[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08284106A - Heat pipe type snow-melting apparatus - Google Patents

Heat pipe type snow-melting apparatus

Info

Publication number
JPH08284106A
JPH08284106A JP7117871A JP11787195A JPH08284106A JP H08284106 A JPH08284106 A JP H08284106A JP 7117871 A JP7117871 A JP 7117871A JP 11787195 A JP11787195 A JP 11787195A JP H08284106 A JPH08284106 A JP H08284106A
Authority
JP
Japan
Prior art keywords
heat pipe
heat
working fluid
container
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7117871A
Other languages
Japanese (ja)
Other versions
JP2886110B2 (en
Inventor
Masaru Takahashi
勝 高橋
Hiroshi Kamimura
弘 上村
Tomohiko Koizumi
倫彦 小泉
Michio Komatsuzaki
通雄 小松崎
Mikiyuki Ono
幹幸 小野
Masataka Mochizuki
正孝 望月
Koichi Masuko
耕一 益子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KENSETSUSHO HOKURIKUCHIHOU KENSETSUKYOKU
Fujikura Ltd
Kowa Co Ltd
Kouwa Co Ltd
Original Assignee
KENSETSUSHO HOKURIKUCHIHOU KENSETSUKYOKU
Fujikura Ltd
Kowa Co Ltd
Kouwa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KENSETSUSHO HOKURIKUCHIHOU KENSETSUKYOKU, Fujikura Ltd, Kowa Co Ltd, Kouwa Co Ltd filed Critical KENSETSUSHO HOKURIKUCHIHOU KENSETSUKYOKU
Priority to JP7117871A priority Critical patent/JP2886110B2/en
Publication of JPH08284106A publication Critical patent/JPH08284106A/en
Application granted granted Critical
Publication of JP2886110B2 publication Critical patent/JP2886110B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/30Geothermal collectors using underground reservoirs for accumulating working fluids or intermediate fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/40Geothermal collectors operated without external energy sources, e.g. using thermosiphonic circulation or heat pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Road Paving Structures (AREA)

Abstract

PURPOSE: To reduce equipment cost, and to melt snow surely and efficiently. CONSTITUTION: The evaporating section 4 of a heat pipe 1, in which a working fluid 7 is sealed into a container 2 consisting of a sealed metallic pipe under an evacuated state, is extended and disposed on the geothermal fluid 3 side at a high temperature. The condensing section 5 of the heat pipe 1 is buried in approximately parallel with a ground surface 6 just under the ground surface 6. A valve 8 selectively interrupting the fluidization of the working fluid 7 in the container 2 is fitted to the intermediate section of the evaporating section 4 and condensing section 5 of the heat pipe 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、熱輸送手段としてヒ
ートパイプを採用し、かつ地中の熱を熱源として利用す
る融雪装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a snow melting device which employs a heat pipe as a heat transporting means and utilizes underground heat as a heat source.

【0002】[0002]

【従来の技術】車道や歩道等の除雪は、冬季の交通手段
を確保する上で特に重要なであるが、これらの路面は自
然環境下に直接晒されているうえに、対象とする面積が
広いために、人力による除雪を行うとすれば多大の労力
と時間とを要する。またその除雪のために人工的な熱エ
ネルギを使用するとすれば、ランニングコストが嵩むな
どの問題が生じる。そこで従来、雪を溶かして除雪する
にあたり自然エネルギを可及的に有効利用することが種
々試みられており、その一例が特開昭63−40002
号公報に示されている。
2. Description of the Related Art Snow removal on roads and sidewalks is particularly important for securing transportation in winter, but these road surfaces are directly exposed to the natural environment, and the target area is Due to its large size, it takes a lot of labor and time to remove snow manually. If artificial heat energy is used to remove the snow, running costs will increase. Therefore, various attempts have heretofore been made to utilize natural energy as effectively as possible in melting snow to remove snow, and one example thereof is Japanese Patent Laid-Open No. 63-40002.
It is shown in the publication.

【0003】この公報に記載された装置について簡単に
説明すると、融雪を行う地表面の直下に、直管形状を成
すヒートパイプの上端部が配設されている。そして、そ
のヒートパイプの下端部側は、地中の深い箇所に延ばさ
れている。また、このヒートパイプを構成しているコン
テナの内部には、作動流体の蒸気流を制御するダンパ
(漏洩型バタフライ弁)が備えられるとともに、毛細管
作用によって液相作動流体を底部側から上端部側に汲み
上げるウィックがコンテナ内壁部に備えられている。そ
して、このヒートパイプの近傍に設置した降雪センサと
地表面温度センサと地中温度センサとによって、地表温
度に対して地中温度が高く、しかも降雪がないことが検
知された場合に前記ダンパが閉じられてヒートパイプが
動作しないように構成されている。
To briefly explain the device described in this publication, an upper end portion of a heat pipe having a straight pipe shape is arranged immediately below the ground surface where snow is melted. Then, the lower end side of the heat pipe is extended to a deep place in the ground. In addition, a damper (leakage type butterfly valve) that controls the vapor flow of the working fluid is provided inside the container that constitutes this heat pipe, and the liquid phase working fluid is moved from the bottom side to the top side by the capillary action. A wick for pumping to the inside of the container is provided on the inside wall. Then, by the snowfall sensor, the ground surface temperature sensor, and the underground temperature sensor installed near the heat pipe, the damper is detected when the underground temperature is higher than the surface temperature and there is no snowfall. It is configured so that the heat pipe is closed and does not operate.

【0004】したがって、上記の融雪装置では降雪があ
って、また地表温度よりも地中温度が高いことが各セン
サによって検知された場合に、ヒートパイプ内において
ダンパが開いた状態になるから、コンテナの下端側(地
中側)において地熱によって加熱されて蒸発した作動流
体が、コンテナの途中で遮断されることなく上端側(地
表面側)に到達できる。すなわち、ヒートパイプの作動
流体によって地中に存在する熱が地表面側に輸送され
る。そして、この熱輸送がある程度継続されることによ
り、地表面上の積雪が溶かされる。
Therefore, in the above-mentioned snow melting apparatus, when the sensors detect that there is snowfall and the underground temperature is higher than the surface temperature, the damper is opened in the heat pipe, so that the container is opened. The working fluid heated and evaporated by the geothermal heat on the lower end side (ground side) of the container can reach the upper end side (ground surface side) without being blocked in the middle of the container. That is, the heat existing in the ground is transported to the ground surface side by the working fluid of the heat pipe. Then, by continuing the heat transport to some extent, the snow on the ground surface is melted.

【0005】また一方で、例えば夏季などで降雪はない
ものの、地中温度に対して地表面温度が高いことが検知
された場合にも、ヒートパイプ内部のダンパは開いた状
態に維持される。そして、この場合には、ウィックによ
ってコンテナの下端部に滞留する作動流体が上端部側に
汲み上げられるとともに、地表面近傍の地熱によって加
熱される。そして、蒸気となった作動流体は、コンテナ
下端側に流動し、低温の地中に向けて熱を放出する。こ
れにより、冬季の融雪に必要な熱源エネルギを地中に蓄
えることができる。
On the other hand, the damper inside the heat pipe is kept open even when it is detected that the ground surface temperature is higher than the ground temperature, although there is no snowfall, such as in summer. Then, in this case, the working fluid accumulated in the lower end of the container is pumped up to the upper end by the wick and heated by the geothermal heat near the ground surface. Then, the working fluid that has become vapor flows to the lower end side of the container, and releases heat toward the low temperature underground. Thereby, the heat source energy required for snow melting in winter can be stored underground.

【0006】[0006]

【発明が解決しようとする課題】ところで、前述の通り
上記の融雪装置では、ダンパ(漏洩型バタフライ弁)に
よって作動流体の蒸気流を遮断し、また液相作動流体を
ウィックによってコンテナの上端部側に還流させる構成
であって、ウィックはコンテナの内面全体に連続した状
態で取り付けられているから、ダンパを閉じた状態にお
いてもウィックによる僅かな隙間がコンテナの内壁面と
ダンパの縁部との間に形成されてしまう。したがって、
例えば地表温度が地中温度に対して低い場合に、液相の
作動流体が少量づつ汲み上げられたり、あるいは地中温
度の方が高い場合に、上端部側に蒸気が流動したりする
など、ヒートパイプの動作を完全には制御することがで
きず、そのために意図しない熱輸送が行われるおそれが
多分にあった。
As described above, in the above-mentioned snow melting device, the vapor flow of the working fluid is shut off by the damper (leakage type butterfly valve), and the liquid phase working fluid is wicked by the upper end side of the container. Since the wick is attached to the entire inner surface of the container in a continuous state, even if the damper is closed, a slight gap due to the wick is generated between the inner wall surface of the container and the edge of the damper. Will be formed. Therefore,
For example, when the surface temperature is lower than the underground temperature, a small amount of liquid-phase working fluid is pumped up, or when the underground temperature is higher, steam flows to the upper end side. The movement of the pipes could not be completely controlled, which could lead to unintended heat transfer.

【0007】さらに、上記の融雪装置では、ヒートパイ
プがほぼ垂直に埋設されているので、地表面上の広がり
方向に対するヒートパイプの放熱面積が小さく、すなわ
ち一本のヒートパイプによって融雪することのできる地
表面の面積が極めて狭い。そのため、上記の融雪装置に
よって、ある一定範囲の地表面を均一かつ効率よく融雪
するには、多数本のヒートパイプが必要となり、設備コ
ストが高くなる問題があった。
Further, in the above-mentioned snow melting device, since the heat pipe is buried almost vertically, the heat radiation area of the heat pipe in the spreading direction on the ground surface is small, that is, the snow can be melted by one heat pipe. The area of the ground surface is extremely small. Therefore, in order to uniformly and efficiently melt the snow in a certain range of the ground surface by the above-mentioned snow melting device, a large number of heat pipes are required, and there is a problem that equipment cost increases.

【0008】この発明は上記の事情を背景としてなされ
たものであり、確実かつ効率のよい融雪を行うことがで
き、しかも設備費が安価な融雪装置を提供することを目
的とするものである。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a snow melting apparatus which can surely and efficiently perform snow melting and has a low equipment cost.

【0009】[0009]

【課題を解決するための手段】この発明は、上記の目的
を達成するために、密閉金属管からなるコンテナの内部
に真空脱気した状態で作動流体を封入したヒートパイプ
の蒸発部が、地中の高温域に延ばされて配設されるとと
もに、そのヒートパイプの凝縮部が地表面の直下で、か
つ該地表面とほぼ平行方向に布設され、さらに、前記ヒ
ートパイプの前記蒸発部と前記凝縮部との中間部分に、
前記コンテナ内部における前記作動流体の流動を選択的
に遮断する弁が備えられていることを特徴とするもので
ある。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention is directed to a case where an evaporation portion of a heat pipe in which a working fluid is sealed in a container made of a closed metal tube in a vacuum deaerated state is The heat pipe condensing section is arranged to extend in the middle high temperature region, and the condensing section of the heat pipe is laid directly under the ground surface and in a direction substantially parallel to the ground surface, and further, with the evaporating section of the heat pipe. In the middle part with the condensation part,
A valve for selectively blocking the flow of the working fluid inside the container is provided.

【0010】[0010]

【作用】この発明の融雪装置におけるヒートパイプはそ
の下端部を地中の高温域に延ばした状態が配置されてい
るから、降雪時には地表面側の凝縮部と地中深部の蒸発
部との間に温度差が生じる。したがってこの状態で前記
弁を開くと、作動流体が蒸発部に供給され、その作動流
体が地中の熱によって加熱されて蒸発する。
Since the heat pipe in the snow melting apparatus of the present invention is arranged such that the lower end portion thereof is extended to the high temperature area in the ground, it is located between the condensation section on the ground surface side and the evaporation section in the deep ground during snowfall. Temperature difference occurs. Therefore, when the valve is opened in this state, the working fluid is supplied to the evaporation portion, and the working fluid is heated by the heat of the ground and evaporated.

【0011】作動流体蒸気は、内圧および温度が共に低
い凝縮部に向けて上昇するとともに、その地表面近傍の
土壌に熱を奪われて凝縮する。すなわち、地表面および
その近傍の土壌に熱が放出される。そして、この熱によ
って地表面上の積雪が溶かされる。なお、その場合、凝
縮部側のコンテナが地表面とほぼ平行に布設されている
ため、汲み上げた地熱が地表面の広範囲に亘って放散さ
れる。したがってヒートパイプの1本あたりの融雪面積
が広くなるので、ヒートパイプの必要本数が少なくなっ
て設備コストの低廉化を図ることができる。
The working fluid vapor ascends toward the condensing portion where both the internal pressure and the temperature are low, and at the same time, the soil near the ground surface deprives the heat and condenses. That is, heat is released to the ground surface and the soil in the vicinity thereof. Then, this heat melts snow on the ground surface. In this case, since the container on the condenser side is laid substantially parallel to the ground surface, the pumped geothermal heat is dissipated over a wide area on the ground surface. Therefore, the snow melting area per heat pipe becomes large, so that the required number of heat pipes is reduced and the equipment cost can be reduced.

【0012】また、液化した作動流体は、重力によって
コンテナの壁面を蒸発部側に向けて流下し、そこで再度
加熱される。このような作動流体のサイクルは、前記弁
が開いている状態で蒸発部と凝縮部との間に温度差があ
る限り継続される。
Further, the liquefied working fluid flows down due to gravity toward the wall surface of the container toward the evaporation section side, and is heated again there. Such a working fluid cycle is continued as long as there is a temperature difference between the evaporation section and the condensation section with the valve opened.

【0013】さらに、この発明の融雪装置では、ヒート
パイプのコンテナ内壁面にウィックが取り付けられてい
ないから、弁による気密性が極めて高くなり、したがっ
て、作動流体の漏洩による意図しないヒートパイプの動
作が行われるおそれがない。
Further, in the snow melting device of the present invention, since the wick is not attached to the inner wall surface of the heat pipe container, the airtightness of the valve is extremely high, and therefore the unintended operation of the heat pipe due to the leakage of the working fluid is caused. There is no danger of it being done.

【0014】[0014]

【実施例】以下、この発明を道路の融雪装置に適用した
例について図面を参照して説明する。図1に示すように
地中に埋設されるヒートパイプ1は、コンテナ2が全体
として略L字状の成しており、その下端部側は高温域の
深さにまでほぼ鉛直状態に配設されている。また、コン
テナ2の下端部が位置する高温域は、地下水帯などの年
間をとおして所定の温度に維持される箇所であって、熱
源となる高温の地熱流体3が存在している箇所である。
したがって、コンテナ2のうち下端部から所定の長さの
範囲がヒートパイプの蒸発部4となっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An example in which the present invention is applied to a snow melting device for a road will be described below with reference to the drawings. As shown in FIG. 1, in a heat pipe 1 buried in the ground, a container 2 is generally L-shaped as a whole, and its lower end side is arranged in a substantially vertical state up to the depth of a high temperature region. Has been done. In addition, the high temperature region where the lower end of the container 2 is located is a place where a predetermined temperature is maintained throughout the year, such as a groundwater zone, and where the high temperature geothermal fluid 3 serving as a heat source exists. .
Therefore, the evaporating portion 4 of the heat pipe extends from the lower end of the container 2 to a predetermined length.

【0015】他方、凝縮部5となるヒートパイプ1の上
端部側は、アスファルト等により形成される路面6の直
下に、それとほぼ平行に埋設されている。より具体的に
は、コンテナ2の先端部が屈曲部分よりもわずか高い位
置にあって路面6に接近して配設されている。すなわち
屈曲部分より先端側の部分で路面6側との間で熱授受す
ることになり、その面積が広くなり、また凝縮した作動
流体7を速やかに蒸発部4側(下端部側)に還流させる
ことができる。
On the other hand, the upper end portion side of the heat pipe 1 which becomes the condensing portion 5 is buried just below the road surface 6 formed of asphalt or the like and substantially parallel to it. More specifically, the tip of the container 2 is located slightly higher than the bent portion, and is arranged close to the road surface 6. That is, heat is transferred to and from the road surface 6 side at the tip end side of the bent portion, the area is widened, and the condensed working fluid 7 is quickly returned to the evaporation section 4 side (lower end side). be able to.

【0016】なお、このヒートパイプ1は、一般のもの
と同様に銅やアルミ等からなる熱伝導性に優れた密閉金
属管の内部に、真空脱気した状態で目的温度範囲内で蒸
発・凝縮する水やアンモニアあるいはフレオン等を作動
流体として封入して構成されている。
The heat pipe 1 is vapor-condensed within a target temperature range in a vacuum degassed state inside a closed metal tube made of copper, aluminum or the like having excellent thermal conductivity like a general one. Water, ammonia, freon or the like is used as a working fluid.

【0017】前記ヒートパイプ1の蒸発部4と凝縮部5
との間には、作動流体7の流動を制御する電磁弁8が設
けられている。この電磁弁8としては、種々の構成のも
のを採用することができ、例えばコンテナ2の内周部に
設けた弁座8aに向けて弁体8bをスプリングなどの弾
性体8cで付勢し、またこの弁体8bを弁座8aから離
隔する方向に付勢する電磁力を生じるコイル8dをコン
テナ2の外周側に配置したものであり、コイル8dに通
電して励磁することにより開弁し、消磁することにより
閉弁するように構成されている。なお、スプリングの配
置の仕方によっては励磁して閉弁し、消磁して開弁する
ように構成することもできる。この電磁弁8の開閉制御
を行うための制御装置9が設けられている。
The evaporation section 4 and the condensation section 5 of the heat pipe 1
An electromagnetic valve 8 for controlling the flow of the working fluid 7 is provided between the and. As the electromagnetic valve 8, various configurations can be adopted. For example, the valve body 8b is biased by an elastic body 8c such as a spring toward the valve seat 8a provided on the inner peripheral portion of the container 2, Further, a coil 8d for generating an electromagnetic force for urging the valve body 8b away from the valve seat 8a is arranged on the outer peripheral side of the container 2, and the coil 8d is energized and excited to open the valve, It is configured to be closed by demagnetizing. Depending on the arrangement of the springs, the valve may be excited to close the valve and demagnetized to open the valve. A control device 9 for controlling the opening / closing of the solenoid valve 8 is provided.

【0018】他方、地上における路面6の上方には、一
例として光電管によって降雪の有無を検知する降雪セン
サ10が備えられている。また、路面6の直下でかつヒ
ートパイプ1の上端部の近傍の地中には、路面温度を検
知する路面温度センサ11が設けられている。さらに、
ヒートパイプ1の下端部の近傍すなわち路面温度センサ
11よりも地中のさらに深い箇所には、地中温度センサ
12が埋設されている。これらの降雪センサ10および
路面温度センサ11ならびに地中温度度センサ12は、
それぞれ各信号線13,14,15によって制御装置9
に接続されている。さらにこの制御装置9には、前記電
磁弁8が接続されている。そして各センサ10,11,
12によって得られた温度情報に基づいて電磁弁8の開
閉の判断を行い、例えば降雪が検知され、かつ地中温度
に対して路面温度が高い場合のみ電磁弁8を開弁制御す
るようになっている。
On the other hand, above the road surface 6 on the ground, as an example, a snowfall sensor 10 for detecting the presence or absence of snowfall is provided by a photoelectric tube. A road surface temperature sensor 11 for detecting the road surface temperature is provided in the ground immediately below the road surface 6 and near the upper end of the heat pipe 1. further,
An underground temperature sensor 12 is embedded near the lower end of the heat pipe 1, that is, at a position deeper in the ground than the road surface temperature sensor 11. These snowfall sensor 10, road surface temperature sensor 11 and underground temperature sensor 12 are
The control device 9 is connected to each of the signal lines 13, 14 and 15 respectively.
It is connected to the. Further, the solenoid valve 8 is connected to the control device 9. And each sensor 10, 11,
Whether the solenoid valve 8 is opened or closed is determined based on the temperature information obtained by 12, and the solenoid valve 8 is controlled to be opened only when snowfall is detected and the road surface temperature is higher than the underground temperature. ing.

【0019】つぎに、上記のように構成された実施例の
作用について説明する。降雪センサ10が雪を検知する
とともに、地中温度に対して路面温度が低いことが地中
温度センサ12と路面温度センサ11によって検知され
た場合に、制御装置9からの出力信号によって電磁弁8
が開かれる。
Next, the operation of the embodiment configured as described above will be described. When the snowfall sensor 10 detects snow and the ground surface temperature sensor 12 and the road surface temperature sensor 11 detect that the road surface temperature is lower than the ground surface temperature, the solenoid valve 8 is output by the output signal from the control device 9.
Is opened.

【0020】この場合、地表面側の温度に対して地中の
温度が高いから、ヒートパイプ1の両端部で温度差が生
じており、電磁弁8が開くことによって、蒸発部4と凝
縮部5との間での作動流体7の流動が可能となる。した
がってコンテナ2の下端側においては、液相の作動流体
7が地熱流体3の熱によって加熱されて蒸発し、その蒸
気は、地表側の雪や冷気によって低温状態になっている
凝縮部5側に流動する。
In this case, since the temperature in the ground is higher than the temperature on the ground surface side, there is a difference in temperature between both ends of the heat pipe 1, and the solenoid valve 8 opens to open the evaporator 4 and the condenser. The working fluid 7 can flow between the two. Therefore, on the lower end side of the container 2, the working fluid 7 in the liquid phase is heated by the heat of the geothermal fluid 3 and evaporated, and the vapor is transferred to the condensation section 5 side which is in a low temperature state due to snow or cold air on the surface side. Flow.

【0021】この凝縮部5に流動してきた作動流体7の
蒸気は、その周囲の温度が低いためにここで放熱して凝
縮する。このように、地熱流体3の保有する熱がヒート
パイプ1の作動流体7によって路面6に輸送されるた
め、路面6上の雪は、その熱によって溶かされ、除雪さ
れる。その場合、コンテナ2の上端側の所定長さの部分
である凝縮部5が路面6とほぼ平行に布設されているか
ら、その長い凝縮部5の全長に亘る表面の全体が放熱面
を形成し、したがって1本のヒートパイプ1によって路
面6の広範囲を加熱することができる。
The vapor of the working fluid 7 which has flowed into the condensing section 5 radiates heat here and condenses due to the low ambient temperature. In this way, the heat of the geothermal fluid 3 is transported to the road surface 6 by the working fluid 7 of the heat pipe 1, so that the snow on the road surface 6 is melted by the heat and removed. In that case, since the condensing part 5 which is the part of the upper end side of the container 2 having a predetermined length is laid substantially parallel to the road surface 6, the entire surface of the long condensing part 5 over the entire length forms a heat radiating surface. Therefore, a wide range of the road surface 6 can be heated by one heat pipe 1.

【0022】一方、ヒートパイプ1の凝縮部5において
液化した作動流体7は、重力によってコンテナ2の壁面
を下端部に向けて流下する。そして蒸発部4において再
度、地熱流体3から熱を受けて蒸発し、その蒸気が凝縮
部5に向けて上昇する。このような作動流体7による熱
輸送サイクルは、電磁弁8が閉じられるまで、具体的に
は降雪が検知されなくなったり、地熱温度と路面温度と
の高低関係が逆転するまで継続される。
On the other hand, the working fluid 7 liquefied in the condensing part 5 of the heat pipe 1 flows down by the gravity toward the lower end of the wall surface of the container 2. Then, in the evaporator 4, the heat is again received from the geothermal fluid 3 to evaporate, and the vapor rises toward the condenser 5. Such a heat transport cycle by the working fluid 7 is continued until the solenoid valve 8 is closed, specifically, until snowfall is no longer detected or the height relationship between the geothermal temperature and the road surface temperature is reversed.

【0023】なお、前記電磁弁8は任意に開閉すること
ができるので、上述した降雪時でかつ地中温度が路面温
度より高い場合以外では、つぎのように電磁弁8を制御
すればよい。例えば降雪が検知されたにも拘らず地中温
度に対して路面6の温度の方が高いことが検知された場
合や、降雪が検知されずしかも路面温度の方が地中温度
に対して高いことが検知された場合等には、電磁弁8は
閉じた状態に維持される。
Since the solenoid valve 8 can be opened and closed as desired, the solenoid valve 8 may be controlled as follows except when the snowfall occurs and the ground temperature is higher than the road surface temperature. For example, when it is detected that the temperature of the road surface 6 is higher than the underground temperature in spite of the detection of snowfall, or no snowfall is detected and the road surface temperature is higher than the underground temperature. When such is detected, the solenoid valve 8 is maintained in the closed state.

【0024】このように、個々のヒートパイプ1におけ
る凝縮部5と路面6との熱授受面積が大きいので、全体
として設けるヒートパイプ1の本数を従来と比べて少な
くでき、これによって、設備コストの低廉化を図ること
ができる。また、電磁弁8で蒸発部4と凝縮部5との間
を遮断するように構成するとともに、金網等からなるウ
ィックがコンテナ2の内壁面に取り付けられていないか
ら、作動流体7の流動を確実に遮断することができる。
すなわち、意図しないヒートパイプの動作を未然に防止
することができる。
Since the heat transfer area between the condensing portion 5 and the road surface 6 in each heat pipe 1 is large as described above, the number of heat pipes 1 to be provided as a whole can be reduced as compared with the conventional one, thereby reducing the equipment cost. The cost can be reduced. Further, the electromagnetic valve 8 is configured to shut off between the evaporator 4 and the condenser 5, and since the wick made of wire mesh or the like is not attached to the inner wall surface of the container 2, the flow of the working fluid 7 is ensured. Can be shut off.
That is, it is possible to prevent unintended operation of the heat pipe.

【0025】ついで、図2を参照してこの発明の第二実
施例を説明する。なお、上記第一実施例と同様の部材に
は同じ符号を付すとともに、その詳細な説明を省略す
る。図2に示すように、この実施例におけるヒートパイ
プ1は、いわゆるループ型ヒートパイプである。すなわ
ち、蒸発管17の両端部を液戻し管18によって接続し
て全体として循環路を形成するように構成されており、
その蒸発管17は、上記の実施例におけるコンテナ2と
同様に、中間の屈曲部分より先端側が、路面6の直下に
路面6とほぼ平行に埋設され、またその屈曲部より下側
の部分が地熱流体3の存在する高温域に延ばされてい
る。そしてこの蒸発管17の下端部側の部分が蒸発部4
とされ、また路面6の直下の部分が凝縮部5とされてい
る。
Next, a second embodiment of the present invention will be described with reference to FIG. The same members as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted. As shown in FIG. 2, the heat pipe 1 in this embodiment is a so-called loop heat pipe. That is, both ends of the evaporation pipe 17 are connected by the liquid return pipe 18 to form a circulation path as a whole,
Similar to the container 2 in the above-described embodiment, the evaporating pipe 17 is buried immediately below the intermediate curved portion, just below the road surface 6 so as to be substantially parallel to the road surface 6, and the portion below the curved portion is geothermal. It is extended to a high temperature region where the fluid 3 exists. The lower end portion of the evaporation pipe 17 is the evaporation portion 4
In addition, the portion immediately below the road surface 6 is the condensing portion 5.

【0026】これに対して液戻し管18は、一例として
蒸発管17とほぼ同様に屈曲されたパイプからなり、蒸
発管17の両端部にそれぞれ接続されている。そしてこ
の液戻し管17の中間部に上述した実施例で示した電磁
弁8と同様な電磁弁8が介装されている。このように蒸
発管17と液戻し管18とで構成された密閉循環路の内
部に、真空脱気した状態で水やアルコールあるいはフレ
オンなどの凝縮性の流体が作動流体7として封入されて
ヒートパイプが構成されている。
On the other hand, the liquid return pipe 18 is, for example, a pipe bent in substantially the same manner as the evaporation pipe 17, and is connected to both ends of the evaporation pipe 17, respectively. An electromagnetic valve 8 similar to the electromagnetic valve 8 shown in the above-described embodiment is provided in the middle of the liquid return pipe 17. As described above, a condensable fluid such as water, alcohol, or Freon is sealed as the working fluid 7 in the vacuum degassed state inside the closed circulation path constituted by the evaporation pipe 17 and the liquid return pipe 18 and the heat pipe. Is configured.

【0027】図2に示すように構成した融雪装置によれ
ば、以下のようにして融雪が行われる。すなわち降雪セ
ンサ10が雪を検知し、かつ地中温度に対して路面温度
が低いことが地中温度センサ12と路面温度センサ11
とによって検知されると、制御装置9によって電磁弁8
が開かれる。すると、液戻し管18および蒸発管17の
下端側に液相の作動流体7が流下するとともに、地熱流
体3の熱によって加熱される。
According to the snow melting apparatus configured as shown in FIG. 2, snow melting is performed as follows. That is, the fact that the snowfall sensor 10 detects snow and the road surface temperature is lower than the ground temperature is that the ground temperature sensor 12 and the road surface temperature sensor 11 are
When it is detected by the control device 9 and the solenoid valve 8
Is opened. Then, the liquid-phase working fluid 7 flows down to the lower ends of the liquid return pipe 18 and the evaporation pipe 17, and is heated by the heat of the geothermal fluid 3.

【0028】蒸発した作動流体は、温度の低い上方の凝
縮部5に向けて蒸発管17内を流動し、路面6やその直
下の低温の土壌に熱を奪われて凝縮する。すなわち、地
熱流体3の熱が路面6の近傍に輸送されて放出される。
そして、この熱により路面6上の積雪が溶かされる。
The evaporated working fluid flows through the inside of the evaporation pipe 17 toward the upper condensation part 5 having a low temperature, and is condensed by being deprived of heat by the road surface 6 and the low-temperature soil immediately below it. That is, the heat of the geothermal fluid 3 is transported to the vicinity of the road surface 6 and released.
And, the snow on the road surface 6 is melted by this heat.

【0029】なお、液化した作動流体7は、重力によっ
て液戻し管18の内部を蒸発部4に向けて流下し、そこ
で再び加熱されて蒸気になり、凝縮部5に向けて上昇す
る。この作動流体7の熱輸送サイクルは、降雪が検知さ
れなくなったり、もしくは地熱温度が路面温度よりも低
くなるなどして電磁弁8が閉じられるまで継続される。
The liquefied working fluid 7 flows down inside the liquid return pipe 18 toward the evaporation section 4 due to gravity, is heated again into vapor, and rises toward the condensation section 5. This heat transport cycle of the working fluid 7 is continued until snowfall is no longer detected or the geothermal temperature becomes lower than the road surface temperature and the electromagnetic valve 8 is closed.

【0030】そして、電磁弁8が閉じられると、凝縮し
た作動流体7が電磁弁8より上流側に次第に溜まる。こ
れに対して蒸発部4では、常時、地熱流体3によって加
熱されて作動流体7が蒸発しているから、蒸発部4に残
存している作動流体7は逐次、凝縮部5に移動し、かつ
この蒸発部4には作動流体が新たに供給されないから、
ついには蒸発部4には作動流体が存在しなくなり、いわ
ゆるドライアウト状態となる。その結果、ヒートパイプ
の機能が停止する。その場合、電磁弁8を閉じたとして
もヒートパイプ1の内部の全体は連通状態になっている
ので、内部圧力の極端な相違が生じることがなく、換言
すれば、電磁弁8を挟んだ両側の圧力がほぼ等しくなる
から、電磁弁8に過剰な圧力がかかって漏洩が生じた
り、蒸発管17や液戻し管18に局部的な過剰な圧力が
作用したりすることがない。
When the solenoid valve 8 is closed, the condensed working fluid 7 is gradually accumulated upstream of the solenoid valve 8. On the other hand, in the evaporating section 4, the working fluid 7 is constantly heated by the geothermal fluid 3 to evaporate, so the working fluid 7 remaining in the evaporating section 4 sequentially moves to the condensing section 5, and Since the working fluid is not newly supplied to the evaporator 4,
Eventually, the working fluid does not exist in the evaporation section 4, and the so-called dry-out state is set. As a result, the function of the heat pipe stops. In that case, even if the solenoid valve 8 is closed, the entire inside of the heat pipe 1 is in a communicating state, so that an extreme difference in internal pressure does not occur. In other words, both sides of the solenoid valve 8 are sandwiched. Therefore, the solenoid valve 8 will not be overpressured and leaked, and the evaporation pipe 17 and the liquid return pipe 18 will not be locally overpressured.

【0031】なお、上記各実施例では弁として電磁弁8
を採用するとともに、制御装置9でその開閉を制御する
構成としたが、この発明は上記実施例に限定されるもの
ではない。
In each of the above embodiments, the solenoid valve 8 is used as a valve.
In addition to the above, the control device 9 controls the opening and closing, but the present invention is not limited to the above embodiment.

【0032】[0032]

【発明の効果】以上説明したようにこの発明によれば、
ヒートパイプの蒸発部が地中の高温域に延ばされて配設
され、凝縮部が地表面の直下で地表面とほぼ平行に延ば
されて配設されており、さらに、ヒートパイプの蒸発部
と凝縮部との中間部分に、弁が備えられているので、地
表面上の融雪を確実かつ効率よく実施できる。またヒー
トパイプの1本あたりの放熱面積が広くなるので、要求
される融雪面積に対する必要なヒートパイプの本数が少
なくてよく、その結果、設備コストの低廉化を図ること
ができる。
As described above, according to the present invention,
The evaporating part of the heat pipe is extended to the high temperature area in the ground, and the condensing part is arranged to extend almost parallel to the ground surface directly below the ground surface. Since the valve is provided in the intermediate portion between the section and the condensation section, snow melting on the ground surface can be carried out reliably and efficiently. Further, since the heat radiation area per heat pipe is wide, the number of heat pipes required for the required snow melting area may be small, and as a result, the equipment cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第一実施例を示す概略図である。FIG. 1 is a schematic view showing a first embodiment of the present invention.

【図2】ループ型ヒートパイプを採用した第二実施例を
示す図である。
FIG. 2 is a diagram showing a second embodiment employing a loop heat pipe.

【符号の説明】[Explanation of symbols]

1…ヒートパイプ、 2…コンテナ、 3…地熱流体、
4…蒸発部、 5…凝縮部、 6…路面、 7…作動
流体、 8…電磁弁。
1 ... Heat pipe, 2 ... Container, 3 ... Geothermal fluid,
4 ... Evaporating part, 5 ... Condensing part, 6 ... Road surface, 7 ... Working fluid, 8 ... Solenoid valve.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年5月25日[Submission date] May 25, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0002[Name of item to be corrected] 0002

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0002】[0002]

【従来の技術】車道や歩道等の除雪は、冬季の交通手段
を確保する上で特に重要であるが、これらの路面は自然
環境下に直接晒されているうえに、対象とする面積が広
いために、人力による除雪を行うとすれば多大の労力と
時間とを要する。またその除雪のために人工的な熱エネ
ルギを使用するとすれば、ランニングコストが嵩むなど
の問題が生じる。そこで従来、雪を溶かして除雪するに
あたり自然エネルギを可及的に有効利用することが種々
試みられており、その一例が特開昭63−40002号
公報に示されている。
BACKGROUND ART snow, such as roadways or sidewalks, on top is especially important in ensuring winter transportation, these road surface that is directly exposed to the natural environment, the area of interest Due to its large size, it takes a lot of labor and time to remove snow manually. If artificial heat energy is used to remove the snow, running costs will increase. Therefore, various attempts have heretofore been made to utilize natural energy as effectively as possible in melting snow to remove snow, and an example thereof is disclosed in Japanese Patent Laid-Open No. 63-40002.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上村 弘 新潟県新潟市中島町1丁目324−23 (72)発明者 小泉 倫彦 新潟県北蒲原郡水原町山口町1−2−8 (72)発明者 小松崎 通雄 新潟県新潟市学校町通二番町5295番地 株 式会社興和内 (72)発明者 小野 幹幸 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 (72)発明者 望月 正孝 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 (72)発明者 益子 耕一 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Uemura 1-324-23 Nakashima-cho, Niigata City, Niigata (72) Inventor Norihiko Koizumi 1-2-8 Yamaguchi-cho, Suwon-cho, Kitakanbara-gun, Niigata (72) Inventor Michio Komatsuzaki 5295 Niban-cho, Niigata-shi, Niigata-shi, Nikko, Nikko, Kowauchi, a stock company (72) Inventor, Mikiyuki Ono, 1-5-1, Kiba, Koto-ku, Tokyo, Fujikura Co., Ltd. (72) Inventor, Masataka Mochizuki Fujikura Co., Ltd. 1-5-1 Kiba, Koto-ku, Tokyo (72) Inventor Koichi Masuko 1-5-1 Kiba, Koto-ku, Tokyo Fujikura Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 密閉金属管からなるコンテナの内部に真
空脱気した状態で作動流体を封入したヒートパイプの蒸
発部が、地中の高温域に延ばされて配設されるととも
に、そのヒートパイプの凝縮部が地表面の直下で、かつ
該地表面とほぼ平行方向に布設され、さらに、前記ヒー
トパイプの前記蒸発部と前記凝縮部との中間部分に、前
記コンテナ内部における前記作動流体の流動を選択的に
遮断する弁が備えられていることを特徴とするヒートパ
イプ式融雪装置。
1. An evaporating portion of a heat pipe, in which a working fluid is enclosed in a vacuum degassed state, inside a container made of a closed metal tube, is arranged so as to extend to a high temperature region in the ground, and the heat of the heat pipe is also provided. The condensing portion of the pipe is laid right below the ground surface and in a direction substantially parallel to the ground surface, and further, in the intermediate portion between the evaporating portion and the condensing portion of the heat pipe, the working fluid of the inside of the container is A heat pipe type snow melting device, which is provided with a valve for selectively blocking a flow.
JP7117871A 1995-04-19 1995-04-19 Heat pipe type snow melting equipment Expired - Lifetime JP2886110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7117871A JP2886110B2 (en) 1995-04-19 1995-04-19 Heat pipe type snow melting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7117871A JP2886110B2 (en) 1995-04-19 1995-04-19 Heat pipe type snow melting equipment

Publications (2)

Publication Number Publication Date
JPH08284106A true JPH08284106A (en) 1996-10-29
JP2886110B2 JP2886110B2 (en) 1999-04-26

Family

ID=14722348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7117871A Expired - Lifetime JP2886110B2 (en) 1995-04-19 1995-04-19 Heat pipe type snow melting equipment

Country Status (1)

Country Link
JP (1) JP2886110B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283014A (en) * 2004-03-30 2005-10-13 Tai-Her Yang Heat dissipation system carrying out convection by thermal actuation of natural thermo carrier
WO2009151649A3 (en) * 2008-06-13 2010-04-08 Parrella Michael J System and method of capturing geothermal heat from within a drilled well to generate electricity
CN101929814A (en) * 2010-09-19 2010-12-29 刘至国 Heat pipe
CN102277819A (en) * 2010-06-13 2011-12-14 尹学军 Ground temperature-regulating and snow-melting device by using natural terrestrial heat and application thereof
JP2012026723A (en) * 2011-11-10 2012-02-09 Tai-Her Yang Heat dissipation system carrying out convection by thermal actuation of natural thermo carrier
JP2012172896A (en) * 2011-02-21 2012-09-10 Fukusen:Kk Antifreezing device for tank storage liquid and liquid storage tank with heat insulating function
CN103017413A (en) * 2013-01-18 2013-04-03 天津新源天大热泵技术有限公司 Horizontal buried pipe system
JP2013524142A (en) * 2010-04-01 2013-06-17 エスピーエス エナジー ゲーエムベーハー Apparatus and method for recovering heat from the environment
US8534069B2 (en) 2008-08-05 2013-09-17 Michael J. Parrella Control system to manage and optimize a geothermal electric generation system from one or more wells that individually produce heat
JP2015524887A (en) * 2012-08-13 2015-08-27 シェブロン ユー.エス.エー. インコーポレイテッド Improved production of clathrate by using thermosyphon
US9423158B2 (en) 2008-08-05 2016-08-23 Michael J. Parrella System and method of maximizing heat transfer at the bottom of a well using heat conductive components and a predictive model
KR20160128989A (en) * 2013-11-27 2016-11-08 토키태 엘엘씨 Refrigeration devices including temperature-controlled container systems
CN110132034A (en) * 2018-02-13 2019-08-16 山东大学 A kind of method of storage heater radial direction coalescence density optimization design
CN114525709A (en) * 2022-02-24 2022-05-24 湖南工程学院 Device for melting snow by solar heat collection and storage and geothermal energy on road surface
US11359338B2 (en) 2015-09-01 2022-06-14 Exotex, Inc. Construction products and systems for providing geothermal heat
CN114687315A (en) * 2022-04-19 2022-07-01 玺大建设工程有限公司 Unmanned snow removing station for expressway intercommunication ramp

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963492A (en) * 1982-09-30 1984-04-11 Sanyo Electric Co Ltd Heat pipe
JPS61109130A (en) * 1984-10-31 1986-05-27 Toshiba Corp Key scan control system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963492A (en) * 1982-09-30 1984-04-11 Sanyo Electric Co Ltd Heat pipe
JPS61109130A (en) * 1984-10-31 1986-05-27 Toshiba Corp Key scan control system

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283014A (en) * 2004-03-30 2005-10-13 Tai-Her Yang Heat dissipation system carrying out convection by thermal actuation of natural thermo carrier
US8616000B2 (en) 2008-06-13 2013-12-31 Michael J. Parrella System and method of capturing geothermal heat from within a drilled well to generate electricity
WO2009151649A3 (en) * 2008-06-13 2010-04-08 Parrella Michael J System and method of capturing geothermal heat from within a drilled well to generate electricity
US9404480B2 (en) 2008-06-13 2016-08-02 Pardev, Llc System and method of capturing geothermal heat from within a drilled well to generate electricity
EA021398B1 (en) * 2008-06-13 2015-06-30 Майкл Дж. Паррелла System and method of capturing geothermal heat from within a drilled well to generate electricity
AP3092A (en) * 2008-06-13 2015-01-31 Michael J Parrella System and method of capturing geothermal heat from within a drilled well to generate eletricity
US9423158B2 (en) 2008-08-05 2016-08-23 Michael J. Parrella System and method of maximizing heat transfer at the bottom of a well using heat conductive components and a predictive model
US8534069B2 (en) 2008-08-05 2013-09-17 Michael J. Parrella Control system to manage and optimize a geothermal electric generation system from one or more wells that individually produce heat
JP2013524142A (en) * 2010-04-01 2013-06-17 エスピーエス エナジー ゲーエムベーハー Apparatus and method for recovering heat from the environment
CN102277819B (en) * 2010-06-13 2015-08-12 尹学军 Utilize ground temperature-regulating device for melting snow and the temperature adjustment earth construction of natural terrestrial heat
CN102277819A (en) * 2010-06-13 2011-12-14 尹学军 Ground temperature-regulating and snow-melting device by using natural terrestrial heat and application thereof
CN101929814A (en) * 2010-09-19 2010-12-29 刘至国 Heat pipe
JP2012172896A (en) * 2011-02-21 2012-09-10 Fukusen:Kk Antifreezing device for tank storage liquid and liquid storage tank with heat insulating function
JP2012026723A (en) * 2011-11-10 2012-02-09 Tai-Her Yang Heat dissipation system carrying out convection by thermal actuation of natural thermo carrier
JP2015524887A (en) * 2012-08-13 2015-08-27 シェブロン ユー.エス.エー. インコーポレイテッド Improved production of clathrate by using thermosyphon
JP2015524886A (en) * 2012-08-13 2015-08-27 シェブロン ユー.エス.エー. インコーポレイテッド Started production of clathrate using thermosyphon
CN103017413A (en) * 2013-01-18 2013-04-03 天津新源天大热泵技术有限公司 Horizontal buried pipe system
KR20160128989A (en) * 2013-11-27 2016-11-08 토키태 엘엘씨 Refrigeration devices including temperature-controlled container systems
JP2016538521A (en) * 2013-11-27 2016-12-08 トキタエ エルエルシー Cooling device with temperature controlled container system
US11359338B2 (en) 2015-09-01 2022-06-14 Exotex, Inc. Construction products and systems for providing geothermal heat
CN110132034A (en) * 2018-02-13 2019-08-16 山东大学 A kind of method of storage heater radial direction coalescence density optimization design
CN110132034B (en) * 2018-02-13 2020-10-30 山东大学 Method for optimizing radial through density of heat accumulator
CN114525709A (en) * 2022-02-24 2022-05-24 湖南工程学院 Device for melting snow by solar heat collection and storage and geothermal energy on road surface
CN114525709B (en) * 2022-02-24 2024-05-17 湖南工程学院 Device for road surface solar heat collection and energy storage and geothermal energy snow melting
CN114687315A (en) * 2022-04-19 2022-07-01 玺大建设工程有限公司 Unmanned snow removing station for expressway intercommunication ramp

Also Published As

Publication number Publication date
JP2886110B2 (en) 1999-04-26

Similar Documents

Publication Publication Date Title
JPH08284106A (en) Heat pipe type snow-melting apparatus
US4162394A (en) Auxiliary evaporator for dual mode heat pipes
JPH05272106A (en) Solar energy storage type road surface snow melting device
JPH0835786A (en) Rod-form loop type heat pipe
JP2599516Y2 (en) Geothermal heat source heat pipe snow melting device
JP3303644B2 (en) Loop heat transport system
JPH0343402B2 (en)
JPH06347182A (en) Heat transfer device and manufacture thereof
JP2523034Y2 (en) Electric power storage type snow melting system
JPH057797U (en) Ice column prevention equipment in the tunnel
JP2562484Y2 (en) Snow melting system using geothermal
JPS62123291A (en) Large-caliber and long vertical thermo siphon
JPH04122703U (en) Heat pipe type road snow melting device
JPH0510951U (en) Solar heat storage type snow melting system
JPS6215733Y2 (en)
JPS60207896A (en) Reverse syphon type heat transmission system
JP7374776B2 (en) heat exchange system
JPH08134862A (en) Heat-pipe type snow-melting apparatus using compost as heat source
JP2570021Y2 (en) Ice pillar prevention equipment in tunnel
JPH0650232B2 (en) Heat storage type snow melting device
JPH0612371Y2 (en) heat pipe
KR970005184Y1 (en) Heat pipe
JPS60233205A (en) Heat pipe for melting snow on road capable of been arranged in connected state
JPH03262804A (en) Heat transfer device
JPS5943620B2 (en) Snow melting and antifreeze equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090212

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090212

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100212

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110212

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110212

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110212

Year of fee payment: 12

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120212

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120212

Year of fee payment: 13

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120212

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term