[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0827654A - Production of thermally moldable composite fiber material - Google Patents

Production of thermally moldable composite fiber material

Info

Publication number
JPH0827654A
JPH0827654A JP6155736A JP15573694A JPH0827654A JP H0827654 A JPH0827654 A JP H0827654A JP 6155736 A JP6155736 A JP 6155736A JP 15573694 A JP15573694 A JP 15573694A JP H0827654 A JPH0827654 A JP H0827654A
Authority
JP
Japan
Prior art keywords
fiber mat
needle
barb
inorganic fiber
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6155736A
Other languages
Japanese (ja)
Inventor
Kazuto Nishizawa
一人 西澤
Akira Shibata
亮 柴田
Shoichi Nakamura
正一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP6155736A priority Critical patent/JPH0827654A/en
Publication of JPH0827654A publication Critical patent/JPH0827654A/en
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H18/00Needling machines
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres
    • D04H1/4226Glass fibres characterised by the apparatus for manufacturing the glass fleece

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To obtain a thermally moldable composite fiber material capable of producing an inorganic fiber mat having little variation of mechanical strength and especially improved flexural strength. CONSTITUTION:This thermally moldable composite fiber material is produced by applying needle punching on an inorganic fiber mat and impregnating the punched inorganic fiber mat with a thermoplastic resin in a fused state. The needle punching is performed using the following needle: the diameter (D) of a blade 10 is 0.4-0.65mm; the total of kick-up height (H) and stroke depth (S) of a barb 11 is 0.02-0.18mm; and the space (L) between barbs 11 in the same line is 4-8mm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、特に曲げ強度の改善
された成形品を得ることのできる熱成形性繊維複合材料
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thermoformable fiber composite material, which makes it possible to obtain a molded article having improved bending strength.

【0002】[0002]

【従来の技術】無機繊維マットにニードルパンチを施
し、この無機繊維マットに熱可塑性樹脂を溶融含浸させ
て熱成形性繊維複合材料を製造する方法は、知られてい
る(例えば、特開昭64−77664号公報及び特開平
2−80652号公報参照)。
2. Description of the Related Art A method for producing a thermoformable fiber composite material by subjecting an inorganic fiber mat to needle punching and melt-impregnating the inorganic fiber mat with a thermoplastic resin is known (for example, Japanese Patent Application Laid-Open No. 64-64). -77664 and JP-A-2-80652).

【0003】この種の熱成形性繊維複合材料は、軽量
で、機械的強度、クッション性、吸音性、耐熱性及び熱
賦形性が良好で、例えば自動車用天井材の芯材などに好
適に使用され、その他広い用途をもっている。
This type of thermoformable fiber composite material is lightweight, has good mechanical strength, cushioning properties, sound absorbing properties, heat resistance and heat shaping properties, and is suitable for use as a core material for automobile ceiling materials, for example. Used and has a wide range of other uses.

【0004】[0004]

【発明が解決しようとする課題】上記従来の方法に用い
られる無機繊維マットは、ニードルパンチにより無機繊
維が厚み方向へ高度に配向しているため、特に、得られ
る熱成形性繊維複合材料の圧縮強度が向上する。
In the inorganic fiber mat used in the above-mentioned conventional method, since the inorganic fibers are highly oriented in the thickness direction by needle punching, the obtained thermoformable fiber composite material is particularly compressed. Strength is improved.

【0005】しかし、このように圧縮強度が向上した熱
成形性繊維複合材料を、プレス型を用いて所望の形状に
熱成形する際には、熱可塑性樹脂により結着された無機
繊維の結着部分が破壊され、その結果、得られる成形品
の曲げ強度が低下するという欠点がある。
However, when the thermoformable fiber composite material having such improved compressive strength is thermoformed into a desired shape by using a press die, the inorganic fibers bound by the thermoplastic resin are bound together. There is a drawback that the parts are broken, and as a result, the bending strength of the resulting molded article is reduced.

【0006】また、無機繊維マットの機械的強度を上げ
るために、強力なニードルパンチが施されており、その
ため無機繊維マットの目付量のばらつきが大きくなり、
その結果、熱成形性繊維複合材料やその成形品の機械的
強度のばらつきが大きくなるという欠点がある。
Further, in order to increase the mechanical strength of the inorganic fiber mat, strong needle punching is applied, which causes a large variation in the basis weight of the inorganic fiber mat.
As a result, there is a drawback that the mechanical strength of the thermoformable fiber composite material and the molded product thereof will vary greatly.

【0007】この発明は、上記の問題を解決するもの
で、その目的とするところは、無機繊維マットの機械的
強度のばらつきが小さく、特に曲げ強度の改善された成
形品を得ることのできる熱成形性繊維複合材料の製造方
法を提供することにある。
The present invention is intended to solve the above problems, and an object of the present invention is to provide a molded product having a small variation in mechanical strength of an inorganic fiber mat, and in particular, a molded product having improved bending strength. It is to provide a method for producing a moldable fiber composite material.

【0008】[0008]

【課題を解決するための手段】上記の目的は、無機繊維
マットにニードルパンチを施し、この無機繊維マットに
熱可塑性樹脂を溶融含浸させて熱成形性繊維複合材料を
製造するに際し、ブレード径が0.4〜0.65mm、バ
ーブのキックアップ高さとスロート深さとの合計が0.
02〜0.18mm、同じ列のバーブ間隔が4〜8mmの針
を用いて、無機繊維マットにニードルパンチを施すこと
によって達成することができる。
[Means for Solving the Problems] The above object is to subject the inorganic fiber mat to needle punching and to melt-impregnate the inorganic fiber mat with a thermoplastic resin to produce a thermoformable fiber composite material. 0.4 to 0.65 mm, the sum of the barb kick-up height and throat depth is 0.
This can be achieved by needle punching the inorganic fiber mat with a needle of 02-0.18 mm and barb spacing in the same row of 4-8 mm.

【0009】この発明に用いる無機繊維マットとして
は、ガラス繊維マットやロックウールマットなどが使用
される。これ等の無機繊維マットは、公知の方法で製造
される。例えば、ガラス繊維やロックウールをカードマ
シンに供給して解繊し、これを帯状に重ねて綿状物とす
ることにより得られる。
As the inorganic fiber mat used in the present invention, a glass fiber mat or a rock wool mat is used. These inorganic fiber mats are manufactured by a known method. For example, it can be obtained by supplying glass fiber or rock wool to a card machine to defibrate it, and stacking the fibers into a band to form a cotton-like material.

【0010】この場合、ガラス繊維やロックウールは、
繊維太さ3〜30μm 、繊維長さ3〜200mmのものが
用いられ、得られる無機繊維マットの目付量は、300
〜1000g/m2 が適当である。
In this case, the glass fiber and rock wool are
A fiber having a fiber thickness of 3 to 30 μm and a fiber length of 3 to 200 mm is used, and the basis weight of the obtained inorganic fiber mat is 300.
An amount of up to 1000 g / m 2 is suitable.

【0011】この発明においては、上記無機繊維マット
にニードルパンチが施される。このニードルパンチに用
いる針は、従来この種のニードルパンチに慣用されてい
る針と同様なタイプの針であるが、例えば、図1に示す
ように、針のブレード部分(バーブを有する先端部分)
の寸法が慣用の針と異なり、特定の条件を満たすものを
用いる。
In the present invention, the inorganic fiber mat is needle punched. The needle used for this needle punch is of the same type as the needle conventionally used for this kind of needle punch, but as shown in FIG. 1, for example, the blade portion of the needle (the tip portion having a barb).
The size of the needle is different from that of the conventional needle, and the needle that satisfies a specific condition is used.

【0012】すなわち、図1(イ)は、この発明に用い
る針のブレード部分の一例を示す斜視図であり、図1
(ロ)は、図1(イ)のI−I断面図であって、ブレー
ド10の径(D)が0.4〜0.65mm、バーブ11の
キックアップ高さ(H)とスロート深さ(S)との合計
が0.02〜0.18mm、同じ列のバーブ間隔(L)が
4〜8mmの針を用いる。
That is, FIG. 1A is a perspective view showing an example of a blade portion of a needle used in the present invention.
(B) is a sectional view taken along the line I-I of FIG. 1A, in which the diameter (D) of the blade 10 is 0.4 to 0.65 mm, the kick-up height (H) of the barb 11 and the throat depth. A needle having a sum of (S) and 0.02 to 0.18 mm and a barb interval (L) in the same row of 4 to 8 mm is used.

【0013】なお、ブレード10の断面形状は、一般に
図示した三角形状であるが、円形状や四角形状であって
もよい。また、ブレード10に設けられるバーブ11の
列は、一般に長さ方向に三列とされる。また、バーブ1
1は、一般に一列当たり三個で、各列のバーブ11は、
一般に周方向に互いに一致させずに長さ方向に互いにず
らした位置に設けられる。しかし、これ等に限定されな
い。
The sectional shape of the blade 10 is generally triangular as shown, but may be circular or quadrangular. The rows of barbs 11 provided on the blade 10 are generally three rows in the length direction. Also, barb 1
1 is generally three per row, and the barbs 11 in each row are
Generally, they are provided at positions displaced from each other in the length direction without being coincident with each other in the circumferential direction. However, it is not limited to these.

【0014】このような特定の針は、従来の針に比べ
て、ブレード10が細く且つバーブ11の引っ掛かり度
合いが小さく且つバーブ11のピッチが広く、このよう
な特定の針を用いることにより、無機繊維マットの機械
的強度のばらつきが小さく、特に曲げ強度の改善された
熱成形性繊維複合材料が得られることを見い出した。
In such a specific needle, the blade 10 is thinner, the degree of catching of the barb 11 is smaller, and the pitch of the barb 11 is wider than that of the conventional needle. It has been found that a thermoformable fiber composite material having a small variation in the mechanical strength of the fiber mat and particularly an improved bending strength can be obtained.

【0015】なお、上記特定の針を用いること以外は、
従来と同様な条件でニードルパンチが施される。例え
ば、ニードルパンチの針密度は、従来と同様で1〜10
0個/cm2 程度が好ましく、針深度も従来と同様であ
る。
In addition, except that the above specific needle is used,
Needle punching is performed under the same conditions as in the past. For example, the needle density of the needle punch is 1 to 10 as in the conventional case.
About 0 needles / cm 2 is preferable, and the needle depth is the same as the conventional one.

【0016】こうして得られた無機繊維マットに熱可塑
性樹脂が溶融含浸される。熱可塑性樹脂としては、ポリ
エチレン、ポリプロピレン、飽和ポリエステル、ポリア
ミド、ポリスチレン、ポリビニルブチラール等が用いら
れる。
A thermoplastic resin is melt-impregnated into the inorganic fiber mat thus obtained. As the thermoplastic resin, polyethylene, polypropylene, saturated polyester, polyamide, polystyrene, polyvinyl butyral or the like is used.

【0017】無機繊維マットに熱可塑性樹脂を溶融含浸
させるには、公知の方法が採用される。例えば、上記無
機繊維マットに熱可塑性樹脂シートを重ねるか、熱可塑
性樹脂粉末を散布するか、熱可塑性樹脂のエマルジョン
を含浸させ、これを加熱加圧することにより無機繊維マ
ット中に熱可塑性樹脂を溶融含浸させ、その後圧縮力を
解除して、厚みを復元させる方法が採用される。
A known method is employed to melt-impregnate the inorganic fiber mat with the thermoplastic resin. For example, by laminating a thermoplastic resin sheet on the above-mentioned inorganic fiber mat, spraying a thermoplastic resin powder, or impregnating an emulsion of a thermoplastic resin, and heating and pressing this, the thermoplastic resin is melted in the inorganic fiber mat. A method of impregnating and then releasing the compression force to restore the thickness is adopted.

【0018】その他、無機繊維マットを製造する際に、
無機繊維に熱可塑性樹脂繊維を混合して繊維マットを作
り、上述のように繊維マットにニードルパンチを施し、
これを加熱加圧することにより繊維マット中の熱可塑性
樹脂繊維を溶融し含浸させ、その後圧縮力を解除して、
厚みを復元させる方法が採用される。
In addition, when manufacturing the inorganic fiber mat,
The thermoplastic resin fibers are mixed with the inorganic fibers to make a fiber mat, and the fiber mat is needle punched as described above,
By heating and pressing this, the thermoplastic resin fibers in the fiber mat are melted and impregnated, and then the compression force is released,
A method of restoring the thickness is adopted.

【0019】なお、上記公知の各方法を二つ以上組み合
わせて、無機繊維マット中に熱可塑性樹脂を溶融含浸さ
せてもよい。
It is also possible to combine two or more of the above-mentioned known methods to melt-impregnate the inorganic fiber mat with the thermoplastic resin.

【0020】無機繊維マットとこれに溶融含浸される熱
可塑性樹脂とは、重量比で5:1〜1:5の範囲に設定
するのが好ましい。熱可塑性樹脂の量が少なくなると無
機繊維相互の結合力が低下して機械的強度が低下し、逆
に無機繊維が少なくなると耐熱性が低下する。
The weight ratio of the inorganic fiber mat and the thermoplastic resin melt-impregnated into the mat is preferably set in the range of 5: 1 to 1: 5. When the amount of the thermoplastic resin is small, the bonding strength between the inorganic fibers is reduced and the mechanical strength is lowered, and conversely, when the amount of the inorganic fibers is reduced, the heat resistance is lowered.

【0021】こうして、熱成形性繊維複合材料が製造さ
れる。この熱成形性繊維複合材料を用いて成形品を得る
には、先ず、熱成形性繊維複合材料を加熱軟化させ、こ
れを所望の形状のプレス型に入れプレスして、所望の形
状に熱成形して成形品とする。
Thus, the thermoformable fiber composite material is manufactured. In order to obtain a molded article using this thermoformable fiber composite material, first, the thermoformable fiber composite material is softened by heating, put into a press die of a desired shape and pressed, and thermoformed into a desired shape. To make a molded product.

【0022】この際、熱成形性繊維複合材料の表面に、
布、革、塩化ビニルレザー等の表面材を積層して一体的
に成形することができる。また、熱成形性繊維複合材料
と表面材との間に発泡シート等のクッション材を介在さ
せて一体的に成形してもよい。
At this time, on the surface of the thermoformable fiber composite material,
Surface materials such as cloth, leather, and vinyl chloride leather can be laminated and integrally molded. Alternatively, a cushion material such as a foam sheet may be interposed between the thermoformable fiber composite material and the surface material to integrally form the material.

【0023】[0023]

【作用】ブレード径が0.4〜0.65mm、バーブのキ
ックアップ高さとスロート深さとの合計が0.02〜
0.18mm、同じ列のバーブ間隔が4〜8mmの針は、従
来慣用の針に比べてブレードが細く且つバーブの引っ掛
かり度合いが小さく且つバーブ間隔が広い。
[Function] The blade diameter is 0.4 to 0.65 mm, and the sum of the barb kick-up height and the throat depth is 0.02 to
A needle having a barb spacing of 0.18 mm and a barb spacing of 4 to 8 mm in the same row has a narrower blade, a smaller degree of barb hooking, and a wider barb spacing than conventional needles.

【0024】それゆえ、このような特定の針を用いて、
無機繊維マットにニードルパンチを施すと、得られる無
機繊維マットは繊維同士の絡みが緩やかで全体的に嵩だ
かで表面がなめらかとなる。しかも、マット内部の繊維
を押し広げたり、かためたりすることが少なく、そのた
め、無機繊維マットの目付量のばらつきが小さくなる。
Therefore, with such a specific needle,
When the inorganic fiber mat is subjected to needle punching, the resulting inorganic fiber mat has entangled fibers, is bulky and has a smooth surface. In addition, the fibers inside the mat are less likely to be spread or hardened, which reduces the variation in the basis weight of the inorganic fiber mat.

【0025】[0025]

【実施例】以下、この発明の実施例及び比較例を示す。実施例1 ガラス繊維(太さ9μm 、長さ50mm)と、高密度ポリ
エチレン繊維(太さ6デニール、長さ2インチ、融点1
35℃)とを、重量比で2:1の割合でカードマシンに
供給し、解繊及び混繊して8g/m2 の綿状物を帯状に
吐出させ、これを折り畳み、これに1cm2 当たり40か
所の針密度でニードルパンチを施し、目付量500g/
2 の繊維マット(幅140cm)を得た。
EXAMPLES Examples and comparative examples of the present invention will be shown below. Example 1 Glass fiber (thickness 9 μm, length 50 mm) and high density polyethylene fiber (thickness 6 denier, length 2 inch, melting point 1
(35 ° C) in a weight ratio of 2: 1 to a card machine, and defibrate and mix the fibers to discharge 8 g / m 2 of cotton-like material into a band shape, fold it, and add 1 cm 2 to it. Needle punching is performed at a density of 40 points per unit, and the basis weight is 500 g /
obtain a fiber mat of m 2 (width 140cm).

【0026】ここで、ニードルパンチに用いた針は、図
1(イ)、(ロ)に示すブレード部分を持った針で、ブ
レード径が0.6mm、バーブのキックアップ高さ(0.
01mm)とスロート深さ(0.10mm)との合計が0.
11mm、同じ列のバーブ間隔が6.3mmである。
The needle used for the needle punch is a needle having a blade portion shown in FIGS. 1A and 1B, the blade diameter is 0.6 mm, and the barb kick-up height (0.
01mm) and the throat depth (0.10mm) is 0.
11mm, barb spacing in the same row is 6.3mm.

【0027】上記繊維マットから幅方向に10cm×10
cmの試料片を10点とり、これを長さ方向に3列とり、
合計30点の試料片をとり、それぞれ試料片の重量を測
定し、その変動係数(%)(標準偏差/平均値×10
0)を測定した。その結果、繊維マット重量の変動係数
は4.3%であった。
10 cm × 10 in the width direction from the fiber mat
Take 10 sample pieces of cm and take 3 rows in the length direction,
Sample pieces of 30 points in total were taken, and the weight of each piece was measured, and the coefficient of variation (%) (standard deviation / average value × 10)
0) was measured. As a result, the coefficient of variation of the fiber mat weight was 4.3%.

【0028】また、上記繊維マットから幅25mm×15
0mmの試料片をとり、その引張り強度を測定した。その
結果、繊維マットの引張り強度は460g/25mm幅で
あった。
Width 25 mm × 15 from the above fiber mat
A 0 mm sample piece was taken and its tensile strength was measured. As a result, the tensile strength of the fiber mat was 460 g / 25 mm width.

【0029】上記繊維マットの上下に、高密度ポリエチ
レンフィルム(厚さ100μm 、融点135℃)を重
ね、200℃のプレス機で4 kg/cm2 の圧力で3分間
加熱加圧して、高密度ポリエチレンの繊維とフィルムと
の両方を溶融含浸させ、熱成形性繊維複合材料を製造し
た。
High-density polyethylene films (thickness: 100 μm, melting point: 135 ° C.) were laminated on the upper and lower sides of the fiber mat, and heated and pressed at a pressure of 4 kg / cm 2 for 3 minutes with a pressing machine at 200 ° C. to form a high-density polyethylene film. Both the fiber and the film of Example 1 were melt-impregnated to produce a thermoformable fiber composite material.

【0030】この熱成形性繊維複合材料を200℃のオ
ーブンで3分間加熱し、これを常温のプレス成形型に入
れ、0.2 kg/cm2 の圧力で30秒間加熱賦形して、
厚さ5mmの成形体(自動車用天井材の芯材)を得た。
This thermoformable fiber composite material was heated in an oven at 200 ° C. for 3 minutes, put in a press mold at room temperature, and heated and shaped at a pressure of 0.2 kg / cm 2 for 30 seconds.
A molded body (core material for automobile ceiling material) having a thickness of 5 mm was obtained.

【0031】この成形体を切断して、厚さ5mm×幅50
mm×長さ150mmの試料片を作製し、この試料片の曲げ
強度をJIS K7221に準拠して測定した。その結
果、成形体の曲げ強度は2.2 kg/50mm幅であっ
た。
This molded body is cut to have a thickness of 5 mm and a width of 50.
A sample piece of mm × 150 mm in length was prepared, and the bending strength of this sample piece was measured according to JIS K7221. As a result, the bending strength of the molded product was 2.2 kg / 50 mm width.

【0032】実施例2 目付量500g/m2 の繊維マットに替えて、目付量4
50g/m2 の繊維マットとした。それ以外は実施例1
と同様に行った。
Example 2 Instead of a fiber mat having a basis weight of 500 g / m 2 , a basis weight of 4 was obtained.
The fiber mat was 50 g / m 2 . Otherwise, Example 1
I went the same way.

【0033】その結果、繊維マットの重量の変動係数は
4.8%、繊維マットの引張り強度は430g/25mm
幅、成形体の曲げ強度は2.0 kg/50mm幅であっ
た。
As a result, the coefficient of variation of the weight of the fiber mat was 4.8% and the tensile strength of the fiber mat was 430 g / 25 mm.
The width and bending strength of the molded body were 2.0 kg / 50 mm width.

【0034】比較例1 ニードルパンチに用いる針を、ブレード径が0.8mm、
バーブのキックアップ高さ(0.07mm)とスロート深
さ(0.16mm)との合計が0.23mm、同じ列のバー
ブ間隔が3.3mmの針に変更した。それ以外は実施例1
と同様に行った。
Comparative Example 1 A needle used for needle punching has a blade diameter of 0.8 mm,
The total of the barb kick-up height (0.07 mm) and throat depth (0.16 mm) was 0.23 mm, and the barb spacing in the same row was changed to 3.3 mm. Otherwise, Example 1
I went the same way.

【0035】その結果、繊維マットの重量の変動係数は
9.2%、繊維マットの引張り強度は700g/25mm
幅、成形体の曲げ強度は1.7 kg/50mm幅であっ
た。
As a result, the coefficient of variation of the weight of the fiber mat was 9.2% and the tensile strength of the fiber mat was 700 g / 25 mm.
The width and bending strength of the molded body were 1.7 kg / 50 mm width.

【0036】比較例2 目付量500g/m2 の繊維マットに替えて、目付量4
50g/m2 の繊維マットとした。それ以外は比較例1
と同様に行った。
Comparative Example 2 Instead of a fiber mat having a basis weight of 500 g / m 2 , a basis weight of 4
The fiber mat was 50 g / m 2 . Otherwise, Comparative Example 1
I went the same way.

【0037】その結果、繊維マットの重量の変動係数は
9.7%、繊維マットの引張り強度は680g/25mm
幅、成形体の曲げ強度は1.5 kg/50mm幅であっ
た。
As a result, the coefficient of variation of the weight of the fiber mat was 9.7% and the tensile strength of the fiber mat was 680 g / 25 mm.
The width and bending strength of the molded body were 1.5 kg / 50 mm width.

【0038】[0038]

【発明の効果】上述の通り、この発明の熱成形性繊維複
合材料の製造方法は、無機繊維マットにニードルパンチ
を施し、この無機繊維マットに熱可塑性樹脂を溶融含浸
させて熱成形性繊維複合材料を製造するに際し、ブレー
ド径が0.4〜0.65mm、バーブのキックアップ高さ
とスロート深さとの合計が0.02〜0.18mm、同じ
列のバーブ間隔が4〜8mmの針を用いて無機繊維マット
にニードルパンチを施すもので、それにより、無機繊維
マットは繊維同士の絡みが緩やかで全体的に嵩だかで、
しかも目付量のばらつきが小さくなる。
As described above, according to the method for producing a thermoformable fiber composite material of the present invention, the inorganic fiber mat is subjected to needle punching, and the inorganic fiber mat is melt-impregnated with the thermoplastic resin to form the thermoformable fiber composite material. When manufacturing the material, use a needle with a blade diameter of 0.4 to 0.65 mm, a total barb kick-up height and throat depth of 0.02 to 0.18 mm, and a barb spacing of 4 to 8 mm in the same row. Needle punching is applied to the inorganic fiber mat, which allows the inorganic fiber mat to be loosely entangled with each other and bulky,
Moreover, the variation in the weight per unit area is reduced.

【0039】その結果、得られる熱成形性繊維複合材料
は、厚み方向に対して自由度をもったものとなり、これ
を加熱して熱成形する際には、熱可塑性樹脂により結着
された無機繊維の結着部分の破壊が防止され、得られる
成形品の曲げ強度が改善される。しかも、熱成形性繊維
複合材料やその成形品の機械的強度のばらつきが改善さ
れる。
As a result, the thermoformable fiber composite material obtained has a degree of freedom in the thickness direction, and when the thermoformable fiber composite material is heated and thermoformed, the inorganic material bound by the thermoplastic resin is used. Breakage of the fiber binding portion is prevented, and the bending strength of the obtained molded product is improved. Moreover, variations in mechanical strength of the thermoformable fiber composite material and its molded product are improved.

【0040】したがって、この発明で得られる熱成形性
繊維複合材料は、軽量で、機械的強度、クッション性、
吸音性、耐熱性及び熱賦形性が良好で、特に曲げ強度が
改善されるので、例えば、自動車用天井材の芯材として
好適に使用することができる。
Therefore, the thermoformable fiber composite material obtained by the present invention is light in weight, mechanical strength, cushioning property,
It has good sound absorbing properties, heat resistance and heat shaping properties, and especially has improved bending strength, so that it can be suitably used, for example, as a core material for an automobile ceiling material.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(イ)は、この発明に用いる針のブレード
部分の一例を示す斜視図であり、図1(ロ)は、図1
(イ)のI−I断面図である。
1 (a) is a perspective view showing an example of a blade portion of a needle used in the present invention, and FIG. 1 (b) is FIG.
It is an II sectional view of (a).

【符号の説明】[Explanation of symbols]

10 ブレード 11 バーブ 12 クランプ D ブレード径 H バーブのキックアップ高さ S バーブのスロート深さ L 同じ列のバーブ間隔 10 blade 11 barb 12 clamp D blade diameter H barb kick-up height S barb throat depth L barb spacing in the same row

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 無機繊維マットにニードルパンチを施
し、この無機繊維マットに熱可塑性樹脂を溶融含浸させ
て熱成形性繊維複合材料を製造するに際し、ブレード径
が0.4〜0.65mm、バーブのキックアップ高さとス
ロート深さとの合計が0.02〜0.18mm、同じ列の
バーブ間隔が4〜8mmの針を用いて、無機繊維マットに
ニードルパンチを施すことを特徴とする熱成形性繊維複
合材料の製造方法。
1. When producing a thermoformable fiber composite material by needle-punching an inorganic fiber mat and melt-impregnating the inorganic fiber mat with a thermoplastic resin, a blade diameter is 0.4 to 0.65 mm, and a barb is used. The thermoformability is characterized in that the inorganic fiber mat is needle-punched using needles having a total kick-up height and throat depth of 0.02 to 0.18 mm and barb intervals of 4 to 8 mm in the same row. Manufacturing method of fiber composite material.
JP6155736A 1994-07-07 1994-07-07 Production of thermally moldable composite fiber material Pending JPH0827654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6155736A JPH0827654A (en) 1994-07-07 1994-07-07 Production of thermally moldable composite fiber material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6155736A JPH0827654A (en) 1994-07-07 1994-07-07 Production of thermally moldable composite fiber material

Publications (1)

Publication Number Publication Date
JPH0827654A true JPH0827654A (en) 1996-01-30

Family

ID=15612329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6155736A Pending JPH0827654A (en) 1994-07-07 1994-07-07 Production of thermally moldable composite fiber material

Country Status (1)

Country Link
JP (1) JPH0827654A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177387A (en) * 2005-12-27 2007-07-12 Groz Beckert Kg Felting needle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62175096U (en) * 1986-04-12 1987-11-06
JPH01118655A (en) * 1987-10-31 1989-05-11 Kobe Steel Ltd Production of carbon fiber reinforced composite material
JPH0533253A (en) * 1991-07-24 1993-02-09 Kuraray Co Ltd Production of needle punched nonwoven fabric

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62175096U (en) * 1986-04-12 1987-11-06
JPH01118655A (en) * 1987-10-31 1989-05-11 Kobe Steel Ltd Production of carbon fiber reinforced composite material
JPH0533253A (en) * 1991-07-24 1993-02-09 Kuraray Co Ltd Production of needle punched nonwoven fabric

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177387A (en) * 2005-12-27 2007-07-12 Groz Beckert Kg Felting needle
JP4496207B2 (en) * 2005-12-27 2010-07-07 グロツ・ベッケルト コマンディートゲゼルシャフト Felt needle

Similar Documents

Publication Publication Date Title
US5055341A (en) Composite molded articles and process for producing same
US20190039329A1 (en) Flexurally Rigid Laminated Sheets, Parts Molded Therefrom and Method of Fabrication
JPH0245135A (en) Interior trimming material for automobile and manufacture thereof
JPH0827654A (en) Production of thermally moldable composite fiber material
JPH01207458A (en) Fiber molded article for heat molding and production thereof
JPH06257051A (en) Fiber composite material
JP3654821B2 (en) Thermoformable core material and manufacturing method thereof
JP2582858B2 (en) Method for producing fiber molded article for thermoforming
JP2831673B2 (en) Method for producing fiber molded body
JP2004122545A (en) Thermoformable core material and interior finish material for car using the core material
JP2986252B2 (en) Fiber composite
JPH10310964A (en) Fiber sheet
JPH0785899B2 (en) Method of pressing thermoformable composite sheet
JP3095503B2 (en) Thermoformable core material and method for producing the same
JP3050979B2 (en) Fiber composite material and method for producing the same
JP3128368B2 (en) Fiber composite
JP2960187B2 (en) Method for producing fiber composite
JP2872896B2 (en) Thermoformable core material, production method thereof and interior material
JPH01165431A (en) Manufacture of fiber molding to be thermally molded
JP2545499B2 (en) Fiber composite
JPH0649363B2 (en) Method for producing fiber molding for thermoforming
JP2907567B2 (en) Fiber composite
JP3283320B2 (en) Manufacturing method of laminated molded products
JPH0785916B2 (en) Lightweight composite material
JPH08112816A (en) Thermoformable core meterial, its preparation and internal decorative material