[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0829225B2 - Recycling recovery treatment method of alkaline waste liquid of nitrate - Google Patents

Recycling recovery treatment method of alkaline waste liquid of nitrate

Info

Publication number
JPH0829225B2
JPH0829225B2 JP62290874A JP29087487A JPH0829225B2 JP H0829225 B2 JPH0829225 B2 JP H0829225B2 JP 62290874 A JP62290874 A JP 62290874A JP 29087487 A JP29087487 A JP 29087487A JP H0829225 B2 JPH0829225 B2 JP H0829225B2
Authority
JP
Japan
Prior art keywords
exchange membrane
nitrate
solution
alkali
waste liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62290874A
Other languages
Japanese (ja)
Other versions
JPH01130705A (en
Inventor
隆 佐々木
政宣 杉澤
俶士 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Shinko Pantec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Pantec Co Ltd filed Critical Shinko Pantec Co Ltd
Priority to JP62290874A priority Critical patent/JPH0829225B2/en
Publication of JPH01130705A publication Critical patent/JPH01130705A/en
Publication of JPH0829225B2 publication Critical patent/JPH0829225B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/445Ion-selective electrodialysis with bipolar membranes; Water splitting

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、硝酸塩のアルカリ性廃液の再生回収処理方
法に関し、詳細にはNi−Cd電池の製造工程等において排
出されるNaNO3−NaOH廃液等の如き硝酸塩のアルカリ性
廃液について、廃液処理し、また、同時に該廃液からア
ルカリ及び硝酸を再生し、回収する硝酸塩のアルカリ性
廃液の再生回収処理方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for regenerating and recovering an alkaline waste solution of nitrate, and more specifically, to a NaNO 3 —NaOH waste solution discharged in a manufacturing process of a Ni—Cd battery or the like. The present invention relates to a method for regenerating and recovering an alkaline waste solution of nitrate, in which an alkaline waste solution of nitrate such as the above is subjected to waste solution treatment, and at the same time, alkali and nitric acid are regenerated and recovered.

(従来の技術) Ni−Cd電池の製造工程等においてNaNO3−NaOH廃液等
の如き硝酸塩のアルカリ性廃液が排出される。
(Prior Art) Alkaline waste liquid of nitrate such as NaNO 3 —NaOH waste liquid is discharged in the manufacturing process of Ni-Cd battery.

従来、これらの硝酸塩のアルカリ性廃液は中和沈澱法
によって処理されていた。即ち、該廃液に酸を添加して
中和し、沈澱物を除去した後、得られた中性水溶液を公
共水域へ放流することにより、廃液の処理が行われてい
た。しかし、この中和沈澱法には、硝酸性の窒素が未処
理のまま全て公共水域へ排出され、富栄養化の原因とな
る等の公害上の問題点即ち環境保全の面での問題点があ
る。そこで、この対策として、前記中性水溶液を生物処
理して窒素を除去する方法即ち生物脱窒法が採用されて
いる。
Conventionally, the alkaline waste liquids of these nitrates have been treated by the neutralization precipitation method. That is, the waste liquid is treated by adding an acid to the waste liquid to neutralize it, removing the precipitate, and then discharging the resulting neutral aqueous solution into public water bodies. However, this neutralization precipitation method has a problem in pollution, that is, a problem in terms of environmental protection, such that all nitrate nitrogen is discharged untreated to public water bodies, causing eutrophication. is there. Therefore, as a countermeasure, a method of biologically treating the neutral aqueous solution to remove nitrogen, that is, a biological denitrification method is adopted.

また、バイポーラ膜(陰陽複合イオン交換膜)を用い
たイオン交換膜電気透析装置により、種々の塩類溶液を
酸とアルカリとに分離する技術が、例えば特公昭32−39
62号公報に示されるように、古くから知られている。
Further, a technique for separating various salt solutions into an acid and an alkali by an ion exchange membrane electrodialyzer using a bipolar membrane (an anion-yang composite ion exchange membrane) is disclosed in, for example, Japanese Patent Publication No. 32-39.
It has been known for a long time, as shown in Japanese Patent Publication No. 62-62.

(発明が解決しようとする問題点) ところが、上記の生物脱窒法には、高濃度の窒素含有
溶液の処理は困難であるという問題点がある。即ち、生
物脱窒法は、低濃度の窒素含有溶液であって、処理量が
少ない場合は比較的問題は少ないが、Ni−Cd電池の製造
工程等において排出される。NaNO3−NaOH廃液等の如き
硝酸塩のアルカリ性廃液のように高濃度の窒素含有溶液
の場合は、多量の水で希釈して処理を行う必要があるた
め、非常に広い生物処理装置の設置面積を必要とし、ま
た、この処理によって排出される処理水量が極めて膨大
であるという深刻な問題点がある。また、中和沈澱法に
は、前記公害上の問題点即ち環境保全の面での問題点の
他、NaNO3,NaOH等の如き金属塩,アルカリ等を捨てるこ
とになり、省資源の面での問題点がある。また大量の沈
澱物発生という問題点もある。
(Problems to be Solved by the Invention) However, the above-mentioned biological denitrification method has a problem that it is difficult to treat a high-concentration nitrogen-containing solution. That is, the biological denitrification method is a low-concentration nitrogen-containing solution, and when the treatment amount is small, the problem is relatively small, but it is discharged in the manufacturing process of the Ni-Cd battery. In the case of a highly concentrated nitrogen-containing solution such as an alkaline waste solution of nitrate such as NaNO 3 -NaOH waste solution, it is necessary to dilute the solution with a large amount of water before performing the treatment. There is a serious problem that the amount of treated water that is required and discharged by this treatment is extremely large. Further, in the neutralization precipitation method, in addition to the above-mentioned pollution problems, that is, environmental protection problems, metal salts such as NaNO 3 and NaOH, alkalis, and the like are discarded, which leads to resource saving. There is a problem. There is also a problem that a large amount of precipitate is generated.

また、バイポーラ膜を用いた前記イオン交換膜電気透
析装置にアルカリ性廃液を直接供給することは、陰イオ
ン交換膜に損傷を与える点で問題がある。
Further, the direct supply of the alkaline waste liquid to the ion exchange membrane electrodialyzer using a bipolar membrane has a problem in that it damages the anion exchange membrane.

本発明はこの様な事情に着目してなされたものであっ
て、その目的は従来のものがもつ以上のような問題点を
解消し、中和沈澱法におけるような硝酸性の窒素による
環境汚染を生じることなく、硝酸塩のアルカリ性廃液の
廃液処理ができ、また、同時に廃液から再利用できるア
ルカリ及び硝酸を再生回収でき、更に、高濃度の窒素含
有溶液の場合であっても、生物脱窒法の場合におけるよ
うな非常に広い処理装置の設置面積を必要とせず、ま
た、処理によって排出される処理水量が極めて少なくて
簡単であって、環境保全、省資源、経済性等の面に優れ
た廃液処理ならびに廃液からの酸、アルカリの再生回収
処理が出来る硝酸塩のアルカリ性廃液の再生回収処理方
法を提供しようとするものである。
The present invention has been made in view of such circumstances, and its purpose is to solve the above-mentioned problems of the conventional ones, and to contaminate the environment with nitrate nitrogen as in the neutralization precipitation method. It is possible to treat the alkaline waste solution of nitrate without wastewater, and at the same time, to recycle and recover the alkali and nitric acid that can be reused from the waste solution. Furthermore, even in the case of a high-concentration nitrogen-containing solution, the biological denitrification A waste liquid that does not require a very large installation area of the processing equipment, is extremely easy to use because the amount of treated water discharged is extremely small, and is excellent in terms of environmental protection, resource saving, economic efficiency, etc. An object of the present invention is to provide a method for regenerating and recovering an alkaline waste liquid of nitrate capable of treating and regenerating and recovering acid and alkali from the waste liquid.

(問題点を解決するための手段) 上記の目的を達成するために、本発明は次のような構
成の硝酸塩のアルカリ性廃液の再生回収処理方法として
いる。すなわち、本発明は、硝酸塩のアルカリ性廃液
を、バイポーラ膜と陽イオン交換膜を組み合わせてなる
イオン交換膜電気透析装置により透析脱アルカリし、透
析したアルカリを回収する一方、脱アルカリ液を、バイ
ポーラ膜と陰イオン交換膜及び陽イオン交換膜を組み合
わせてなるイオン交換膜電気透析装置により、酸とアル
カリとに分離して再生回収することを特徴とする硝酸塩
のアルカリ性廃液の再生回収処理方法である。
(Means for Solving Problems) In order to achieve the above object, the present invention provides a method for regenerating and recovering an alkaline waste solution of nitrate having the following constitution. That is, the present invention, the alkaline waste solution of nitrate is dialyzed and dealkalized by an ion exchange membrane electrodialyzer that is a combination of a bipolar membrane and a cation exchange membrane, and the dialyzed alkali is recovered, while the dealkalized solution is made into a bipolar membrane. And an anion exchange membrane and a cation exchange membrane are combined to separate and regenerate and recover an acid and an alkali by an ion exchange membrane electrodialysis device.

(作 用) 本発明の硝酸塩のアルカリ性廃液の再生回収処理方法
は、以上のような構成としているので、処理系をクロー
ズドシステムとすることが出来、そのため中和沈澱法に
おけるような硝酸性の窒素による環境汚染を生じること
なく、硝酸塩のアルカリ性廃液の廃液処理が可能とな
る。また、同時に再利用できる硝酸塩、アルカリ及び硝
酸を効率良く再生回収できるようになる。更に、この再
生回収処理において、陰イオン交換膜の損傷を生じ難
く、また、高濃度の窒素含有溶液の場合であっても、生
物脱窒法の場合に比べて処理装置の設置面積を小さくで
きるものである。この作用の詳細を以下に説明する。
(Operation) Since the method for regenerating and recovering the alkaline waste solution of nitrate of the present invention is configured as described above, the processing system can be a closed system, and therefore nitric nitrogen as in the neutralization precipitation method is used. The waste liquid treatment of the alkaline waste liquid of nitrate can be performed without causing environmental pollution due to. Further, it becomes possible to efficiently regenerate and recover the nitrate, alkali and nitric acid which can be reused at the same time. Furthermore, in this regeneration / recovery treatment, damage to the anion exchange membrane is unlikely to occur, and even in the case of a high-concentration nitrogen-containing solution, the installation area of the treatment equipment can be made smaller than in the case of the biological denitrification method Is. The details of this operation will be described below.

バイポーラ膜と陽イオン交換膜を組み合わせてなるイ
オン交換膜電気透析装置は、バイポーラ膜及び陽イオン
交換膜を一組とするセルを幾つか有し、そのセルは膜を
介して形成された二室即ち希釈室と濃縮室から構成され
ている。その構成主要部の概念図を第1図に示す。バイ
ポーラ膜はB、陽イオン交換膜はCで示される。この装
置において、希釈室(1)に廃液即ち硝酸塩のアルカリ
性廃液を循環して流し、濃縮室(2)にアルカリまたは
脱塩水を循環して流し、装置の両端の電極(3),
(4)に直流電流を通電すると、アルカリ成分が透析さ
れ、濃縮室(2)へ移行するので、希釈室側の廃液は脱
アルカリ即ち希釈されて殆どが硝酸塩から成る溶液とな
り、これを続けると希釈室側から硝酸塩溶液が得られ
る。一方、濃縮室側においては、透析移行した濃いアル
カリ溶液は循環アルカリまたは脱塩水の流れと合流し、
回収される。このアルカリ溶液は、濃縮室(2)のアル
カリ循環用に再利用でき、また後工程のアルカリライン
循環用に用いることもできる。
An ion-exchange membrane electrodialysis device that combines a bipolar membrane and a cation-exchange membrane has several cells each having a bipolar membrane and a cation-exchange membrane as a set, and the cells are two chambers formed through the membrane. That is, it is composed of a diluting chamber and a concentrating chamber. FIG. 1 shows a conceptual diagram of the main part of the configuration. The bipolar membrane is indicated by B, and the cation exchange membrane is indicated by C. In this device, a waste liquid, that is, an alkaline waste liquid of nitrate is circulated in a diluting chamber (1) and an alkali or demineralized water is circulated in a concentrating chamber (2), and electrodes (3) at both ends of the device,
When a direct current is applied to (4), the alkaline component is dialyzed and moves to the concentrating chamber (2), so that the waste liquid in the diluting chamber is dealkalized, that is, diluted to become a solution consisting mostly of nitrate. A nitrate solution is obtained from the dilution chamber side. On the other hand, on the side of the concentrating chamber, the concentrated alkaline solution transferred to dialysis merges with the flow of circulating alkali or demineralized water,
Be recovered. This alkaline solution can be reused for the circulation of alkali in the concentrating chamber (2), and can also be used for the circulation of the alkali line in the subsequent step.

希釈室側から得られる硝酸塩溶液は、バイポーラ膜と
陰イオン交換膜及び陽イオン交換膜を組み合わせてなる
イオン交換膜電気透析装置により、酸とアルカリとに分
離して再生回収する。その構成主要部の概念図を第2図
に示す。バイポーラ膜はB、陽イオン交換膜はC、陰イ
オン交換膜Aで示される。即ち、前記バイポーラ膜を使
用したイオン交換膜電気透析装置は、バイポーラ膜,陰
イオン交換膜,陽イオン交換膜を一組とするセルを幾つ
か有し、そのセルは膜を介して形成された希釈室即ち塩
ライン(5)、その両側に配された濃縮室即ちアルカリ
循環ライン(6)および酸循環ライン(7)から構成さ
れている。この装置において、塩ライン(5)に前記硝
酸塩溶液を循環して流し、アルカリ循環ライン(6)に
アルカリまたは脱塩水を循環して流し、酸循環ライン
(7)に酸または脱塩水を循環して流し、装置の両端の
電極(8),(9)に直流電流を通電すると、塩ライン
(5)の塩の水溶液が脱塩され、アルカリ成分が透析さ
れ、濃縮室へ移行するのでアルカリ循環ライン(6)に
はアルカリが再生され、アルカリ循環流と合流し、回収
される。一方、酸循環ライン(7)には酸が再生され、
酸循環流と合流し、回収される。
The nitrate solution obtained from the side of the diluting chamber is separated into acid and alkali by an ion exchange membrane electrodialyzer which is a combination of a bipolar membrane, an anion exchange membrane and a cation exchange membrane, and is regenerated and recovered. FIG. 2 shows a conceptual diagram of its main constituent parts. The bipolar membrane is indicated by B, the cation exchange membrane is indicated by C, and the anion exchange membrane is indicated by A. That is, the ion exchange membrane electrodialysis device using the bipolar membrane has several cells each including a bipolar membrane, an anion exchange membrane and a cation exchange membrane, and the cells are formed through the membrane. It is composed of a diluting chamber or salt line (5), a concentrating chamber or alkali circulation line (6) and an acid circulation line (7) arranged on both sides thereof. In this device, the nitrate solution is circulated through a salt line (5), alkali or demineralized water is circulated through an alkali circulation line (6), and acid or demineralized water is circulated through an acid circulation line (7). When a direct current is applied to the electrodes (8) and (9) at both ends of the device, the aqueous salt solution in the salt line (5) is desalted, the alkaline component is dialyzed, and transferred to the concentrating chamber. The alkali is regenerated in the line (6), merges with the alkali circulation stream, and is recovered. On the other hand, acid is regenerated in the acid circulation line (7),
Combined with the acid circulation stream and recovered.

このとき、上記装置の塩ライン(5)に導入される硝
酸塩溶液は、前工程で脱アルカリされているので、陰イ
オン交換膜の損傷を生じ難くできる。また、原廃液より
希釈されたもの即ち塩の濃度が小さいものであるので、
装置への負荷が小さくなる。
At this time, since the nitrate solution introduced into the salt line (5) of the above apparatus has been dealkalized in the previous step, it is possible to prevent the anion exchange membrane from being damaged. Also, since it is diluted from the original waste liquid, that is, the concentration of salt is low,
The load on the device is reduced.

本発明において、再生回収された酸は、酸循環ライン
(7)の酸循環用に再利用でき、また再生回収されるア
ルカリは、アルカリ循環ライン(6)のアルカリ循環用
に、あるいは前工程の濃縮室(2)のアルカリ循環用に
も再利用できる。
In the present invention, the regenerated and recovered acid can be reused for acid circulation in the acid circulation line (7), and the regenerated and recovered alkali can be used for alkali circulation in the alkali circulation line (6) or in the previous step. It can be reused for alkali circulation in the concentrating chamber (2).

また、上記のように、再生される酸、アルカリは、再
利用または/および回収されるので、処理系から廃液、
処理液を全く出さないクローズドシステムとすることが
出来る。
In addition, as described above, the regenerated acid and alkali are reused and / or recovered, so that waste liquid from the treatment system,
It is possible to make a closed system that does not emit processing liquid at all.

また、以上のように、本発明に係る装置は、主にイオ
ン交換膜電気透析装置からなるものであるので、高濃度
の窒素含有溶液の場合であっても、生物脱窒法の場合に
比べて処理装置の設置面積を小さくできるものである。
Further, as described above, since the device according to the present invention mainly comprises an ion-exchange membrane electrodialysis device, even in the case of a high-concentration nitrogen-containing solution, compared to the case of the biological denitrification method. The installation area of the processing device can be reduced.

(実施例) 本発明の実施例を以下に説明する。(Examples) Examples of the present invention will be described below.

Ni−Cd電池の製造工程から排出されたNaNO3−NaOH廃
液について、本発明の方法により再生回収処理を行っ
た。第3図に本発明のフローシートを示す。この図に示
すように、処理系は、この系から廃液、処理液を全く出
さないクローズドシステムとした。
The NaNO 3 —NaOH waste liquid discharged from the manufacturing process of the Ni—Cd battery was subjected to a regeneration and recovery treatment by the method of the present invention. FIG. 3 shows a flow sheet of the present invention. As shown in this figure, the processing system was a closed system in which no waste liquid or processing liquid was discharged from this system.

廃液の組成は、NaNO3130g/l,NaOH150g/lである。この
廃液をバイポーラ膜と陽イオン交換膜を組み合わせてな
るイオン交換膜電気透析装置(a)に導入し、透析脱ア
ルカリした。このイオン交換膜電気透析装置は、バイポ
ーラ膜と陽イオン交換膜を一組とするセルを10セル有
し、有効膜面積20dm2のものを用いた。この運転条件
は、廃液の温度30℃,電流密度10A/dm2,膜面循環流速5c
m/secとした。希釈室に廃液を循環して流し、濃縮室に
アルカリまたは脱塩水を循環して流し、装置の両端の電
極に直流電流を通電した。希釈室側の廃液は脱アルカリ
されて希釈室側からNaNO3溶液が得られる。このNaNO3
液は、一旦原液タンク(c)に回収された後、塩タンク
(e)に回収され、装置(b)の塩ラインに導入循環さ
せた。一方、濃縮室側においては、透析移行し再生され
たNaOH溶液は循環アルカリ流と合流し、アルカリタンク
(d)に回収される。このアルカリ溶液は、装置(a)
における濃縮室のアルカリ循環用に、また後工程の装置
(b)におけるアルカリ循環用に再利用し、循環させ
た。
The composition of the waste liquid is NaNO 3 130 g / l, NaOH 150 g / l. This waste liquid was introduced into an ion-exchange membrane electrodialyzer (a) which is a combination of a bipolar membrane and a cation-exchange membrane, and dialyzed and dealkalized. This ion-exchange membrane electrodialyzer has 10 cells each having a bipolar membrane and a cation-exchange membrane as a set, and has an effective membrane area of 20 dm 2 . The operating conditions are as follows: waste liquid temperature 30 ℃, current density 10A / dm 2 , membrane surface circulation velocity 5c.
m / sec. Waste liquid was circulated in the diluting chamber and alkali or demineralized water was circulated in the concentrating chamber, and a direct current was applied to the electrodes at both ends of the device. The waste liquid on the dilution chamber side is dealkalized to obtain a NaNO 3 solution from the dilution chamber side. The NaNO 3 solution was once collected in the stock solution tank (c), then collected in the salt tank (e), and introduced and circulated in the salt line of the apparatus (b). On the other hand, on the side of the concentrating chamber, the NaOH solution regenerated by dialysis and regenerated merges with the circulating alkali stream and is collected in the alkali tank (d). This alkaline solution is used in the device (a)
Was reused and circulated for alkali circulation in the concentrating chamber in 1. and for alkali circulation in the device (b) in the subsequent step.

その結果、190AHの電気量で150g/lのNaOHを回収する
ことができた。電流効率は80%であった。一方、脱アル
カリ液として130g/lのNaNO3が得られた。
As a result, 150 g / l of NaOH could be recovered with an electric quantity of 190 AH. The current efficiency was 80%. On the other hand, 130 g / l of NaNO 3 was obtained as a dealkalized solution.

脱アルカリ液を、バイポーラ膜と陰イオン交換膜及び
陽イオン交換膜を組み合わせてなるイオン交換膜電気透
析装置(b)に導入し、透析脱塩した。この装置(b)
は、バイポーラ膜,陰イオン交換膜,陽イオン交換膜を
一組とするセルを8セル有し、有効膜面積10dm2のもの
を用いた。この運転条件は、溶液の温度30℃,電流密度
8A/dm2,膜面循環流速5cm/sec,塩循環ラインの導電率は,
40000μs/cmとした。酸循環ラインに再生されたHNO
3は、装置(b)における酸循環用に再利用し、また、
アルカリ循環ラインに再生されたNaOHは、装置(b)に
おけるアルカリ循環用に、および装置(a)における濃
縮室(2)のアルカリ循環用に再利用し、循環させた。
塩ラインにおいて脱塩された溶液は、酸およびアルカリ
循環ラインへの投入溶液として再利用した。
The dealkalized solution was introduced into an ion-exchange membrane electrodialysis device (b) which is a combination of a bipolar membrane, an anion-exchange membrane and a cation-exchange membrane, and was dialyzed and desalted. This device (b)
Used 8 cells having a set of a bipolar membrane, an anion exchange membrane, and a cation exchange membrane, and having an effective membrane area of 10 dm 2 . The operating conditions are: solution temperature 30 ℃, current density
8 A / dm 2 , membrane surface circulation velocity 5 cm / sec, the conductivity of the salt circulation line is
It was set to 40,000 μs / cm. HNO regenerated to the acid circulation line
3 is reused for the acid cycle in device (b) and also
The NaOH regenerated in the alkali circulation line was reused and circulated for alkali circulation in the apparatus (b) and for alkali circulation in the concentrating chamber (2) in the apparatus (a).
The desalted solution in the salt line was reused as the input solution to the acid and alkali circulation lines.

その結果、アルカリ循環ライン150g/lのNaOH、酸循環
ラインから100g/lのHNO3を再生回収することができ、そ
れぞれアルカリタンク(d)、酸タンク(f)に回収し
た。電流効率は70%であった。塩ラインにおいて脱塩さ
れた溶液は、塩タンク(e)に回収した。
As a result, 150 g / l of NaOH circulation line and 100 g / l of HNO 3 were regenerated and recovered from the acid circulation line, and were recovered in the alkali tank (d) and the acid tank (f), respectively. The current efficiency was 70%. The solution desalted in the salt line was collected in a salt tank (e).

(発明の効果) 本発明は、中和沈澱法におけるような硝酸性の窒素に
よる環境汚染を生じることなく、硝酸塩のアルカリ性廃
液の廃液処理ができる。また、同時に廃液からNi−Cd電
池の製造工程等に再利用できるアルカリの他、硝酸を再
生回収できる。更に、高濃度の窒素含有溶液の場合であ
っても、生物脱窒法の場合におけるような非常に広い処
理装置の設置面積を必要とせず、また、処理によって排
出される処理水量が極めて少なくて簡単である。従っ
て、環境保全、省資源、経済性等の面に優れた廃液処理
ならびに廃液からの酸、アルカリの再生回収処理が出来
るようになる。
(Effects of the Invention) The present invention enables waste liquid treatment of an alkaline waste liquid of nitrate without causing environmental pollution by nitrate nitrogen as in the neutralization precipitation method. At the same time, nitric acid can be regenerated and recovered from the waste solution as well as alkali that can be reused in the manufacturing process of Ni-Cd batteries and the like. Furthermore, even in the case of a high-concentration nitrogen-containing solution, it does not require a very large installation area of the treatment equipment as in the case of the biological denitrification method, and the amount of treated water discharged by the treatment is extremely small and simple. Is. Therefore, it becomes possible to perform waste liquid treatment excellent in terms of environmental protection, resource saving, economical efficiency and the like, and regeneration and recovery treatment of acid and alkali from the waste liquid.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係るバイポーラ膜と陽イオン交換膜を
組み合わせてなるイオン交換膜電気透析装置の構成主要
部の概念図、第2図は本発明に係るバイポーラ膜と陰イ
オン交換膜及び陽イオン交換膜を組み合わせてなるイオ
ン交換膜電気透析装置の構成主要部の概念図、第3図は
実施例における硝フッ酸廃液の再生回収処理方法のフロ
ーシートを示す図である。 (1)……希釈室、(2)……濃縮室 (3),(4),(8),(9)……電極、(5)……
塩ライン (6)……アルカリ循環ライン (7)……酸循環ライン B……バイポーラ膜 C……陽イオン交換膜 A……陰イオン交換膜 (a)……バイポーラ膜と陽イオン交換膜を組み合わせ
てなるイオン交換膜電気透析装置 (b)……バイポーラ膜と陰イオン交換膜及び陽イオン
交換膜を組み合わせてなるイオン交換膜電気透析装置 (c)……原液タンク、(d)……アルカリタンク (e)……塩タンク、(f)……酸タンク
FIG. 1 is a conceptual diagram of the main constituents of an ion-exchange membrane electrodialysis apparatus which is a combination of a bipolar membrane and a cation-exchange membrane according to the present invention, and FIG. 2 is a bipolar membrane, an anion-exchange membrane and a cation according to the present invention. FIG. 3 is a conceptual diagram of the main components of an ion-exchange membrane electrodialysis device that is a combination of ion-exchange membranes, and FIG. 3 is a diagram showing a flow sheet of a method for regenerating and recovering a nitric-hydrofluoric acid waste liquid in Examples. (1) ... Diluting chamber, (2) ... Concentrating chamber (3), (4), (8), (9) ... Electrode, (5) ...
Salt line (6) …… Alkaline circulation line (7) …… Acid circulation line B …… Bipolar membrane C …… Cation exchange membrane A …… Anion exchange membrane (a) …… Bipolar membrane and cation exchange membrane Combined ion-exchange membrane electrodialysis device (b) …… Ion-exchange membrane electrodialysis device combining bipolar membrane, anion-exchange membrane and cation-exchange membrane (c) …… stock solution tank, (d) …… alkali Tank (e) …… Salt tank, (f) …… Acid tank

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】硝酸塩のアルカリ性廃液を、バイポーラ膜
と陽イオン交換膜を組み合わせてなるイオン交換膜電気
透析装置により透析脱アルカリし、透析したアルカリを
回収する一方、脱アルカリ液を、バイポーラ膜と陰イオ
ン交換膜及び陽イオン交換膜を組み合わせてなるイオン
交換膜電気透析装置により、酸とアルカリとに分離して
再生回収することを特徴とする硝酸塩のアルカリ性廃液
の再生回収処理方法。
1. An alkaline waste solution of nitrate is dialyzed and dealkalized by an ion-exchange membrane electrodialyzer, which is a combination of a bipolar membrane and a cation-exchange membrane, and the dialyzed alkali is recovered, while the dealkalized solution is changed to a bipolar membrane. A method for regenerating and recovering an alkaline waste solution of nitrate, characterized by separating and regenerating and recovering an acid and an alkali by an ion exchange membrane electrodialyzer comprising a combination of an anion exchange membrane and a cation exchange membrane.
JP62290874A 1987-11-18 1987-11-18 Recycling recovery treatment method of alkaline waste liquid of nitrate Expired - Lifetime JPH0829225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62290874A JPH0829225B2 (en) 1987-11-18 1987-11-18 Recycling recovery treatment method of alkaline waste liquid of nitrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62290874A JPH0829225B2 (en) 1987-11-18 1987-11-18 Recycling recovery treatment method of alkaline waste liquid of nitrate

Publications (2)

Publication Number Publication Date
JPH01130705A JPH01130705A (en) 1989-05-23
JPH0829225B2 true JPH0829225B2 (en) 1996-03-27

Family

ID=17761620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62290874A Expired - Lifetime JPH0829225B2 (en) 1987-11-18 1987-11-18 Recycling recovery treatment method of alkaline waste liquid of nitrate

Country Status (1)

Country Link
JP (1) JPH0829225B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115594345A (en) * 2022-10-18 2023-01-13 杭州蓝然技术股份有限公司(Cn) Alkaline washing wastewater recycling process based on bipolar membrane technology

Also Published As

Publication number Publication date
JPH01130705A (en) 1989-05-23

Similar Documents

Publication Publication Date Title
KR950006502B1 (en) Recovery of acids from materials comprising acid and sait
US4995956A (en) Method and apparatus to control a salt stream to be treated in an electrodialytic water splitter
US5645703A (en) Electrodialysis-based separation process for salt recovery and recycling from waste water
JPH11190907A (en) Regenerating method of photoresist developer waste liquid
US4943360A (en) Process for recovering nitric acid and hydrofluoric acid from waste pickle liquors
CA2151753A1 (en) A method for treating waste water containing neutral salts comprising monovalent ions
JPS63291608A (en) System for regenerating acidic waste liquid
JPH07112559B2 (en) Method for treating alkaline fluoride waste liquid containing metal ions and oils
JPH0829225B2 (en) Recycling recovery treatment method of alkaline waste liquid of nitrate
JP2670999B2 (en) Method for recycling and recovering alkaline waste liquid of nitrate
JP4925687B2 (en) Recovery method of high purity inorganic acid
JP2711241B2 (en) Acid waste liquid regeneration method
JP3519112B2 (en) Method and apparatus for treating liquid to be treated such as waste liquid containing ammonia compound
JP3637458B2 (en) Ammonia nitrogen removal method
JPH03146118A (en) Treatment method of aluminum material surface treatment wastewater
JPS61155898A (en) Treater for regenerated waste liquor of ion exchnage resin
JP2000354772A (en) Treatment of regenerable waste from condensate demineralizer
JP3202887B2 (en) Wastewater recovery method
JP2001170658A (en) Treating device for fluorine-containing waste water and treatment method
JP2003215810A (en) Method for recovering developer from photoresist developer waste liquid
CN212309614U (en) Ion exchange system for liquid stream treatment
CN212142638U (en) Ion exchange system for liquid stream treatment
JPH08240695A (en) Treatment method of radioactive waste liquid
JPH1085741A (en) Method for treating photoresist development waste liquid
JPH0810580A (en) Treatment of mixed waste liquid and device therefor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080327

Year of fee payment: 12