)且つ(S1>S0)の場合には前記障害
物に接触したと判定することを特徴とする埋設物探知方
法。
1. An excavating blade at the tip of a rotary shaft, and a cylindrical casing having a lower end peripheral portion formed in a corrugated shape with a predetermined pitch below the excavating blade, and a spiral for earth removal along the rotary shaft. When excavating a hole with an earth auger having a circular blade, it is a method of detecting a collision with an underground buried object by measuring vibration of the cylindrical casing, wherein the cylindrical casing and the underground buried object are Of the first contact determination vibration level (L0) for determining contact with the underground buried object in the first frequency range, which is the frequency range of the vibration that occurs at the time of the collision, and the lower end peripheral portion of the cylindrical casing is stone or gravel. And a contact determination spectrum integral value (S0) for determining contact with the obstacle in a second frequency region that is a frequency region of vibration that occurs when contacting with an obstacle such as the vertical direction of the cylindrical casing. Shaking The measures sought spectral distribution, the vibration level (L1) in said first frequency range,
The spectrum integral value (S
1) is calculated. If (L1> L0) and (S1 <S0), it is determined that the pipe has come into contact with the buried pipe, and if (L1> L0) and (S1> S0), the obstacle is touched. A method for detecting an embedded object, which is characterized by determining that
【請求項2】 前記第1の接触判定振動レベル(L0)
と前記接触判定スペクトル積分値(S0)に加えて、前
記円筒型ケーシングの下端周縁部が石または礫などの障
害物との接触時に発生する振動の周波数領域である第2
周波数領域において前記障害物との接触を判定する第2
の接触判定振動レベル(P0)を備え、 前記スペクトル分布から前記振動レベル(L1)とスペ
クトル積分値(S1)に加えて前記第2の周波数領域に
おける前記スペクトル分布のピーク値(P1)を算出
し、 (L1>L0)且つ(S1<S0)且つ(P1<P0)
の場合には埋設管と接触したと判定し、 (L1>L0)且つ(S1>S0)且つ(P1>P0)
の場合には石または礫などの障害物に接触したと判定す
ることを特徴とする請求項1記載の埋設物探知方法。
2. The first contact determination vibration level (L0)
In addition to the contact determination spectrum integral value (S0), the lower end peripheral portion of the cylindrical casing is a frequency region of vibration generated when contacting with an obstacle such as stone or gravel.
Second for determining contact with the obstacle in the frequency domain
And a peak value (P1) of the spectrum distribution in the second frequency region in addition to the vibration level (L1) and the spectrum integral value (S1) from the spectrum distribution. , (L1> L0) and (S1 <S0) and (P1 <P0)
In the case of, it is judged that it has contacted the buried pipe, and (L1> L0) and (S1> S0) and (P1> P0)
In the case of (1), it is determined that the obstacle has come into contact with an obstacle such as a stone or gravel, and the buried object detecting method according to claim 1.
【請求項3】 前記回転軸の回転数を測定する回転数測
定手段を備え、前記円筒型ケーシングと前記地中埋設物
との衝突時に生ずる振動の基本周波数を前記回転数より
算出し、前記基本周波数を基に前記第1周波数領域と前
記第2周波数領域を求めることを特徴とする請求項1ま
たは2記載の埋設物探知方法。
3. A rotation frequency measuring means for measuring the rotation speed of the rotation shaft is provided, and a fundamental frequency of vibration generated at the time of collision between the cylindrical casing and the underground buried object is calculated from the rotation speed. 3. The buried object detection method according to claim 1, wherein the first frequency region and the second frequency region are obtained based on a frequency.
【請求項4】 回転軸の先端部に掘削刃と該掘削刃より
下方に下端周辺部を所定のピッチの波状に形成した円筒
形ケーシングを有し、 該回転軸の先端部近傍に前記円筒形ケーシングの振動を
測定する振動センサを備え、 前記振動センサの出力を解析する解析手段は、 前記円筒形ケーシングと前記地中埋設物との衝突時に生
ずる振動の周波数領域である第1周波数領域における前
記地中埋設物との接触を判定する第1の接触判定振動レ
ベル(L0)と、前記円筒型ケーシングの下端周縁部が
石または礫などの障害物との接触時に発生する振動の周
波数領域である第2周波数領域において前記障害物との
接触を判定する接触判定スペクトル積分値(S0)を記
憶した記憶部と、 前記円筒型ケーシングの上下方向の振動を測定してスペ
クトル分布を求め、 前記第1の周波数領域における振動レベル(L1)を算
出する振動レベル算出部と、 前記第2の周波数領域におけるスペクトル積分値(S
1)を算出するスペクトル積分値算出部と、 前記第1の接触判定振動レベル(L0)および前記接触
判定スペクトル積分値(S0)と、前記振動レベル算出
部および前記スペクトル積分値算出部で算出した前記振
動レベル(L1)および前記スペクトル積分値(S1)
をそれぞれ比較して、 (L1>L0)且つ(S1<S0)の場合には埋設管と
接触したと判定し、 (L1>L0)且つ(S1>S0)の場合には障害物に
接触したと判定する比較判定部を備えた、 ことを特徴とする埋設物探知装置。
4. An excavating blade at the tip of the rotary shaft, and a cylindrical casing having a lower end peripheral portion formed in a wave pattern with a predetermined pitch below the excavating blade, and the cylindrical shape is provided in the vicinity of the tip of the rotary shaft. A vibration sensor that measures the vibration of the casing is provided, and the analysis means that analyzes the output of the vibration sensor is the first frequency region that is the frequency region of the vibration that occurs when the cylindrical casing collides with the underground buried object. A first contact determination vibration level (L0) for determining contact with an underground buried object and a frequency region of vibration generated when the lower end peripheral portion of the cylindrical casing contacts an obstacle such as stone or gravel. A storage unit that stores a contact determination spectrum integral value (S0) that determines contact with the obstacle in the second frequency region, and a spectrum distribution by measuring vertical vibration of the cylindrical casing. Determined, a vibration level calculating unit for calculating a vibration level (L1) in said first frequency range, the spectrum integral value in the second frequency region (S
1), a spectrum integral value calculating unit, the first contact determination vibration level (L0) and the contact determination spectrum integral value (S0), and the vibration level calculating unit and the spectrum integral value calculating unit. The vibration level (L1) and the spectral integration value (S1)
When (L1> L0) and (S1 <S0), it is determined that the contact with the buried pipe is made, and when (L1> L0) and (S1> S0), the obstacle is contacted. An embedded object detection device, comprising: a comparison / determination unit that determines:
【請求項5】 前記記憶部に前記円筒型ケーシングの下
端周縁部が石または礫などの障害物との接触時に発生す
る振動の周波数領域である第2周波数領域において前記
障害物との接触を判定する第2の接触判定振動レベル
(P0)を記憶し、 前記第2の周波数領域における前記スペクトル分布のピ
ーク値(P1)を算出するスペクトル分布のピーク値算
出部を備え、 前記第1の接触判定振動レベル(L0)および前記接触
判定スペクトル積分値(S0)および前記第2の接触判
定振動レベル(P0)と、前記振動レベル算出部および
前記スペクトル積分値算出部および前記スペクトル分布
のピーク値算出部で算出した前記振動レベル(L1)お
よび前記スペクトル積分値(S1)および前記スペクト
ル分布のピーク値(P1)をそれぞれ比較して、 (L1>L0)且つ(S1<S0)且つ(P1<P0)
の場合には埋設管と接触したと判定し、 (L1>L0)且つ(S1>S0)且つ(P1>P0)
の場合には石または礫などの障害物に接触したと判定す
る比較判定部を備えた、 ことを特徴とする請求項4記載の埋設物探知装置。
5. The contact with the obstacle is determined in the storage unit in a second frequency region, which is a frequency region of vibration that occurs when the lower end peripheral portion of the cylindrical casing comes into contact with an obstacle such as stone or gravel. A peak value calculator of a spectrum distribution that stores a second contact judgment vibration level (P0) and calculates a peak value (P1) of the spectrum distribution in the second frequency region, the first contact judgment Vibration level (L0), the contact determination spectrum integration value (S0), the second contact determination vibration level (P0), the vibration level calculation unit, the spectrum integration value calculation unit, and the peak value calculation unit of the spectrum distribution. Comparing the vibration level (L1) and the spectral integration value (S1) calculated in step 1, and the peak value (P1) of the spectral distribution respectively. Te, (L1> L0) and (S1 <S0) and (P1 <P0)
In the case of, it is judged that it has contacted the buried pipe, and (L1> L0) and (S1> S0) and (P1> P0)
In the case of the above, the embedded object detection device according to claim 4, further comprising a comparison / determination unit that determines that an obstacle such as a stone or a gravel has been contacted.
【請求項6】 前記回転軸の回転数を測定する回転数測
定手段と、 前記円筒型ケーシングと前記地中埋設物との衝突時に生
ずる振動の基本周波数を前記回転数より算出し、前記基
本周波数を基に前記第1周波数領域と前記第2周波数領
域を求める周波数領域算出部を備えたことを特徴とする
請求項4または5記載の埋設物探知装置。
6. A rotation speed measuring means for measuring the rotation speed of the rotating shaft, and a basic frequency of vibration generated at the time of collision between the cylindrical casing and the underground buried object is calculated from the rotation speed. The embedded object detection device according to claim 4 or 5, further comprising a frequency domain calculation unit that determines the first frequency domain and the second frequency domain based on the above.
【請求項7】 前記振動センサを、前記円筒形ケーシン
グの内壁側に備えたことを特徴とする請求項4、5また
は6記載の埋設物探知装置。
7. The buried object detection device according to claim 4, wherein the vibration sensor is provided on the inner wall side of the cylindrical casing.
JP16676494A 1994-07-19 1994-07-19 Buried object detection method and device Expired - Fee Related JP3211574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16676494A JP3211574B2 (en) 1994-07-19 1994-07-19 Buried object detection method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16676494A JP3211574B2 (en) 1994-07-19 1994-07-19 Buried object detection method and device

Publications (2)

Publication Number Publication Date
JPH0829247A true JPH0829247A (en) 1996-02-02
JP3211574B2 JP3211574B2 (en) 2001-09-25

Family

ID=15837278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16676494A Expired - Fee Related JP3211574B2 (en) 1994-07-19 1994-07-19 Buried object detection method and device

Country Status (1)

Country Link
JP (1) JP3211574B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002075A (en) * 2006-06-20 2008-01-10 Sakai Heavy Ind Ltd Cutter bit breakage detecting device, road cutter control device and road cutting vehicle including the same
JP2013002197A (en) * 2011-06-20 2013-01-07 Hitachi Ltd Boring state monitoring system
CN103353619A (en) * 2013-07-23 2013-10-16 烟台北方星空自控科技有限公司 Sensor assembly with bottoming detection
CN103353620A (en) * 2013-07-23 2013-10-16 烟台北方星空自控科技有限公司 Bottoming detection apparatus
US8561719B1 (en) 2011-01-22 2013-10-22 William Robert Shoaf Computerized boring system with bore head sensors
JP2015078520A (en) * 2013-10-16 2015-04-23 株式会社アイチコーポレーション Earth auger device
CN105628184A (en) * 2015-12-25 2016-06-01 中电投工程研究检测评定中心 Field vibration detection and monitoring method
JP2018025428A (en) * 2016-08-09 2018-02-15 株式会社大林組 Foreign matter identification method and foreign matter identification device
WO2021234888A1 (en) * 2020-05-21 2021-11-25 日本電信電話株式会社 Search device and search method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002075A (en) * 2006-06-20 2008-01-10 Sakai Heavy Ind Ltd Cutter bit breakage detecting device, road cutter control device and road cutting vehicle including the same
US8561719B1 (en) 2011-01-22 2013-10-22 William Robert Shoaf Computerized boring system with bore head sensors
JP2013002197A (en) * 2011-06-20 2013-01-07 Hitachi Ltd Boring state monitoring system
CN103353619A (en) * 2013-07-23 2013-10-16 烟台北方星空自控科技有限公司 Sensor assembly with bottoming detection
CN103353620A (en) * 2013-07-23 2013-10-16 烟台北方星空自控科技有限公司 Bottoming detection apparatus
JP2015078520A (en) * 2013-10-16 2015-04-23 株式会社アイチコーポレーション Earth auger device
CN105628184A (en) * 2015-12-25 2016-06-01 中电投工程研究检测评定中心 Field vibration detection and monitoring method
JP2018025428A (en) * 2016-08-09 2018-02-15 株式会社大林組 Foreign matter identification method and foreign matter identification device
WO2021234888A1 (en) * 2020-05-21 2021-11-25 日本電信電話株式会社 Search device and search method
JPWO2021234888A1 (en) * 2020-05-21 2021-11-25

Also Published As

Publication number Publication date
JP3211574B2 (en) 2001-09-25

Similar Documents

Publication Publication Date Title
US6003376A (en) Acoustic system for measuring the location and depth of underground pipe
US9459374B2 (en) Derivative imaging for subsurface object detection
KR101585291B1 (en) Method and apparatus for detecting buried objects
US6353321B1 (en) Uncompensated electromagnetic wave resistivity tool for bed boundary detection and invasion profiling
US20190369283A1 (en) Cross-bore detection during horizontal directional drilling
US5457995A (en) Horizontal boring pipe penetration detection system and method
KR102002480B1 (en) Systems for maintaining, managing and exploring pipe networks
KR101643305B1 (en) Detection system for destroyed underground utilities and method thereof
JP3211574B2 (en) Buried object detection method and device
KR101989975B1 (en) Warning Method and Apparatus for Ground Subsidence using the Monitoring of Ground Water Level
KR102275670B1 (en) A device that calculates the trajectory of the underground pipeline simultaneously with geological exploration in four directions around the underground pipeline
JP3248175B2 (en) Buried object detection method and buried object detection device
CN110886329B (en) Device for detecting perpendicularity of pile foundation and application method thereof
JP6775970B2 (en) Buried object exploration equipment, excavation system and buried object exploration method
JP3405207B2 (en) Judgment method of ground supported by excavator
US6215888B1 (en) Cable location method and apparatus using modeling data
JP2009270970A (en) Method for exploring cavity below road surface
CN117287261A (en) Coal seam outburst risk spectrum acoustic prediction method
EP3935257A1 (en) Cut measurement method and associated apparatus
JPH09145690A (en) Method and system for locating underground object
US20060091876A1 (en) Leak detection method and system in nonmetallic underground pipes
KR101791588B1 (en) Tunnel boring machine with ground prediction device and ground prediction method of using the same
KR100654688B1 (en) Danger slope monitoring device
WO2021234888A1 (en) Search device and search method
JPH1138153A (en) Buried object-detecting device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070719

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees