JPH0827088B2 - Screw refrigeration equipment - Google Patents
Screw refrigeration equipmentInfo
- Publication number
- JPH0827088B2 JPH0827088B2 JP2169608A JP16960890A JPH0827088B2 JP H0827088 B2 JPH0827088 B2 JP H0827088B2 JP 2169608 A JP2169608 A JP 2169608A JP 16960890 A JP16960890 A JP 16960890A JP H0827088 B2 JPH0827088 B2 JP H0827088B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- tank
- pipe
- refrigerant
- evaporator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/13—Economisers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/23—Separators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2509—Economiser valves
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、スクリュー冷凍装置、詳しくは、スクリュ
ー圧縮機と、凝縮器及び蒸発器とを備えたスクリュー冷
凍装置に関する。TECHNICAL FIELD The present invention relates to a screw refrigerating apparatus, and more particularly to a screw refrigerating apparatus including a screw compressor, a condenser and an evaporator.
(従来の技術) 此種スクリュー冷凍装置において、冷媒をスクリュー
圧縮機の圧縮過程途中に注入して、吐出ガス温度を制御
するエコノマイザーサイクルを形成するようにしたもの
は、例えば、特開昭61−285352号に開示されているよう
にすでに知られている。この冷凍装置は、第5図に示し
たように、スクリュー圧縮機(A)の吐出側に接続する
凝縮器(B)と吸入側に接続する蒸発器(C)との間に
液過冷却器(D)を介装し、前記凝縮器(B)の下流側
から分岐する分岐管(E)を、前記液過冷却器(D)の
熱交換器(F)を介して前記圧縮機(A)の中間吸入ポ
ート(G)に接続すると共に、前記分岐管(E)に、前
記圧縮機(A)からの吐出ガス冷媒の温度を検出する感
温部(H)をもち、この検出温度により、前記熱交換器
(F)での冷媒の気化が、前記圧縮機(A)内で液圧縮
を起こさない範囲で行われるように弁開度を制御する感
温式膨張弁(K)を介装し、前記凝縮器(B)で凝縮し
た液冷媒の一部を前記分岐管(E)から液ガス混合状態
で前記圧縮機(A)の中間吸入ポート(G)に注入し、
吐出ガス温度を制御するようにしたものである。(Prior Art) In this type of screw refrigerating device, a refrigerant is injected in the middle of the compression process of a screw compressor to form an economizer cycle for controlling the discharge gas temperature. It is already known as disclosed in -285352. As shown in FIG. 5, this refrigeration system includes a liquid subcooler between a condenser (B) connected to the discharge side of a screw compressor (A) and an evaporator (C) connected to the suction side. The branch pipe (E), which is provided with (D) and branches from the downstream side of the condenser (B), is connected to the compressor (A) via the heat exchanger (F) of the liquid subcooler (D). ) Is connected to the intermediate suction port (G), and the branch pipe (E) has a temperature sensing part (H) for detecting the temperature of the discharge gas refrigerant from the compressor (A). Through a temperature-sensitive expansion valve (K) that controls the valve opening so that the vaporization of the refrigerant in the heat exchanger (F) is performed in a range that does not cause liquid compression in the compressor (A). And a part of the liquid refrigerant condensed in the condenser (B) from the branch pipe (E) in a liquid-gas mixed state. The intermediate suction port (G) of the compressor (A). Injected into,
The discharge gas temperature is controlled.
また一方、以上のように圧縮機の中間吸入ポートに注
入する冷媒を湿り制御して吐出ガス温度を制御する方法
として、前記した液過冷却器(D)の代わりに、第6図
に示したように中間膨張タンク(M)を用いたものも知
られている。On the other hand, as a method for controlling the wetting control of the refrigerant injected into the intermediate suction port of the compressor as described above to control the discharge gas temperature, it is shown in FIG. 6 instead of the liquid subcooler (D) described above. There is also known one using the intermediate expansion tank (M).
第6図に示したものは、凝縮器(B)の出口側に高温
膨張弁(L)を介装した液管(N)を介して前記中間膨
張タンク(M)を接続し、該タンク(M)を低温膨張弁
(P)を介して蒸発器(C)に接続すると共に、前記膨
張タンク(M)における標準液面Ho(液ガスが完全に分
離されたときの計算上の静的液面)より上方に、中間吸
入配管(Q)を接続して該中間吸入配管(Q)を圧縮機
(A)の中間吸入ポート(G)に接続し、前記膨張タン
ク(M)の冷媒ガスを湿り制御して前記中間吸入ポート
(G)に注入し吐出ガス温度を制御するようにしたもの
である。In the one shown in FIG. 6, the intermediate expansion tank (M) is connected to the outlet side of the condenser (B) via a liquid pipe (N) having a high temperature expansion valve (L), and the tank ( M) is connected to the evaporator (C) via a low temperature expansion valve (P), and the standard liquid level H o in the expansion tank (M) (calculated static when liquid gas is completely separated) Above the liquid level), an intermediate suction pipe (Q) is connected, the intermediate suction pipe (Q) is connected to the intermediate suction port (G) of the compressor (A), and the refrigerant gas of the expansion tank (M) is connected. Is controlled to get wet and is injected into the intermediate suction port (G) to control the discharge gas temperature.
(発明が解決しようとする課題) ところで、以上のように中間膨張タンク(M)を用い
たエコノマイザーサイクルによると、構造上、前記液過
冷却器(D)を用いるより有利となるが、反面、前記タ
ンク(M)内の液面が、前記圧縮機(A)の容量変化や
冷房負荷変化等の外乱により前記した標準液面が上昇し
て、前記中間吸入配管(Q)の接続部位に近づいた場
合、液冷媒が急激に中間吸入配管(Q)に吸引され、中
間吸入ポート(G)に注入される冷媒の乾き度が急激に
低下することになり、液圧縮を起こすことが生じ、実際
上は前記した中間膨張タンク(M)を用いて吐出ガス温
度の制御を行うことは不可能であった。(Problems to be Solved by the Invention) By the way, according to the economizer cycle using the intermediate expansion tank (M) as described above, it is structurally more advantageous than using the liquid subcooler (D), but The liquid level in the tank (M) rises to the standard liquid level due to a disturbance such as a capacity change of the compressor (A) or a cooling load change, and the standard liquid level rises to a connecting portion of the intermediate suction pipe (Q). When approaching, the liquid refrigerant is rapidly sucked into the intermediate suction pipe (Q), the dryness of the refrigerant injected into the intermediate suction port (G) is drastically reduced, and liquid compression may occur. In practice, it was impossible to control the discharge gas temperature using the intermediate expansion tank (M) described above.
本発明は以上のような問題に鑑みてなしたもので、そ
の目的は、中間膨張タンクを用いながら、スクリュー圧
縮機の圧縮過程途中に注入する冷媒の乾き度の変化を少
なくして、吐出ガス温度の制御性を向上し、実用化を可
能にする点である。The present invention has been made in view of the above problems, and its object is to reduce the change in the dryness of the refrigerant injected during the compression process of the screw compressor while using the intermediate expansion tank, and to discharge gas. It is the point that the controllability of temperature is improved and it can be put to practical use.
(課題を解決するための手段) 上記目的を達成するために、本発明は、スクリュー圧
縮機(1)と、凝縮器(2)及び蒸発器(3)とを備え
たスクリュー冷凍装置において、前記凝縮器(2)の出
口側を、高温膨張弁(6)を介装した液管(5)を介し
て中間膨張タンク(4)を接続し、該タンク(4)を、
低温膨張弁(8)を介装した液管(7)を介して前記蒸
発器(3)に接続すると共に、前記タンク(4)におけ
る標準液面より上方に開口する中間吸入配管(9)を前
記圧縮機(1)の中間吸入ポートに接続する一方、流入
側の前記液管(5)を、前記タンク(4)における標準
液面より下方に接続したのである。(Means for Solving the Problems) In order to achieve the above object, the present invention provides a screw refrigerating apparatus including a screw compressor (1), a condenser (2) and an evaporator (3), The outlet side of the condenser (2) is connected to an intermediate expansion tank (4) via a liquid pipe (5) having a high temperature expansion valve (6), and the tank (4) is connected to
An intermediate suction pipe (9) which is connected to the evaporator (3) through a liquid pipe (7) having a low temperature expansion valve (8) and which opens above the standard liquid surface in the tank (4) is provided. While connecting to the intermediate suction port of the compressor (1), the liquid pipe (5) on the inflow side was connected below the standard liquid level in the tank (4).
また、前記の構成において、中間膨張タンク(4)の
下部に、下部液冷媒の撹拌を抑制して蒸発器(3)への
流出液冷媒の気泡混入を防止する気泡混入防止体を設け
ると共に、流入側の液管(5)を前記気泡混入防止体よ
りも上方に接続する一方、流出側の液管(7)を前記気
泡混入防止体よりも下方に接続するのが好ましい。Further, in the above-mentioned structure, a bubble-mixing preventive body is provided below the intermediate expansion tank (4) to prevent stirring of the lower liquid-refrigerant and prevent bubbles from flowing into the evaporator (3). It is preferable that the liquid pipe (5) on the inflow side is connected to the upper side of the air bubble mixing prevention body, while the liquid pipe (7) on the outflow side is connected to the lower side of the air bubble mixing prevention body.
(作用) 前記液管(5)から中間膨張タンク(4)に流れる液
冷媒は、前記液管(5)に介装した前記高温膨張弁
(6)により一部の冷媒が気化し、フラッシュしながら
前記タンク(4)の液相に流入するのである。このため
前記タンク(4)内の液相は、フラッシュしながら流入
する液冷媒により撹拌されるから、前記タンク(4)の
内部上方部が泡立ち状態になり、その液比率分布が、第
4図に示した従来の状態から第3図に示した状態になる
のである。したがって、前記タンク(4)内の標準液面
が変化しても前記中間吸入配管(9)から流出する冷媒
の液比率の変化は少なくなり、液面変化に対して中間吸
入ガス冷媒の乾き度の変化は、泡立ち状態でないときに
比較して少なく、乾き度の変化の少ない冷媒ガスが前記
圧縮機(1)に注入されるから、吐出ガス温度制御の安
定性を向上でき、中間膨張タンク(4)を用いて吐出ガ
ス温度を制御することが実用上可能となるのである。(Operation) A part of the liquid refrigerant flowing from the liquid pipe (5) to the intermediate expansion tank (4) is vaporized by the high temperature expansion valve (6) interposed in the liquid pipe (5) and flashes. While flowing into the liquid phase of the tank (4). Therefore, since the liquid phase in the tank (4) is agitated by the liquid refrigerant flowing in while flushing, the upper inside part of the tank (4) is in a foaming state, and the liquid ratio distribution is as shown in FIG. The state shown in FIG. 3 is changed from the conventional state shown in FIG. Therefore, even if the standard liquid level in the tank (4) changes, the change in the liquid ratio of the refrigerant flowing out from the intermediate suction pipe (9) is small, and the dryness of the intermediate suction gas refrigerant against the liquid level change. Of the refrigerant gas having a small change in dryness is injected into the compressor (1), the stability of discharge gas temperature control can be improved, and the intermediate expansion tank ( It is practically possible to control the discharge gas temperature using 4).
さらに、前記タンク(4)の下部に前記気泡混入防止
体を設けた場合には、気泡混入防止体より上方では、良
好な液相の泡立ち状態を確保しながらも、気泡混入防止
体により上方と画成された下部液冷媒は、撹拌が抑制さ
れ、蒸発器(3)への流出液冷媒の気泡混入を確実に防
止できて、蒸発器(3)の性能低下を防ぐことができる
のである。Furthermore, in the case where the bubble-mixing preventive body is provided in the lower part of the tank (4), the bubble-mixing preventive body is provided above the bubble-mixture preventing body while ensuring a good bubbling state of the liquid phase. Agitation of the defined lower liquid refrigerant is suppressed, and it is possible to reliably prevent the bubbles of the effluent liquid refrigerant from entering the evaporator (3) and prevent the performance of the evaporator (3) from deteriorating.
(実施例) 第1図は、スクリュー冷凍装置における配管系統を概
略的に示したもので、スクリュー圧縮機(1)の吐出側
には凝縮器(2)を、又、圧縮機(1)の吸入側には蒸
発器(3)を接続すると共に、前記凝縮器(2)と前記
蒸発器(3)との間に中間膨張タンク(4)を介装する
のである。即ち、前記凝縮器(2)と前記中間膨張タン
ク(4)とを接続する液管(5)には高温膨張弁(6)
を介装すると共に、前記中間膨張タンク(4)と前記蒸
発器(3)とを接続する液管(7)には低温膨張弁
(8)を介装して、前記凝縮器(2)で液化する冷媒を
前記中間膨張タンク(4)を介して前記蒸発器(3)に
流入させ、該蒸発器(3)で蒸発した冷媒ガスを前記圧
縮機(1)に戻るように循環させている。又、前記中間
膨張タンク(4)と、前記圧縮機(1)に設ける中間吸
入ポート(1a)とを中間吸入配管(9)を介して接続
し、前記中間膨張タンク(4)から中間吸入ガス冷媒を
前記中間吸入配管(9)を介して前記圧縮機(1)の圧
縮過程途中の中間吸入ポート(1a)に注入するエコノマ
イザーサイクルを形成する。(Example) FIG. 1 schematically shows a piping system in a screw refrigerating apparatus, in which a condenser (2) is provided on the discharge side of the screw compressor (1) and a compressor (1) is provided. An evaporator (3) is connected to the suction side, and an intermediate expansion tank (4) is interposed between the condenser (2) and the evaporator (3). That is, a high temperature expansion valve (6) is provided in the liquid pipe (5) connecting the condenser (2) and the intermediate expansion tank (4).
And a low-temperature expansion valve (8) is installed in the liquid pipe (7) connecting the intermediate expansion tank (4) and the evaporator (3) to the condenser (2). A liquefied refrigerant is caused to flow into the evaporator (3) through the intermediate expansion tank (4), and the refrigerant gas evaporated in the evaporator (3) is circulated so as to return to the compressor (1). . Further, the intermediate expansion tank (4) and the intermediate suction port (1a) provided in the compressor (1) are connected via an intermediate suction pipe (9), and the intermediate expansion gas is discharged from the intermediate expansion tank (4). An economizer cycle is formed in which the refrigerant is injected into the intermediate suction port (1a) of the compressor (1) during the compression process through the intermediate suction pipe (9).
さらに詳しく述べると、第2図に示すように、前記凝
縮器(2)と前記タンク(4)とを接続する流入側の前
記液管(5)を、該タンク(4)における一点鎖線で示
した標準液面(R)(前記タンク(4)内で冷媒が気液
に完全に分離した状態における計算上の静的液面)の下
方位置に開口するように接続する一方、該標準液面
(R)の上方位置に前記中間吸入配管(9)を接続する
と共に、前記タンク(4)の最下部には、前記蒸発器
(3)に液冷媒を流す流出側の液管(7)を接続し、該
液管(7)の接続部より上方位置で且つ前記液管(5)
の下方位置には、小孔を多数設けたパンチングメタル
(10)などで形成される気泡混入防止体を設けている。More specifically, as shown in FIG. 2, the liquid pipe (5) on the inflow side that connects the condenser (2) and the tank (4) is shown by a chain line in the tank (4). The standard liquid level (R) (opened below the standard liquid level (R) (calculated static liquid level when the refrigerant is completely separated into gas and liquid in the tank (4)) The intermediate suction pipe (9) is connected to a position above (R), and an outflow side liquid pipe (7) for flowing a liquid refrigerant to the evaporator (3) is provided at the lowermost portion of the tank (4). The liquid pipe (5) connected to the liquid pipe (7) at a position higher than the connecting portion
In the lower position of the, there is provided a bubble mixing prevention body formed of punching metal (10) having a large number of small holes.
尚、(61)(81)はそれぞれ前記高温膨張弁(6)及
び低温膨張弁(8)を制御する感温手段である。Incidentally, (61) and (81) are temperature sensing means for controlling the high temperature expansion valve (6) and the low temperature expansion valve (8), respectively.
以上説明した実施例のスクリュー冷凍装置は、前記中
間吸入配管(9)から中間吸入ガス冷媒を前記圧縮機
(1)の圧縮過程途中に注入して吐出ガス温度を制御す
るのであって、次に、その作用を説明する。The screw refrigerating apparatus of the embodiment described above controls the discharge gas temperature by injecting the intermediate suction gas refrigerant from the intermediate suction pipe (9) during the compression process of the compressor (1). , Its action will be explained.
先ず、前記凝縮器(2)から前記液管(5)を流れる
冷媒は、前記高温膨張弁(6)により一部気化し、フラ
ッシュしながら前記タンク(4)の液相に流入する。そ
して、前記タンク(4)に流入した液冷媒の大部分は、
該タンク(4)の下部に接続した前記液管(7)を流れ
て前記低温膨張弁(8)で膨張し、そして前記蒸発器
(3)にて蒸発して前記圧縮機(1)に吸入される。First, the refrigerant flowing from the condenser (2) through the liquid pipe (5) is partially vaporized by the high temperature expansion valve (6) and flows into the liquid phase of the tank (4) while flashing. And most of the liquid refrigerant flowing into the tank (4) is
The liquid flows through the liquid pipe (7) connected to the lower part of the tank (4), expands at the low temperature expansion valve (8), evaporates at the evaporator (3), and is sucked into the compressor (1). To be done.
一方、前記タンク(4)から一部の冷媒ガスが前記中
間吸入配管(9)に流れ、前記中間吸入ポート(1a)か
ら前記圧縮機(1)の圧縮過程途中に注入され、吐出ガ
ス温度を制御するのである。On the other hand, a part of the refrigerant gas from the tank (4) flows into the intermediate suction pipe (9) and is injected from the intermediate suction port (1a) in the middle of the compression process of the compressor (1) to control the discharge gas temperature. Control it.
しかして、前記液管(5)には吐出ガス温度に対応し
て開度を変える高温膨張弁(6)を介装しており、前記
液管(5)を前記標準液面(R)より下方に接続してい
るから、前記液管(5)から前記タンク(4)にフラッ
シュしながら流入する冷媒で、該タンク(4)の上方部
が泡立ち状態になり、その液比率分布が、第4図に示し
た従来の状態から、第3図に示した状態になる。Therefore, the liquid pipe (5) is provided with a high-temperature expansion valve (6) whose opening is changed according to the discharge gas temperature, and the liquid pipe (5) is connected to the standard liquid surface (R). Since it is connected to the lower part, the refrigerant flowing from the liquid pipe (5) into the tank (4) while flushing causes the upper part of the tank (4) to be in a bubbling state, and the liquid ratio distribution is The conventional state shown in FIG. 4 is changed to the state shown in FIG.
即ち、第4図に示した従来の液比率分布は、つまり、
第6図に示したように、前記液管(N)を標準液面
(R)より上方位置に接続していた従来例の液比率分布
は、液面高さの変化に対する液比率の変化が少ない状態
となっているのに対し、第3図に示した本発明による液
比率分布は、液面高さの変化に対する液比率の変化が大
きい状態になる。That is, the conventional liquid ratio distribution shown in FIG.
As shown in FIG. 6, in the liquid ratio distribution of the conventional example in which the liquid pipe (N) is connected to a position higher than the standard liquid level (R), the liquid ratio changes with changes in the liquid level height. While it is in a small state, the liquid ratio distribution according to the present invention shown in FIG. 3 has a large change in the liquid ratio with respect to the change in liquid level height.
尚、第3、4図において、液比率1は液比率100%で
全量が液冷媒であることを示し、また、液比率0は液比
率0%で全量がガス冷媒であることを示している。又、
Hoは標準液面(R)の高さ、Hinは前記液管(5)の接
続位置、Hou、は前記中間吸入配管(9)の接続位置、H
pは前記パンチングメタル(10)の接続位置のそれぞれ
の高さを示す。In FIGS. 3 and 4, the liquid ratio 1 indicates that the liquid ratio is 100% and the entire amount is the liquid refrigerant, and the liquid ratio 0 indicates that the liquid ratio is 0% and the entire amount is the gas refrigerant. . or,
H o is the height of the standard liquid surface (R), H in is the connecting position of the liquid pipe (5), H ou is the connecting position of the intermediate suction pipe (9), and H
p indicates the height of each of the connection positions of the punching metal (10).
しかして、前記圧縮機(1)の容量変化や冷房負荷変
化等の外乱により標準液面(R)が変化すると、第3図
及び第4図に示したグラフは上下方向に平行移動するこ
とになるのであるが、標準液面(R)付近の液比率の勾
配は、第4図の従来例に比較して本発明では第3図のよ
うに急勾配となるから、第4図の従来例では標準液面が
上昇すると前記中間吸入配管(9)に急激に液比率の高
い部分が吸入され、前記圧縮機(1)に注入する冷媒ガ
スの乾き度が急激に変動することにより、液圧縮が起こ
り、吐出ガスの温度制御が不可能になるのであるが、本
発明では、第3図のように液比率の勾配が大きいから、
前記中間吸入配管(9)に吸入される冷媒の液比率の変
化は少なく、前記圧縮機(1)の圧縮過程途中に注入さ
れる中間吸入ガスの乾き度の変化も少なくなり、吐出ガ
スの温度制御の安定性が向上し、実用可能となるのであ
る。When the standard liquid level (R) changes due to a disturbance such as a change in the capacity of the compressor (1) or a change in the cooling load, the graphs shown in FIGS. 3 and 4 move vertically in parallel. However, the gradient of the liquid ratio in the vicinity of the standard liquid surface (R) is steeper as shown in FIG. 3 in the present invention as compared with the conventional example of FIG. 4, so that the conventional example of FIG. Then, when the standard liquid level rises, a portion having a high liquid ratio is rapidly sucked into the intermediate suction pipe (9), and the dryness of the refrigerant gas injected into the compressor (1) fluctuates rapidly, so that liquid compression is performed. However, in the present invention, since the gradient of the liquid ratio is large as shown in FIG. 3,
The change in the liquid ratio of the refrigerant sucked into the intermediate suction pipe (9) is small, the change in the dryness of the intermediate suction gas injected during the compression process of the compressor (1) is small, and the temperature of the discharge gas is reduced. The stability of control is improved and it becomes practical.
更に、前記タンク(4)の下部に前記パンチングメタ
ル(10)などの気泡混入防止体を設けて、該気泡混入防
止体の下部の液冷媒の撹拌を抑制できるから、前記液管
(7)を通って前記蒸発器(3)へ流れる液冷媒への気
泡の混入を防止でき、このため、前記蒸発器(3)の能
力低下を招かないのである。尚、気泡混入防止体は、前
記パンチングメタル(10)に代えて、例えばワイヤメッ
シュ等でもよい。Furthermore, since an air bubble mixing preventer such as the punching metal (10) is provided below the tank (4), it is possible to suppress agitation of the liquid refrigerant below the air bubble mixing preventer. It is possible to prevent bubbles from being mixed into the liquid refrigerant flowing therethrough to the evaporator (3), so that the capacity of the evaporator (3) is not deteriorated. The air bubble mixture preventer may be, for example, a wire mesh instead of the punching metal (10).
(発明の効果) 以上説明したように、本発明によれば、スクリュー圧
縮機(1)と、凝縮器(2)及び蒸発器(3)とを備え
たスクリュー冷凍装置において、前記凝縮器(2)の出
口側を、高温膨張弁(6)を介装した液管(5)を介し
て中間膨張タンク(4)を接続し、該タンク(4)を、
低温膨張弁(8)を介装した液管(7)を介して前記蒸
発器(3)に接続すると共に、前記タンク(4)におけ
る標準液面より上方に開口する中間吸入配管(9)を前
記圧縮機(1)の中間吸入ポートに接続する一方、流入
側の前記液管(5)を、前記タンク(4)における標準
液面より下方に接続したから、前記液管(5)に介装し
た前記高温膨張弁(6)により一部の液冷媒が気化し、
フラッシュしながら前記タンク(4)の液相に流入し、
このため、前記タンク(4)内の液相は、フラッシュし
ながら流入する液ガス混合冷媒により撹拌されるから、
前記タンク(1)の内部上方部が泡立ち状態になり、そ
の液比率分布が、第4図に示した従来の状態から第3図
に示した状態になるのである。したがって、前記タンク
(4)内の標準液面が変化しても前記中間吸入配管
(9)に吸引する冷媒の乾き度の変化は、従来例に比較
して少なく、乾き度の変化の少ない冷媒ガスが前記圧縮
機(1)に吸入されるから、中間吸入ガス冷媒の湿り制
御が可能となり、吐出ガス温度の制御を安定よく行える
のであって、前記膨張タンク(4)を用いて吐出ガス温
度の制御を行うことが実用化できるのである。(Effects of the Invention) As described above, according to the present invention, in the screw refrigeration apparatus including the screw compressor (1), the condenser (2) and the evaporator (3), the condenser (2 ) Is connected to an intermediate expansion tank (4) through a liquid pipe (5) having a high temperature expansion valve (6), and the tank (4) is connected to
An intermediate suction pipe (9) which is connected to the evaporator (3) through a liquid pipe (7) having a low temperature expansion valve (8) and which opens above the standard liquid surface in the tank (4) is provided. While being connected to the intermediate suction port of the compressor (1), the liquid pipe (5) on the inflow side was connected below the standard liquid surface in the tank (4). Part of the liquid refrigerant is vaporized by the mounted high temperature expansion valve (6),
Flowing into the liquid phase of the tank (4) while flushing,
Therefore, the liquid phase in the tank (4) is agitated by the liquid gas mixed refrigerant flowing in while flushing,
The inside upper part of the tank (1) is foamed, and the liquid ratio distribution thereof is changed from the conventional state shown in FIG. 4 to the state shown in FIG. Therefore, even if the standard liquid level in the tank (4) changes, the change in the dryness of the refrigerant sucked into the intermediate suction pipe (9) is smaller than that in the conventional example, and the change in the dryness is small. Since the gas is sucked into the compressor (1), the wetness of the intermediate sucked gas refrigerant can be controlled, and the discharge gas temperature can be controlled stably, and the discharge gas temperature can be controlled by using the expansion tank (4). It is possible to put the control into practice.
さらに、中間膨脹タンク(4)の下部に、下部液冷媒
の撹拌を抑制して蒸発器(3)への流出液冷媒の気泡混
入を防止する気泡混入防止体を設けると共に、流入側の
液管(5)を前記気泡混入防止体よりも上方に接続する
一方、流出側の液管(7)を前記気泡混入防止体よりも
下方に接続した場合は、気泡混入防止体より上方は、良
好な液相の泡立ち状態を確保しながらも、気泡混入防止
体により上方と画成された下部液冷媒は、撹拌が抑制さ
れ、蒸発器(3)への流出液冷媒の気泡混入を確実に防
止でき、蒸発器(3)の性能低下を防ぐことが出来るの
である。Further, a bubble-mixing preventive body is provided in the lower part of the intermediate expansion tank (4) to suppress stirring of the lower liquid-cooling medium to prevent mixing of bubbles of the effluent liquid-cooling medium into the evaporator (3), and a liquid pipe on the inflow side. When (5) is connected above the bubble inclusion preventing body, while the liquid pipe (7) on the outflow side is connected below the bubble inclusion preventing body, the area above the bubble inclusion preventing body is good. While ensuring the bubbling state of the liquid phase, the lower liquid refrigerant that is defined as the upper side by the air bubble entrainment body is suppressed from being stirred, and it is possible to reliably prevent the inflow liquid refrigerant from entering the evaporator (3). The deterioration of the performance of the evaporator (3) can be prevented.
第1図は、本発明のスクリュー冷凍装置の概略配管系統
図、第2図は中間膨張タンクの拡大断面説明図、第3図
は本発明による中間膨張タンクの液比率分布図、第4図
は従来例の液比率分布図、第5図及び第6図は従来例を
示す説明図である。 (1)……スクリュー圧縮機 (2)……凝縮器 (3)……蒸発器 (4)……中間膨張タンク (5)……液管 (6)……高温膨張弁 (7)……液管 (8)……低温膨張弁 (9)……中間吸入配管FIG. 1 is a schematic piping system diagram of a screw refrigerating apparatus of the present invention, FIG. 2 is an enlarged sectional explanatory view of an intermediate expansion tank, FIG. 3 is a liquid ratio distribution diagram of the intermediate expansion tank according to the present invention, and FIG. FIG. 5 and FIG. 6 are liquid ratio distribution diagrams of a conventional example, and are explanatory diagrams showing a conventional example. (1) …… Screw compressor (2) …… Condenser (3) …… Evaporator (4) …… Intermediate expansion tank (5) …… Liquid pipe (6) …… High temperature expansion valve (7) …… Liquid pipe (8) …… Low temperature expansion valve (9) …… Intermediate suction pipe
Claims (2)
及び蒸発器(3)とを備えたスクリュー冷凍装置におい
て、 前記凝縮器(2)の出口側を、高温膨張弁(6)を介装
した液管(5)を介して中間膨張タンク(4)を接続
し、該タンク(4)を、低温膨張弁(8)を介装した液
管(7)を介して前記蒸発器(3)に接続すると共に、
前記タンク(4)における標準液面より上方に開口する
中間吸入配管(9)を前記圧縮機(1)の中間吸入ポー
トに接続する一方、流入側の前記液管(5)を、前記タ
ンク(4)における標準液面より下方に接続しているこ
とを特徴とするスクリュー冷凍装置。1. A screw compressor (1) and a condenser (2)
A screw refrigerating apparatus including an evaporator (3) and an intermediate expansion tank (4) on the outlet side of the condenser (2) via a liquid pipe (5) provided with a high temperature expansion valve (6). And the tank (4) is connected to the evaporator (3) through a liquid pipe (7) having a low temperature expansion valve (8).
An intermediate suction pipe (9) opening above the standard liquid level in the tank (4) is connected to the intermediate suction port of the compressor (1), while the liquid pipe (5) on the inflow side is connected to the tank ( A screw refrigerating apparatus, which is connected below the standard liquid surface in 4).
媒の撹拌を抑制して蒸発器(3)への流出液冷媒の気泡
混入を防止する気泡混入防止体を設けると共に、流入側
の液管(5)を前記気泡混入防止体よりも上方に接続す
る一方、流出側の液管(7)を前記気泡混入防止体より
も下方に接続している請求項1記載のスクリュー冷凍装
置。2. An air bubble mixing preventing body is provided at a lower portion of the intermediate expansion tank (4) for suppressing agitation of the lower liquid refrigerant to prevent air bubble mixing of the effluent liquid refrigerant into the evaporator (3). 2. The screw refrigerating apparatus according to claim 1, wherein said liquid pipe (5) is connected above said bubble inclusion preventer, while said liquid pipe (7) on the outflow side is connected below said bubble inclusion preventer. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2169608A JPH0827088B2 (en) | 1990-06-27 | 1990-06-27 | Screw refrigeration equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2169608A JPH0827088B2 (en) | 1990-06-27 | 1990-06-27 | Screw refrigeration equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0460347A JPH0460347A (en) | 1992-02-26 |
JPH0827088B2 true JPH0827088B2 (en) | 1996-03-21 |
Family
ID=15889655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2169608A Expired - Fee Related JPH0827088B2 (en) | 1990-06-27 | 1990-06-27 | Screw refrigeration equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0827088B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6941769B1 (en) * | 2004-04-08 | 2005-09-13 | York International Corporation | Flash tank economizer refrigeration systems |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56142359A (en) * | 1980-04-09 | 1981-11-06 | Hitachi Ltd | Turbo refrigerating machine |
JPS5952352B2 (en) * | 1981-07-31 | 1984-12-19 | 株式会社日立製作所 | Refrigerator heat exchanger with multistage compression economizer |
FR2588066B1 (en) * | 1985-09-27 | 1988-01-08 | Zimmern Bernard | REFRIGERATION SYSTEM WITH CENTRIFUGAL ECONOMIZER |
-
1990
- 1990-06-27 JP JP2169608A patent/JPH0827088B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0460347A (en) | 1992-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR890000347B1 (en) | Refrigeration system | |
US2512869A (en) | Method and apparatus for circulating refrigerants | |
JPH11107966A (en) | Air conditioning device | |
JP2000179957A (en) | Air conditioner | |
JPH0827088B2 (en) | Screw refrigeration equipment | |
US3014349A (en) | Method of operation of an absorption refrigeration system | |
JP2523042B2 (en) | Absorption cold water heater | |
US3802219A (en) | Tiltable air-cooled absorption refrigeration apparatus of the inert gas type | |
JP2000018739A (en) | Heating-cooling combination device | |
US6370893B1 (en) | Absorption cooling system with refrigerant management for dilution and part load operation | |
CN220689430U (en) | Flash tank and multi-split heat pump air conditioning system | |
JP2931469B2 (en) | Refrigeration equipment | |
JPS5857668B2 (en) | Absorption liquid crystal prevention device for absorption refrigerators | |
JP3077977B1 (en) | Absorption refrigerator | |
JPH083887Y2 (en) | Heat pump equipment | |
JPH07324827A (en) | Superheat preventing type refrigerating device using liquid surface | |
JPS5818139Y2 (en) | Double effect absorption chiller | |
JPH0524416B2 (en) | ||
JPH01273964A (en) | Absorption refrigerating machine | |
JPS60108573A (en) | Feeding of freezing mixture in cryopump | |
JPH0577942B2 (en) | ||
JPH0247667B2 (en) | NETSUHONPUSOCHI | |
JP2535363B2 (en) | Refrigerator | |
JPS6036790A (en) | Vapor-liquid separator | |
JPS5855664A (en) | Accumulator for refrigerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |