JPH08285383A - Fast cooling control method and device in freezing system - Google Patents
Fast cooling control method and device in freezing systemInfo
- Publication number
- JPH08285383A JPH08285383A JP8813895A JP8813895A JPH08285383A JP H08285383 A JPH08285383 A JP H08285383A JP 8813895 A JP8813895 A JP 8813895A JP 8813895 A JP8813895 A JP 8813895A JP H08285383 A JPH08285383 A JP H08285383A
- Authority
- JP
- Japan
- Prior art keywords
- valve opening
- valve
- superheat degree
- degree
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/21—Refrigerant outlet evaporator temperature
Landscapes
- Air Conditioning Control Device (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は冷凍システムにおける急
速冷却制御方法及び装置に係り、より詳細には、電動式
比例型膨張弁の弁開度を設定過熱度と実際の過熱度との
差で比例積分微分(PID)演算して得られる信号に基
づいて制御する方法及び装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rapid cooling control method and device in a refrigeration system, and more particularly, to a valve opening degree of an electric proportional expansion valve which is a difference between a set superheat degree and an actual superheat degree. The present invention relates to a method and apparatus for controlling based on a signal obtained by performing a proportional integral derivative (PID) operation.
【0002】[0002]
【従来の技術】従来、このような制御方法を実施する冷
凍システムとして、冷凍冷媒圧縮機、凝縮器、電動式比
例型膨張弁及び蒸発器を配管により環状に接続し、冷媒
の圧縮、凝縮液化、減圧膨張、蒸発気化を行う冷凍サイ
クルを実施するものが周知である。可逆式比例型膨張弁
の開度を入力信号に応じて電磁石、パルスモータなどの
駆動源で調整し、蒸発器の出口側と入口側の温度を温度
センサでそれぞれ検出し、各温度センサの出力に基づき
制御部が駆動源を制御する。2. Description of the Related Art Conventionally, as a refrigeration system for implementing such a control method, a refrigerating refrigerant compressor, a condenser, an electric proportional expansion valve and an evaporator are annularly connected by piping to compress and condense the refrigerant. It is well known to carry out a refrigeration cycle in which expansion under reduced pressure and evaporation and vaporization are performed. The opening of the reversible proportional expansion valve is adjusted by a drive source such as an electromagnet or a pulse motor according to the input signal, the temperature at the outlet side and the temperature at the inlet side of the evaporator are detected by temperature sensors, and the output of each temperature sensor The control unit controls the drive source based on the above.
【0003】制御部は、蒸発器の出口側と入口側の温度
をそれぞれ検出する温度センサからそれぞれ入力する信
号による蒸発器出口温度と冷媒温度すなわち蒸発温度と
の差をとって測定過熱度を算出し、この測定過熱度と設
定過熱度との差により算出した偏差信号をPID動作に
従って偏差修正を行って調節信号を求め、この調節信号
に基づいて操作量を制御、すなわち、膨張弁を開放させ
るパルス数を駆動源に与える弁開度調節信号を印加する
ことにより、膨張弁の開度を制御し、冷凍装置の冷媒流
量を調整する。The control unit calculates the degree of superheat measured by taking the difference between the evaporator outlet temperature and the refrigerant temperature, that is, the evaporation temperature, based on the signals respectively input from the temperature sensors that detect the temperatures at the outlet side and the inlet side of the evaporator. Then, the deviation signal calculated from the difference between the measured superheat degree and the set superheat degree is corrected in accordance with the PID operation to obtain the adjustment signal, and the operation amount is controlled based on the adjustment signal, that is, the expansion valve is opened. The opening degree of the expansion valve is controlled and the refrigerant flow rate of the refrigeration system is adjusted by applying a valve opening degree adjustment signal that gives the number of pulses to the drive source.
【0004】ところで、急速冷却においては、単位時間
当りの冷却速度が求められるので、負荷が大きいときに
蒸発器を効率よく運転できるような過熱度を設定してい
る。しかし、この急速冷却に伴う急激な負荷の減少によ
って、液バックの問題が発生する。この液バックの問題
を解消するために、従来、設定過熱度を常に液バックし
ない最適な値に自動調整して冷却する方法がある。By the way, since the cooling rate per unit time is required in the rapid cooling, the superheat degree is set so that the evaporator can be efficiently operated when the load is large. However, due to the rapid decrease in load accompanying this rapid cooling, the problem of liquid back occurs. In order to solve this liquid back problem, conventionally, there is a method of automatically adjusting the set superheat degree to an optimum value that does not always cause liquid back and cooling.
【0005】[0005]
【発明が解決しようとする課題】しかし、この方法で
は、最適過熱度を演算する過程において、液量を送り込
み過ぎ、冷却が階段状になってしまうため、時間がかか
って急速冷却に適さないという問題がある。However, in this method, in the process of calculating the optimum degree of superheat, the amount of liquid is excessively fed and the cooling becomes stepwise, which takes time and is not suitable for rapid cooling. There's a problem.
【0006】よって本発明は、上述した問題点に鑑み、
冷却速度を上げることができ、しかも液バックの生じに
くい冷凍サイクルの急速冷却制御方法及び装置を提供す
ることを目的としている。Therefore, the present invention has been made in view of the above problems.
An object of the present invention is to provide a rapid cooling control method and device for a refrigeration cycle, which can increase the cooling rate and is less likely to cause liquid back.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するため
本発明により成された冷凍システムにおける急速冷却制
御方法は、冷凍冷媒圧縮機、凝縮器、電動式比例型膨張
弁及び蒸発器を配管により環状に接続し、冷媒の圧縮、
凝縮液化、減圧膨張、蒸発気化を行い、前記蒸発器の出
口及び入口に装着した温度センサからの信号に基づいて
過熱度を演算し、該演算した測定過熱度と予め設定した
過熱度設定値とを比較して前記電動式比例型膨張弁の弁
開度を演算し、該演算した弁開度に応じた信号により弁
駆動部を動作して前記可逆式比例型膨張弁の開度を調整
するようにした急速冷却制御方法において、前記過熱度
設定値と別個に設定した庫内温度、電動式比例型膨張弁
の能力、必要能力、蒸発温度、凝縮温度などの各種設定
値から、庫内の各温度における弁開度の上限値及び下限
値を演算し、該弁開度の上限値及び下限値と前記演算し
た弁開度とを比較し、その比較結果を弁駆動部に送出し
て、前記電動式比例型膨張弁を駆動させるようにしたこ
とを特徴としている。To achieve the above object, a rapid cooling control method in a refrigerating system according to the present invention comprises a refrigerating refrigerant compressor, a condenser, an electric proportional expansion valve and an evaporator, which are connected by piping. Compressed refrigerant, connected in a ring
Condensation liquefaction, reduced pressure expansion, evaporative vaporization is performed, and the superheat degree is calculated based on a signal from a temperature sensor mounted at the outlet and the inlet of the evaporator, and the calculated measured superheat degree and a preset superheat degree set value. To calculate the valve opening of the electric proportional expansion valve, and operate the valve drive unit by a signal according to the calculated valve opening to adjust the opening of the reversible proportional expansion valve. In the rapid cooling control method as described above, the internal temperature set separately from the superheat degree setting value, the capacity of the electric proportional expansion valve, the required capacity, the evaporation temperature, from various setting values such as condensation temperature, The upper limit value and the lower limit value of the valve opening degree at each temperature are calculated, the upper limit value and the lower limit value of the valve opening degree are compared with the calculated valve opening degree, and the comparison result is sent to the valve drive section, It is characterized in that the electric proportional expansion valve is driven. .
【0008】前記弁開度の上限値及び下限値が、最終温
度での過熱度である設定過熱度に所定値を加えた過熱度
となる値に設定されていることを特徴としている。It is characterized in that the upper limit value and the lower limit value of the valve opening degree are set to a value which is a superheat degree obtained by adding a predetermined value to the set superheat degree which is the superheat degree at the final temperature.
【0009】実際の過熱度が設定過熱度に所定値を加え
た過熱度より大きいとき、前記弁開度の上限値を再度演
算し、設定過熱度に所定値を加えた過熱度になるように
前記弁開度を修正することを特徴としている。When the actual superheat degree is larger than the superheat degree obtained by adding a predetermined value to the set superheat degree, the upper limit value of the valve opening is recalculated so that the superheat degree becomes a superheat degree obtained by adding a predetermined value to the set superheat degree. It is characterized in that the valve opening is corrected.
【0010】前記演算した弁開度が前記弁開度の上限値
を越えているとき、前記可逆式比例型膨張弁を動作させ
ずにその開度を上限値に固定することを特徴としてい
る。When the calculated valve opening exceeds the upper limit of the valve opening, the reversible proportional expansion valve is not operated and the opening is fixed to the upper limit.
【0011】上記目的を達成するため本発明により成さ
れた冷凍システムにおける急速冷却制御装置は、図1の
基本構成図に示すように、配管により環状に接続され、
冷媒の圧縮、凝縮液化、減圧膨張、蒸発気化を行う冷凍
冷媒圧縮機1、凝縮器2、電動式比例型膨張弁3及び蒸
発器4と、前記蒸発器の出口及び入口に装着した温度セ
ンサ6,7からの信号に基づいて過熱度を演算する過熱
度演算手段92a−1と、該演算した測定過熱度と予め
設定した過熱度設定値とを比較して弁開度を演算する弁
開度演算手段92a−2と、該演算した弁開度に応じた
信号により弁駆動部5を動作して前記可逆式比例型膨張
弁の開度を調整するようにした冷凍システムにおける急
速冷却制御装置において、前記過熱度設定値と別個に設
定した庫内温度、電動式比例型膨張弁の能力、必要能
力、蒸発温度、凝縮温度などの各種設定値から、庫内温
度センサ8により検出される庫内の各温度における弁開
度の上限値及び下限値を演算する弁開度上下限演算手段
92a−3と、前記弁開度上下限演算手段により演算し
た前記弁開度の上限値及び下限値と前記弁開度演算手段
により演算した前記弁開度とを比較し、その比較結果を
弁駆動部に送出して、前記電動式比例型膨張弁を駆動さ
せる比較手段92a−4とを備えることを特徴としてい
る。In order to achieve the above object, the rapid cooling control device in the refrigerating system according to the present invention is connected in an annular shape by piping as shown in the basic configuration diagram of FIG.
Refrigerant refrigerant compressor 1, condenser 2, condenser 2, motorized proportional expansion valve 3 and evaporator 4 for compressing, condensing and liquefying, decompressing and evaporating and evaporating, and temperature sensor 6 attached to the outlet and inlet of said evaporator. , 7 for calculating the degree of superheat on the basis of signals from the superheat degree, and a valve opening degree for calculating the valve opening degree by comparing the calculated measured superheat degree with a preset superheat degree set value. In the quick cooling control device in the refrigeration system, which operates the valve drive unit 5 by the operation means 92a-2 and the signal according to the calculated valve opening degree to adjust the opening degree of the reversible proportional expansion valve. The inside temperature detected by the inside temperature sensor 8 from various set values such as the inside temperature set separately from the superheat degree set value, the capacity of the electric proportional expansion valve, the required capacity, the evaporation temperature, and the condensation temperature. Upper and lower limit of valve opening at each temperature of A valve opening upper / lower limit calculating means 92a-3, an upper limit value and a lower limit value of the valve opening calculated by the valve opening upper / lower limit calculating means, and the valve opening calculated by the valve opening calculating means. And a comparison means 92a-4 for driving the electric proportional expansion valve by sending the comparison result to the valve drive section.
【0012】[0012]
【作用】上記構成の方法において、配管により環状に接
続された冷凍冷媒圧縮機、凝縮器、電動式比例型膨張弁
及び蒸発器は、冷媒の圧縮、凝縮液化、減圧膨張、蒸発
気化を行う。蒸発器の出口及び入口に装着した温度セン
サからの信号に基づいて過熱度を演算し、この演算した
測定過熱度と予め設定した過熱度設定値とを比較して電
動式比例型膨張弁の弁開度を演算し、この演算した弁開
度に応じた信号により弁駆動部を動作して可逆式比例型
膨張弁の開度を調整する。In the method of the above construction, the refrigerating refrigerant compressor, the condenser, the electric proportional expansion valve and the evaporator which are annularly connected by the pipe perform compression, condensation liquefaction, decompression expansion and evaporative evaporation of the refrigerant. The superheat degree is calculated based on the signals from the temperature sensors installed at the outlet and inlet of the evaporator, and the calculated superheat degree is compared with the preset superheat set value to determine the valve of the electric proportional expansion valve. The opening is calculated, and the valve drive unit is operated by a signal according to the calculated valve opening to adjust the opening of the reversible proportional expansion valve.
【0013】特に、この可逆式比例型膨張弁を調整する
ための開度を、過熱度設定値と別個に設定した庫内温
度、電動式比例型膨張弁の能力、必要能力、蒸発温度、
凝縮温度などの各種設定値から演算した庫内の各温度に
おける弁開度の上限値及び下限値と比較し、その比較結
果を弁駆動部に送出して、電動式比例型膨張弁を駆動さ
せるようにしているので、冷媒を常に蒸発し易い状態に
して冷却速度を向上させることができる。In particular, the opening temperature for adjusting the reversible proportional expansion valve is set separately from the superheat degree setting value, the electric proportional expansion valve capacity, the required capacity, the evaporation temperature,
Compares the upper and lower limit values of the valve opening at each temperature inside the store calculated from various set values such as condensation temperature and sends the comparison result to the valve drive unit to drive the electric proportional expansion valve. As a result, the cooling rate can be improved by keeping the refrigerant in a state where it is easily evaporated.
【0014】また、弁開度の上限値及び下限値を、最終
温度での過熱度である設定過熱度に所定値を加えた過熱
度となる値に設定しているので、弁を絞った形で運転す
ることができ、冷媒を常に蒸発し易い状態にして冷却速
度を向上させることができるとともに、液バックも生じ
にくい。Further, since the upper limit value and the lower limit value of the valve opening degree are set to a value which is a superheat degree obtained by adding a predetermined value to the set superheat degree which is the superheat degree at the final temperature, the valve is closed. The cooling rate can be improved by making the refrigerant always evaporate easily, and liquid back hardly occurs.
【0015】更に、実際の過熱度が設定過熱度に所定値
を加えた過熱度より大きいとき、弁開度の上限値を再度
演算し、設定過熱度に所定値を加えた過熱度になるよう
に弁開度を修正し、又は、演算した弁開度が弁開度の上
限値を越えているとき、可逆式比例型膨張弁を動作させ
ずにその開度を上限値に固定するので、外乱による過熱
度の急激な変化に対して、弁を極端に開閉しないように
なり、安定運転が可能となっている。Further, when the actual degree of superheat is greater than the degree of superheat obtained by adding a predetermined value to the set degree of superheat, the upper limit value of the valve opening is recalculated so that the degree of superheat becomes a value obtained by adding a predetermined value to the set degree of superheat. The valve opening is corrected to, or when the calculated valve opening exceeds the upper limit of the valve opening, the reversible proportional expansion valve is not operated and the opening is fixed to the upper limit. The valve is prevented from opening and closing extremely in response to a sudden change in the degree of superheat caused by disturbance, and stable operation is possible.
【0016】上記構成の装置において、特に弁開度上下
限演算手段92a−3が、過熱度設定値と別個に設定し
た庫内温度、電動式比例型膨張弁の能力、必要能力、蒸
発温度、凝縮温度などの各種設定値から、庫内温度セン
サ8により検出される庫内の各温度における弁開度の上
限値及び下限値を演算し、比較手段92a−4が弁開度
上下限演算手段により演算した弁開度の上限値及び下限
値と弁開度演算手段92a−2により演算した弁開度と
を比較し、その比較結果を弁駆動部5に送出して、電動
式比例型膨張弁を駆動させるようにしているので、冷媒
を常に蒸発し易い状態にして冷却速度を向上させること
ができる。In the apparatus having the above-mentioned structure, particularly the valve opening upper / lower limit calculation means 92a-3 is set separately from the superheat degree set value, the inside temperature, the capacity of the electric proportional expansion valve, the required capacity, the evaporation temperature, From various set values such as the condensation temperature, the upper and lower limit values of the valve opening degree at each temperature inside the refrigerator detected by the inside temperature sensor 8 are calculated, and the comparing means 92a-4 calculates the valve opening upper and lower limit calculating means. The upper limit value and the lower limit value of the valve opening calculated by the above are compared with the valve opening calculated by the valve opening calculating means 92a-2, and the comparison result is sent to the valve drive unit 5 for electric proportional expansion. Since the valve is driven, the cooling rate can be improved by keeping the refrigerant in a state where it is easily evaporated.
【0017】[0017]
【実施例】以下、本発明の実施例を図面に基づいて説明
する。図2は冷凍サイクルを急速冷却制御する本発明に
よる方法を実施する装置を示し、同図において、1は冷
凍冷媒圧縮機、2は凝縮器、3は電動式比例型膨張弁、
4は蒸発器であり、これらは配管で環状に接続すること
により冷凍装置を構成し、冷媒の圧縮、凝縮液化、減圧
(膨張)、蒸発気化を行う周知のサイクルを形成する。
5は可逆式比例型膨張弁3の開度を入力信号に応じて調
整する電磁石、パルスモータなどの駆動源、6,7は蒸
発器4の出口側と入口側の温度をそれぞれ検出する温度
センサ、8は冷凍庫内の温度を検出する温度センサ、9
は温度センサ6,7及び8が接続され、その出力に基づ
き駆動源5を制御する制御部である。Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 shows an apparatus for carrying out the method according to the invention for controlling the rapid cooling of a refrigeration cycle, in which 1 is a refrigerating refrigerant compressor, 2 is a condenser, 3 is a motorized proportional expansion valve,
Reference numeral 4 denotes an evaporator, which constitutes a refrigerating device by being connected in an annular shape by pipes to form a known cycle of compressing, condensing and liquefying a refrigerant, decompressing (expanding), and evaporatively vaporizing.
Reference numeral 5 is a drive source such as an electromagnet or a pulse motor for adjusting the opening degree of the reversible proportional expansion valve 3 according to an input signal, and 6 and 7 are temperature sensors for detecting the temperatures of the outlet side and the inlet side of the evaporator 4, respectively. , 8 are temperature sensors for detecting the temperature in the freezer, 9
Is a control unit to which the temperature sensors 6, 7 and 8 are connected and which controls the drive source 5 based on the output thereof.
【0018】制御部9は、蒸発器4の出口側と入口側の
温度をそれぞれ検出する温度センサ6,7からそれぞれ
入力する信号による蒸発器出口温度と冷媒温度すなわち
蒸発器入口温度との差をとって測定過熱度を演算し、こ
の測定過熱度と設定過熱度との差により算出した偏差信
号をPID動作に従って偏差修正を行って調節信号を求
め、この調節信号に基づいて操作量を制御、すなわち、
膨張弁3を開放させるパルス数を弁駆動部5に与える弁
開度調節信号を印加することにより、電動式比例型膨張
弁3の開度を制御し、冷凍装置の冷媒流量を調整する。The control unit 9 determines the difference between the evaporator outlet temperature and the refrigerant temperature, that is, the evaporator inlet temperature, by the signals input from the temperature sensors 6 and 7 for detecting the temperatures on the outlet side and the inlet side of the evaporator 4, respectively. Then, the measured superheat degree is calculated, the deviation signal calculated by the difference between the measured superheat degree and the set superheat degree is corrected according to the PID operation to obtain the adjustment signal, and the operation amount is controlled based on the adjustment signal. That is,
By applying a valve opening adjustment signal that gives the valve driving unit 5 the number of pulses for opening the expansion valve 3, the opening of the electric proportional expansion valve 3 is controlled and the refrigerant flow rate of the refrigeration system is adjusted.
【0019】図3は上記制御部9の内部構成を示し、同
図において、91は蒸発器出口温度センサ6、入口温度
センサ7及び庫内温度センサ8からの信号をA/D変換
するA/D変換器、92は予め定めたプログラムに従っ
て動作するマイクロコンピュータであり、マイクロコン
ピュータ92は中央処理装置92a、プログラムや各種
の固定データを格納したROM92b及び各種のデータ
エリアやワークエリアを有する書き換え可能なRAM9
2cを有する。CPU92aは、温度センサ6,7から
の信号に基づいて過熱度を演算し、この演算した測定過
熱度と予め設定しROM92b中の所定エリア内に格納
した過熱度設定値とを比較して弁開度を演算する。FIG. 3 shows the internal construction of the control unit 9, in which reference numeral 91 is A / D for A / D converting signals from the evaporator outlet temperature sensor 6, the inlet temperature sensor 7 and the inside temperature sensor 8. The D converter, 92 is a microcomputer that operates according to a predetermined program, and the microcomputer 92 is a rewritable unit having a central processing unit 92a, a ROM 92b that stores programs and various fixed data, and various data areas and work areas. RAM9
2c. The CPU 92a calculates the superheat degree based on the signals from the temperature sensors 6 and 7, compares the calculated measured superheat degree with the preset superheat degree set value stored in a predetermined area in the ROM 92b, and opens the valve. Calculate the degree.
【0020】CPU92aはまた、過熱度設定値とは別
個に設定しROM92b中の所定エリア内に格納した庫
内温度、電動式比例型膨張弁の能力、必要能力、蒸発温
度、凝縮温度などの各種設定値から、庫内の各温度にお
ける弁開度の上限値及び下限値を演算する。そして、こ
の演算による開度は、最終温度での過熱度である設定過
熱度+αになるような値を想定して設定する。なお、α
は冷凍サイクルの系によって可変されROM92b中の
所定エリア内に格納されている。しかも、CPU92a
は、上述のようにそれぞれ演算された開度を比較し、そ
の比較結果を弁駆動部5に送出して、電動式比例型膨張
弁3を動作させる。The CPU 92a also sets various values such as the internal compartment temperature set separately from the superheat setting value and stored in a predetermined area in the ROM 92b, the capacity of the electric proportional expansion valve, the required capacity, the evaporation temperature, the condensation temperature. From the set value, the upper limit value and the lower limit value of the valve opening degree at each temperature in the refrigerator are calculated. Then, the opening degree calculated by this calculation is set on the assumption of a value such that the superheat degree at the final temperature is equal to the set superheat degree + α. Note that α
Is stored in a predetermined area of the ROM 92b, which is changed by the refrigeration cycle system. Moreover, the CPU 92a
Compares the openings calculated as described above and sends the comparison result to the valve drive unit 5 to operate the electric proportional expansion valve 3.
【0021】このとき、演算した弁開度が、そのときの
温度における弁開度の上限値及び下限値を越えている場
合には、弁は動作させず上限値で固定する。ただし、実
際の過熱度が設定過熱度+αより更に大きくなっている
場合には、上限値演算を再度行い、過熱度を設定値+α
になるように修正する。この演算を庫内温度の低下に伴
って刻々行うことにより、過熱度の逆転現象を起こすこ
となく庫内を冷却することができる。At this time, when the calculated valve opening exceeds the upper limit value and the lower limit value of the valve opening at the temperature at that time, the valve is not operated and is fixed at the upper limit value. However, if the actual degree of superheat is greater than the set degree of superheat + α, the upper limit calculation is performed again to set the degree of superheat to the set value + α.
Modify so that By performing this calculation momentarily as the temperature inside the refrigerator decreases, the inside of the refrigerator can be cooled without causing the phenomenon of reversal of the degree of superheat.
【0022】図4は庫内温度に対して演算により求めら
れる弁開度の上限値及び下限値の変化の様子を示すグラ
フであり、図示グラフから判るように、曲線aは庫内温
度の低下によって上限開度が下げられていく様子を、曲
線bは庫内温度の低下によって下限開度が下げられてい
く様子がそれぞれ示されている。庫内温度が高いとき下
限開度を上げている理由は、電動式比例型膨張弁3の閉
めすぎを防止するためである。FIG. 4 is a graph showing changes in the upper limit value and the lower limit value of the valve opening obtained by calculation with respect to the inside temperature, and as can be seen from the graph shown in the figure, the curve a shows a decrease in the inside temperature. The curve b indicates that the upper limit opening is decreased by the curve, and the curve b indicates that the lower limit opening is decreased by the decrease of the internal temperature. The reason why the lower limit opening is increased when the internal cold storage temperature is high is to prevent the electric proportional expansion valve 3 from being closed too much.
【0023】以上説明したように、庫内温度が高いとき
には弁開度の上限値を低めの開度(過熱度が設定過熱度
に所定値を加算した値になるような開度)に設定し、庫
内温度の低下とともに上限値を下げ、最終的には設定過
熱で運転できるようにしている。これは、急速冷却の負
荷の大きな初期段階における蒸発器出口での初期過熱度
が、急速冷却の負荷が小さくなる最終段階での設定過熱
度に比べて大きいという特性を利用したのであり、冷却
初期にはやや過熱気味の運転となるが、液量過多による
弁閉動作を防止することができるので、結果的に冷却速
度をアップして最終的な冷却温度を得るための時間を短
縮することができる。As described above, when the temperature inside the refrigerator is high, the upper limit value of the valve opening is set to a lower opening (the opening at which the degree of superheat becomes a value obtained by adding a predetermined value to the set degree of superheat). The upper limit value is lowered as the inside temperature decreases, and finally the engine can be operated at the set overheat. This utilizes the characteristic that the initial superheat at the evaporator outlet in the initial stage where the rapid cooling load is large is larger than the set superheat in the final stage where the rapid cooling load is small. Although the operation will be slightly overheated, it is possible to prevent the valve closing operation due to an excessive amount of liquid, so it is possible to increase the cooling speed and shorten the time to obtain the final cooling temperature. it can.
【0024】以上概略説明した動作の詳細を、ROM9
2bに格納したプログラムに従ってCPU92aが行う
処理を示す図5及び図6のフローチャートを参照して以
下説明する。CPU92aは電源の投入によって動作を
開始し、その最初のステップS1において初期設定を行
う。この初期設定は、ROM92bに格納されている庫
内温度、電動式比例型膨張弁の能力、必要能力、蒸発温
度、凝縮温度、過冷却度、過熱度設定などの各種設定値
をRAM92c内の所定のエリアに書き込むことによっ
て行われる。The details of the operation outlined above are described in the ROM 9
This will be described below with reference to the flowcharts of FIGS. 5 and 6 showing the processing performed by the CPU 92a according to the program stored in 2b. The CPU 92a starts its operation when the power is turned on, and performs initial setting in the first step S1. As the initial setting, various set values such as the inside temperature stored in the ROM 92b, the capacity of the electric proportional expansion valve, the required capacity, the evaporation temperature, the condensation temperature, the degree of supercooling, and the degree of superheat are set in the RAM 92c. It is done by writing in the area.
【0025】続いてステップS2に進んで図示しない起
動スイッチの操作による起動があるか否かを判定し、こ
の判定がYESになるのを待つ。起動操作があるとステ
ップS3に進み、ここで電動式比例型膨張弁3の初期開
度を設定する運転を行うべく、初期開度に相当する信号
を弁駆動部5に送出して、電動式比例型膨張弁3を動作
させる。その後ステップS4に進んでセンサ6〜8から
の信号をA/D変換してセンサデータSG(蒸発器出口
温度)、SL(蒸発器入口温度)及びSR(庫内温度)
として読み込む。次にステップS5に進んで庫内温度S
Rに対応した弁開度上限値OL及び弁開度下限値CLを
演算して求める。Subsequently, the process proceeds to step S2, it is determined whether or not there is activation by the operation of an activation switch (not shown), and the process waits until this determination becomes YES. When the start operation is performed, the process proceeds to step S3, where a signal corresponding to the initial opening is sent to the valve drive unit 5 to perform the operation of setting the initial opening of the electric proportional expansion valve 3, and the electric driving is performed. The proportional expansion valve 3 is operated. After that, the process proceeds to step S4, where the signals from the sensors 6 to 8 are A / D converted and the sensor data SG (evaporator outlet temperature), SL (evaporator inlet temperature) and SR (internal chamber temperature).
Read as. Next, the process proceeds to step S5 and the inside temperature S
The valve opening upper limit value OL and the valve opening lower limit value CL corresponding to R are calculated and obtained.
【0026】この弁開度の上下限値は、各蒸発温度にお
ける冷凍機の能力変化傾向と、膨張弁の能力を予めプロ
グラムしておき、客先の要求する能力を満足するように
計算する。この計算に当たっては、弁開度(パルス数)
に対する膨張弁能力の関係を示す図7のグラフ中のタイ
プA〜Cのようなバルブ型式の1つを選択する。次に、
必要能力とともに蒸発温度を入力する。上述した図7の
バルブ能力と、蒸発温度に対する冷凍機能力の関係のグ
ラフを示す図8の能力変化傾向とは、上述のように予め
プログラムされている。よって、以上の条件から各蒸発
温度における膨張弁の開度を計算し、上下限開度を決定
することができる。ただし、冷凍機能力は凝縮温度、膨
張弁能力は過冷却度によって変化するので、実際にはこ
の凝縮温度及び過冷却度も入力して補正を行っている。The upper and lower limit values of the valve opening are calculated so that the capacity change tendency of the refrigerator at each evaporation temperature and the capacity of the expansion valve are programmed in advance to satisfy the capacity required by the customer. In this calculation, valve opening (number of pulses)
Select one of the valve types such as types A to C in the graph of FIG. next,
Enter the evaporation temperature along with the required capacity. The valve capacity of FIG. 7 and the capacity change tendency of FIG. 8 showing a graph of the refrigeration function power with respect to the evaporation temperature are programmed in advance as described above. Therefore, the opening degree of the expansion valve at each evaporation temperature can be calculated from the above conditions, and the upper and lower limit opening degree can be determined. However, since the refrigeration function power changes depending on the condensing temperature and the expansion valve capacity changes depending on the degree of supercooling, the condensation temperature and degree of subcooling are actually input and corrected.
【0027】このステップS5の処理により、CPU9
2aは過熱度設定値と別個に設定した庫内温度、電動式
比例型膨張弁の能力、必要能力、蒸発温度、凝縮温度な
どの各種設定値から、庫内温度センサ8により検出され
る庫内の各温度における弁開度の上限値及び下限値を演
算する弁開度上下限演算手段92a−3として機能して
いる。By the processing of this step S5, the CPU 9
2a is an inside temperature detected by the inside temperature sensor 8 from various set values such as the inside temperature set separately from the superheat setting value, the capacity of the electric proportional expansion valve, the required capacity, the evaporation temperature, and the condensation temperature. Functioning as the valve opening upper / lower limit calculating means 92a-3 for calculating the upper limit value and the lower limit value of the valve opening degree at each temperature.
【0028】その後ステップS6に進み、ここで過熱度
SHTを次の式により演算する。 SHT=SG−SL このステップS6の処理により、CPU92aは蒸発器
4の出口及び入口に装着した温度センサ6,7からの信
号に基づいて過熱度を演算する過熱度演算手段92a−
1として機能している。Thereafter, the process proceeds to step S6, where the superheat degree SHT is calculated by the following equation. SHT = SG-SL Through the process of step S6, the CPU 92a calculates the superheat degree based on the signals from the temperature sensors 6 and 7 mounted at the outlet and the inlet of the evaporator 4, and the superheat degree calculating means 92a-.
Functioning as 1.
【0029】上記ステップS6の処理において過熱度S
HTを求めた後ステップS7に進み、ここで過熱度SH
Tが過熱度設定値SHよりも小さいか否かを判定する。
ステップS7の判定の結果、SH<SHTであるときに
はステップS8に進んで弁開動作値ΔEVn をPID演
算により、SH>SHTであるときにはステップS9に
進んで弁閉動作値ΔEVn をPID演算によりそれぞれ
求めてからステップS10に進み、SH=SHTである
ときにはそのままステップS10に進む。上記ステップ
S7〜S9の処理により、CPU92aは演算した測定
過熱度と予め設定した過熱度設定値とを比較して弁開度
を演算する弁開度演算手段92a−2として機能してい
る。In the process of step S6, the degree of superheat S
After obtaining HT, the process proceeds to step S7, where the superheat degree SH
It is determined whether T is smaller than the superheat degree set value SH.
As a result of the determination in step S7, if SH <SHT, the process proceeds to step S8, and the valve opening operation value ΔEV n is calculated by PID. If SH> SHT, the process proceeds to step S9, and the valve closing operation value ΔEV n is calculated by PID calculation. After obtaining each, the process proceeds to step S10. When SH = SHT, the process directly proceeds to step S10. Through the processing of steps S7 to S9, the CPU 92a functions as a valve opening degree calculation unit 92a-2 that calculates the valve opening degree by comparing the calculated measured superheat degree with a preset superheat degree set value.
【0030】ステップS10においては、現時点の弁開
度EVn を次の式により演算して求める。 EVn =EVn -1+ΔEVn In step S10, the current valve opening EV n is calculated by the following equation. EV n = EV n -1 + ΔEV n
【0031】その後ステップS11に進んで現時点の弁
開度EVn が弁開度上限値OLよりも大きいか否かを判
定する。このステップS11の判定がΝOのときすなわ
ち現時点の弁開度EVn が弁開度上限値OL未満と小さ
いときにはステップS12に進んで現時点の弁開度EV
n が弁開度下限値CLよりも小さいか否かを判定する。
このステップS12の判定がΝOのときすなわち弁開度
下限値CLが現時点の弁開度EVn 未満と小さいときに
はステップS13に進み、ここで上記ステップS8及び
S9においてPID演算してそれぞれ求めた弁開動作値
ΔEVn 及び弁閉動作値ΔEVn により弁開閉動作を行
ってから上記ステップS4に戻る。上記ステップS11
〜S13の処理により、CPU92aは弁開度の上限値
及び下限値と演算した弁開度とを比較し、その比較結果
を弁駆動部に送出して、電動式比例型膨張弁3を駆動さ
せる比較手段92a−4として機能している。[0031] Then the process proceeds to step S11 valve opening EV n at the present time is determined whether larger than the valve-opening upper limit value OL. When the determination in step S11 is NO, that is, when the current valve opening EV n is smaller than the valve opening upper limit value OL, which is small, the process proceeds to step S12.
It is determined whether n is smaller than the valve opening lower limit CL.
When the determination in step S12 is NO, that is, when the valve opening lower limit value CL is smaller than the current valve opening EV n , the process proceeds to step S13, in which the valve opening obtained by the PID calculation in steps S8 and S9 is performed. After the valve opening / closing operation is performed with the operation value ΔEV n and the valve closing operation value ΔEV n , the process returns to step S4. Step S11
Through the processing from S13 to S13, the CPU 92a compares the upper limit value and the lower limit value of the valve opening degree with the calculated valve opening degree, sends the comparison result to the valve drive section, and drives the electric proportional expansion valve 3. It functions as the comparison means 92a-4.
【0032】ステップS11の判定がYESのときすな
わち現時点の弁開度EVが弁開度上限値OLよりも大き
いときにはステップS14に進んで過熱度設定値SHに
所定値αを加算した値が過熱度SHT未満であるか否か
を判定する。このステップS14の判定がYESのとき
すなわち過熱度設定値SHに所定値αを加算した値が過
熱度SHT未満であるときにはステップS15に進んで
弁開度上限値OL及び弁開度下限値CLを再計算してか
らステップS16に進み、上記ステップS14の判定が
ΝOのときすなわち過熱度SHTが過熱度設定値SHに
所定値αを加算した値よりも大きいときにはステップS
16に進む。ステップS16においては、弁開閉動作を
行うことなくステップS4に戻る。When the determination in step S11 is YES, that is, when the current valve opening EV is larger than the valve opening upper limit value OL, the routine proceeds to step S14, where the value obtained by adding the predetermined value α to the superheat degree set value SH is the superheat degree. It is determined whether it is less than SHT. When the determination in step S14 is YES, that is, when the value obtained by adding the predetermined value α to the superheat degree set value SH is less than the superheat degree SHT, the routine proceeds to step S15, where the valve opening upper limit value OL and the valve opening lower limit value CL are set. After recalculation, the process proceeds to step S16. When the determination in step S14 is NO, that is, when the superheat degree SHT is larger than a value obtained by adding the predetermined value α to the superheat degree set value SH, step S16 is performed.
Proceed to 16. In step S16, the process returns to step S4 without performing the valve opening / closing operation.
【0033】なお、上記ステップS12の判定がYES
のとき、すなわち、現時点の弁開度EVn が弁開度下限
値CL未満のときにはステップS17に進んで液バック
監視処理を起動し、その後ステップS16に進んで弁開
閉動作を行うことなくステップS4に戻る。The determination in step S12 is YES.
When the current valve opening EV n is less than the valve opening lower limit CL, the process proceeds to step S17 to start the liquid back monitoring process, and then proceeds to step S16 without performing the valve opening / closing operation in step S4. Return to.
【0034】[0034]
【発明の効果】以上説明したように本発明の方法によれ
ば、可逆式比例型膨張弁を調整するための開度を、過熱
度設定値と別個に設定した庫内温度、電動式比例型膨張
弁の能力、必要能力、蒸発温度、凝縮温度などの各種設
定値から演算した庫内の各温度における弁開度の上限値
及び下限値と比較し、その比較結果を弁駆動部に送出し
て、電動式比例型膨張弁を駆動させるようにしているの
で、冷媒を常に蒸発し易い状態にして冷却速度を向上さ
せることができる。As described above, according to the method of the present invention, the opening for adjusting the reversible proportional expansion valve is set separately from the superheat degree set value, the internal temperature, the electric proportional type The expansion valve capacity, required capacity, evaporation temperature, condensation temperature, etc. are compared with the upper and lower limit values of the valve opening at each temperature in the warehouse calculated from various setting values, and the comparison result is sent to the valve drive unit. Since the electrically driven proportional expansion valve is driven, the cooling rate can be improved by keeping the refrigerant easily evaporated.
【0035】また、弁開度の上限値及び下限値を、最終
温度での過熱度である設定過熱度に所定値を加えた過熱
度となる値に設定しているので、弁を絞った形で運転す
ることができ、冷媒を常に蒸発し易い状態にして冷却速
度を向上させることができるとともに、液バックしにく
い。Further, since the upper limit value and the lower limit value of the valve opening degree are set to the superheat value obtained by adding a predetermined value to the set superheat degree which is the superheat degree at the final temperature, The cooling rate can be improved by making the refrigerant always evaporate easily, and liquid back is difficult.
【0036】更に、実際の過熱度が設定過熱度に所定値
を加えた過熱度より大きいとき、弁開度の上限値を再度
演算し、設定過熱度に所定値を加えた過熱度になるよう
に弁開度を修正し、又は、演算した弁開度が弁開度の上
限値を越えているとき、可逆式比例型膨張弁を動作させ
ずにその開度を上限値に固定するので、外乱による過熱
度の急激な変化に対して、弁を極端に開閉しないように
なり、安定運転が可能となっている。Further, when the actual superheat degree is larger than the superheat degree obtained by adding a predetermined value to the set superheat degree, the upper limit value of the valve opening degree is calculated again so that the superheat degree becomes the superheat degree obtained by adding the predetermined value to the set superheat degree. The valve opening is corrected to, or when the calculated valve opening exceeds the upper limit of the valve opening, the reversible proportional expansion valve is not operated and the opening is fixed to the upper limit. The valve is prevented from opening and closing extremely in response to a sudden change in the degree of superheat caused by disturbance, and stable operation is possible.
【0037】また、以上説明した本発明の装置によれ
ば、過熱度設定値と別個に設定した庫内温度、電動式比
例型膨張弁の能力、必要能力、蒸発温度、凝縮温度など
の各種設定値から、庫内温度センサにより検出される庫
内の各温度における弁開度の上限値及び下限値を演算
し、演算した弁開度の上限値及び下限値と演算した弁開
度とを比較し、その比較結果を送出して、弁を駆動させ
るようにしているので、冷媒を常に蒸発し易い状態にし
て冷却速度を向上させることができる。Further, according to the apparatus of the present invention described above, various settings such as the inside temperature set separately from the superheat degree set value, the capacity of the electric proportional expansion valve, the required capacity, the evaporation temperature and the condensation temperature are set. Calculates the upper and lower limit values of the valve opening at each temperature inside the refrigerator detected by the internal temperature sensor, and compares the calculated upper and lower limit values of the valve opening with the calculated valve opening. Since the comparison result is sent to drive the valve, the cooling rate can be improved by keeping the refrigerant in a state where it is easily evaporated.
【図1】本発明による冷凍システムにおける急速冷却制
御装置の基本構成を示す図である。FIG. 1 is a diagram showing a basic configuration of a rapid cooling control device in a refrigeration system according to the present invention.
【図2】本発明による装置を適用する冷凍システムの構
成を示す図である。FIG. 2 is a diagram showing a configuration of a refrigeration system to which the device according to the present invention is applied.
【図3】図2中の制御部の回路構成を示す図である。3 is a diagram showing a circuit configuration of a control unit in FIG.
【図4】本発明による特徴を説明するめのグラフであ
る。FIG. 4 is a graph for explaining a feature according to the present invention.
【図5】図3中のCPUが予め定めたプログラムに従っ
て行う処理の一部を示すフローチャートである。FIG. 5 is a flowchart showing a part of processing performed by a CPU in FIG. 3 according to a predetermined program.
【図6】図3中のCPUが予め定めたプログラムに従っ
て行う処理の他の部分を示すフローチャートである。FIG. 6 is a flowchart showing another part of the processing performed by the CPU in FIG. 3 according to a predetermined program.
【図7】弁開度(パルス数)に対する膨張弁能力の関係
を示すグラフである。FIG. 7 is a graph showing the relationship between the valve opening (pulse number) and expansion valve capacity.
【図8】蒸発温度に対する冷凍機能力の関係である能力
変化傾向を示すグラフである。FIG. 8 is a graph showing the tendency of capacity change, which is the relationship between the refrigeration functional power and the evaporation temperature.
1 冷凍冷媒圧縮機 2 凝縮器 3 電動式比例型膨張弁 4 蒸発器 5 弁駆動部 6 蒸発器出口温度センサ 7 蒸発器入口温度センサ 8 庫内温度センサ 92a−1 過熱度演算手段(CPU) 92a−2 弁開度演算手段(CPU) 92a−3 弁開度上下限演算手段(CPU) 92a−4 比較手段(CPU) 1 Refrigerant Refrigerant Compressor 2 Condenser 3 Electric Proportional Expansion Valve 4 Evaporator 5 Valve Drive 6 Evaporator Outlet Temperature Sensor 7 Evaporator Inlet Temperature Sensor 8 In-Cylinder Temperature Sensor 92a-1 Superheat Calculation Unit (CPU) 92a -2 valve opening calculation means (CPU) 92a-3 valve opening upper and lower limit calculation means (CPU) 92a-4 comparison means (CPU)
Claims (5)
膨張弁及び蒸発器を配管により環状に接続し、冷媒の圧
縮、凝縮液化、減圧膨張、蒸発気化を行い、前記蒸発器
の出口及び入口に装着した温度センサからの信号に基づ
いて過熱度を演算し、該演算した測定過熱度と予め設定
した過熱度設定値とを比較して前記電動式比例型膨張弁
の弁開度を演算し、該演算した弁開度に応じた信号によ
り弁駆動部を動作して前記可逆式比例型膨張弁の開度を
調整するようにした冷凍システムにおける急速冷却制御
方法において、 前記過熱度設定値と別個に設定した庫内温度、電動式比
例型膨張弁の能力、必要能力、蒸発温度、凝縮温度など
の各種設定値から、庫内の各温度における弁開度の上限
値及び下限値を演算し、 該弁開度の上限値及び下限値と前記演算した弁開度とを
比較し、その比較結果を弁駆動部に送出して、前記電動
式比例型膨張弁を駆動させるようにしたことを特徴とす
る冷凍システムにおける急速冷却制御方法。1. A refrigerating refrigerant compressor, a condenser, a motor-operated proportional expansion valve and an evaporator are connected in an annular shape by pipes to perform refrigerant compression, condensation liquefaction, decompression expansion and evaporative vaporization, and the outlet of the evaporator. And a superheat degree is calculated based on a signal from a temperature sensor mounted at the inlet, and the calculated measured superheat degree is compared with a preset superheat degree set value to determine the valve opening degree of the electric proportional expansion valve. In the rapid cooling control method in a refrigeration system, which is operated to adjust the opening of the reversible proportional expansion valve by operating a valve drive unit with a signal according to the calculated valve opening, The upper and lower limit values of the valve opening at each temperature in the refrigerator are calculated from various settings such as the temperature inside the refrigerator, the capacity of the electric proportional expansion valve, the required capacity, the evaporation temperature, the condensation temperature, etc. Calculate the upper and lower limits of the valve opening and Comparing the computed valve opening, and sends the comparison result to the valve driving unit, rapid cooling control method in a refrigeration system characterized in that so as to drive the electric proportional expansion valve.
温度での過熱度である設定過熱度に所定値を加えた過熱
度となる値に設定されていることを特徴とする請求項1
記載の冷凍システムにおける急速冷却制御方法。2. An upper limit value and a lower limit value of the valve opening degree are set to values that are a superheat degree obtained by adding a predetermined value to a set superheat degree that is a superheat degree at a final temperature. Item 1
A rapid cooling control method in the refrigeration system described.
えた過熱度より大きいとき、前記弁開度の上限値を再度
演算し、設定過熱度に所定値を加えた過熱度になるよう
に前記弁開度を修正することを特徴とする請求項2記載
の冷凍システムにおける急速冷却制御方法。3. When the actual superheat degree is larger than the superheat degree obtained by adding a predetermined value to the set superheat degree, the upper limit value of the valve opening degree is recalculated to become the superheat degree obtained by adding a predetermined value to the set superheat degree. The rapid cooling control method in the refrigeration system according to claim 2, wherein the valve opening is corrected as described above.
値を越えているとき、前記可逆式比例型膨張弁を動作さ
せずにその開度を上限値に固定することを特徴とする請
求項1〜3の何れかに記載の冷凍システムにおける急速
冷却制御方法。4. When the calculated valve opening exceeds the upper limit of the valve opening, the reversible proportional expansion valve is not operated and the opening is fixed to the upper limit. The rapid cooling control method in the refrigeration system according to any one of claims 1 to 3.
縮、凝縮液化、減圧膨張、蒸発気化を行う冷凍冷媒圧縮
機、凝縮器、電動式比例型膨張弁及び蒸発器と、前記蒸
発器の出口及び入口に装着した温度センサからの信号に
基づいて過熱度を演算する過熱度演算手段と、該演算し
た測定過熱度と予め設定した過熱度設定値とを比較して
前記電動式比例型膨張弁の弁開度を演算する弁開度演算
手段と、該演算した弁開度に応じた信号により弁駆動部
を動作して前記可逆式比例型膨張弁の開度を調整するよ
うにした冷凍システムにおける急速冷却制御装置におい
て、 前記過熱度設定値と別個に設定した庫内温度、電動式比
例型膨張弁の能力、必要能力、蒸発温度、凝縮温度など
の各種設定値から、庫内温度センサにより検出される庫
内の各温度における弁開度の上限値及び下限値を演算す
る弁開度上下限演算手段と、 前記比較手段が、前記弁開度上下限演算手段により演算
した前記弁開度の上限値及び下限値と前記弁開度演算手
段により演算した前記弁開度とを比較し、その比較結果
を弁駆動部に送出して、前記電動式比例型膨張弁を駆動
させる比較手段とを備えることを特徴とする冷凍システ
ムにおける急速冷却制御装置。5. A refrigerating refrigerant compressor, a condenser, a motor-operated proportional expansion valve and an evaporator, which are connected by a pipe in a ring shape and perform compression, condensation liquefaction, decompression expansion and evaporative evaporation of a refrigerant, and an outlet of the evaporator. And a superheat degree calculating means for calculating a superheat degree on the basis of a signal from a temperature sensor attached to the inlet, and the electric proportional expansion valve by comparing the calculated measured superheat degree with a preset superheat degree set value. And a refrigeration system for adjusting the opening of the reversible proportional expansion valve by operating a valve drive unit with a signal according to the calculated valve opening. In the rapid cooling control device in, the temperature inside the refrigerator set separately from the superheat degree set value, the capacity of the electric proportional expansion valve, the required capacity, the evaporation temperature, from various setting values such as the condensation temperature, For each temperature in the chamber detected A valve opening upper and lower limit calculating means for calculating an upper limit value and a lower limit value of the valve opening, and the comparing means, the upper limit value and the lower limit value of the valve opening calculated by the valve opening upper and lower limit calculating means, and Refrigeration characterized by comprising: a comparison means for comparing the valve opening calculated by the valve opening calculating means, and sending the comparison result to a valve drive section to drive the electric proportional expansion valve. Rapid cooling controller in the system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08813895A JP3550211B2 (en) | 1995-04-13 | 1995-04-13 | Rapid cooling control method and apparatus in refrigeration system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08813895A JP3550211B2 (en) | 1995-04-13 | 1995-04-13 | Rapid cooling control method and apparatus in refrigeration system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08285383A true JPH08285383A (en) | 1996-11-01 |
JP3550211B2 JP3550211B2 (en) | 2004-08-04 |
Family
ID=13934583
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08813895A Expired - Fee Related JP3550211B2 (en) | 1995-04-13 | 1995-04-13 | Rapid cooling control method and apparatus in refrigeration system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3550211B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030033362A (en) * | 2001-10-22 | 2003-05-01 | 엘지전자 주식회사 | Driving control method for parrllel refrigerator |
WO2009039850A1 (en) * | 2007-09-25 | 2009-04-02 | Danfoss A/S | A method and a control system for controlling an opening degree of a valve |
JP2011257040A (en) * | 2010-06-08 | 2011-12-22 | Mitsubishi Electric Building Techno Service Co Ltd | Refrigerator and control device of electronic expansion valve for the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5175063B2 (en) * | 2007-05-17 | 2013-04-03 | 株式会社不二工機 | Valve control device |
-
1995
- 1995-04-13 JP JP08813895A patent/JP3550211B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030033362A (en) * | 2001-10-22 | 2003-05-01 | 엘지전자 주식회사 | Driving control method for parrllel refrigerator |
WO2009039850A1 (en) * | 2007-09-25 | 2009-04-02 | Danfoss A/S | A method and a control system for controlling an opening degree of a valve |
JP2011257040A (en) * | 2010-06-08 | 2011-12-22 | Mitsubishi Electric Building Techno Service Co Ltd | Refrigerator and control device of electronic expansion valve for the same |
Also Published As
Publication number | Publication date |
---|---|
JP3550211B2 (en) | 2004-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU621662B2 (en) | Refrigeration plant and a method of controlling a refrigeration plant | |
US4745767A (en) | System for controlling flow rate of refrigerant | |
US7412841B2 (en) | Turbo chiller, compressor therefor, and control method therefor | |
US4674292A (en) | System for controlling flow rate of refrigerant | |
JP3178103B2 (en) | Refrigeration cycle | |
GB2143628A (en) | Air conditioner | |
MXPA00011957A (en) | Refrigerator control method. | |
JP2509786B2 (en) | Automatic cooling stop control device and control method | |
JPH1151500A (en) | Heat pump type air-conditioner | |
JPH08285383A (en) | Fast cooling control method and device in freezing system | |
JPH094955A (en) | Method and apparatus for controlling reversible proportional type expansion valve | |
JPH11281221A (en) | Cooler of open show case | |
JPWO2003036184A1 (en) | Variable displacement compressor control device and refrigeration cycle variable displacement control device | |
JP2889791B2 (en) | Vapor compression refrigerator | |
JPH01222164A (en) | Refrigerating cycle control device | |
KR20200082221A (en) | Refrigerator and method for controlling the same | |
JPH09303885A (en) | Refrigerating and air conditioning device | |
JP2003329354A (en) | Controller for refrigerator-freezer | |
JP2701598B2 (en) | Freezer refrigerator | |
JP4819385B2 (en) | Control device for cooling system | |
JP5384124B2 (en) | Refrigeration system, control device and control method thereof | |
JPH11281222A (en) | Controller of quantity of refrigerant circulating in open show case | |
JP4690574B2 (en) | Control method and control device for expansion valve in refrigerator | |
JPH0268459A (en) | Two-stage compression refrigerating machine | |
JPH11201560A (en) | Supercritical refrigerating cycle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040108 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040330 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040423 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080430 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090430 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100430 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110430 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120430 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120430 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130430 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140430 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |