[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08262186A - Method for controlling water quality of boiling water reactor plant - Google Patents

Method for controlling water quality of boiling water reactor plant

Info

Publication number
JPH08262186A
JPH08262186A JP7064642A JP6464295A JPH08262186A JP H08262186 A JPH08262186 A JP H08262186A JP 7064642 A JP7064642 A JP 7064642A JP 6464295 A JP6464295 A JP 6464295A JP H08262186 A JPH08262186 A JP H08262186A
Authority
JP
Japan
Prior art keywords
water
reactor
reactor water
water quality
metal ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7064642A
Other languages
Japanese (ja)
Other versions
JP3281213B2 (en
Inventor
Yukio Henmi
幸雄 逸見
Kenji Yamazaki
健治 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP06464295A priority Critical patent/JP3281213B2/en
Publication of JPH08262186A publication Critical patent/JPH08262186A/en
Application granted granted Critical
Publication of JP3281213B2 publication Critical patent/JP3281213B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE: To reduce the occurrence of radioactivity emitted into a reactor water and at the same time reduce the adhesion of radioactivity onto a reactor outer pipe or an equipment by controlling Ni and Zn metal ion concentration in the reactor water to each specific range. CONSTITUTION: The metal ion concentration of Ni and Zn in a reactor water is controlled to 2-10 and 3-15ppb ranges, respectively. When the Ni ion concentration in the reactor water is equal to or less than 2ppb, the reactor water is supplied from a metal ion injection device 23 installed in a water supply system. On the other hand, when the Ni ion concentration is equal to or more than 10ppb, a flow adjustment valve 9 of a bypass line 10 of a hollow string film water-return filter 7 is opened, the ion exchange resin in the water return desalting device 8 is loaded with iron generated in the water return system, the Ni ion concentration of the reactor water is controlled to a specific concentration range by increasing the amount of leak iron. Zn is supplied from the metal ion injection device 23 installed in a water supply system. An automatic ion chromatography analyzer 25 installed in the reactor water system measures the metal ion concentration of Ni and Zn in the reactor water to see whether it is within a proper range or not.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、沸騰水型原子力プラン
トの材料腐食および放射能低減を図った沸騰水型原子炉
プラントの水質管理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water quality control method for a boiling water nuclear reactor plant, which aims to reduce material corrosion and radioactivity in the boiling water nuclear power plant.

【0002】[0002]

【従来の技術】沸騰水型原子炉プラントにおいて、炉水
60Coおよび58Coイオン濃度の低減を目的としてN
i/Fe比コントロールや、炉心外配管への60Coおよ
58Coイオンの付着抑制を目的としてZn注入が実施
されているが、これらの水質管理方法には一長一短があ
る。
2. Description of the Related Art In a boiling water nuclear reactor plant, N is used to reduce the concentration of 60 Co and 58 Co ions in reactor water.
Zn injection is carried out for the purpose of controlling the i / Fe ratio and suppressing the adhesion of 60 Co and 58 Co ions to the outer core piping, but these water quality control methods have advantages and disadvantages.

【0003】Ni/Fe比コントロールを実施した場
合、炉水の60Coおよび58Coイオン濃度は1/2〜1
/5程度に低減される。しかし、炉水Niイオン濃度の
減少により、炉心外配管機器への60Coおよび58Coの
付着速度は2〜8倍増加し、必ずしも炉心外配管の放射
能低減には結び付かない。
When the Ni / Fe ratio is controlled, the concentration of 60 Co and 58 Co ions in the reactor water is 1/2 to 1
It is reduced to about / 5. However, due to the decrease in the Ni ion concentration in the reactor water, the deposition rate of 60 Co and 58 Co on the out-of-core piping equipment increases by 2 to 8 times, which does not necessarily lead to the reduction of radioactivity in the out-core piping.

【0004】最近、実プラントに耐食性の高い燃料被覆
管が実プラントにて適用されている。これに伴い、Ni
/Fe比コントロール後の炉水の60Coイオン濃度の上
昇が顕著に認められた。この要因の一つとして、微量の
Cr付着が燃料クラッドからの60Coの溶出を加速する
ことが知られている。
Recently, fuel cladding tubes having high corrosion resistance have been applied to actual plants. Along with this, Ni
A remarkable increase in the 60 Co ion concentration in the reactor water after controlling the / Fe ratio was observed. As one of the factors, it is known that a small amount of Cr deposit accelerates the elution of 60 Co from the fuel clad.

【0005】一方、Zn注入により炉水中のZnイオン
濃度のみを高めた場合には、主として酸素が主体の水質
である炉心外配管への60Coおよび58Coイオンの付着
は抑制されるが、過酸水素に晒された腐食環境がきびし
い炉心部に使われているSUS304鋼や、炉内に使わ
れているインコネル(Ni基合金)およびステライト
(Co基合金)の腐食は増加する。炉心構造材からの放
射能発生は増大する。
On the other hand, when only the concentration of Zn ions in the reactor water is increased by injecting Zn, the adhesion of 60 Co and 58 Co ions to the outer core piping, which mainly contains oxygen, is suppressed. Corrosion of SUS304 steel, which is used in the core where the corrosive environment exposed to oxyhydrogen is severe, and Inconel (Ni-based alloy) and stellite (Co-based alloy) used in the furnace, increase. Radioactivity generation from core structural materials increases.

【0006】[0006]

【発明が解決しようとする課題】近年、炉心外配管付着
放射能低減のため、電解研磨を行い、表面を平滑化する
とともに表面のCrの含有率を高くしたオーステナイト
系ステンレス鋼がNi/Fe比コントロールを実施した
条件(炉水Niイオン濃度:0.2ppb)で使用されてい
る。しかしながら、初期的には従来の酸洗または機械研
磨したステンレス鋼配管に比べて放射能の付着は小さい
が、長期的には放射能の付着が大きくなる等の課題があ
る。
In recent years, an austenitic stainless steel having a surface smoothed and a surface Cr content increased in order to reduce the radioactivity adhering to the outer core pipe has a Ni / Fe ratio. It is used under controlled conditions (reactor water Ni ion concentration: 0.2 ppb). However, initially, the adhesion of radioactivity is smaller than that of conventional pickled or mechanically polished stainless steel piping, but there is a problem that the adhesion of radioactivity is increased in the long term.

【0007】また、燃料バネ材の腐食を低減し60Coお
よび58Coイオンの発生を抑制するため、大気中で時効
硬化処理したNi基合金が採用されつつある。しかしな
がら、Ni/Fe比コントロールを実施した条件でZn
注入を実施した場合、大気中で時効硬化処理により生成
された外層NiFe2 4 、内層クロム酸化物の防食性
の高い皮膜が剥離する等の課題がある。
Further, in order to reduce the corrosion of the fuel spring material and suppress the generation of 60 Co and 58 Co ions, a Ni-base alloy that has been age hardened in the atmosphere is being adopted. However, under the condition that the Ni / Fe ratio was controlled, Zn
When the injection is performed, there is a problem that the outer layer NiFe 2 O 4 and the inner layer chromium oxide, which are formed by age hardening treatment in the atmosphere, are peeled off with high corrosion resistance.

【0008】また、実プラントにおける炉内に使われて
いる材料の腐食速度や放射能の発生移行速度について
は、その挙動が複雑であるため、直接プラントデータか
ら評価できず、実験室的試験での腐食速度や、単純なF
e−Ni(Co)−H2 O系で行ったCo挙動の基礎的
な試験に基づく挙動解析モデルにより評価されている。
しかし、これらの解析結果からは、標準的な挙動につい
ては推定できるものの、プラントごとのデータの差異に
ついての知見は得られない。
Further, the corrosion rate of materials used in the furnace in an actual plant and the generation and transfer rate of radioactivity cannot be evaluated directly from plant data due to its complicated behavior, and it cannot be evaluated by a laboratory test. Corrosion rate and simple F
It has been evaluated by the behavior analysis model based on the basic test of Co behavior conducted by e-Ni (Co) -H 2 O system.
However, although the standard behavior can be estimated from these analysis results, no knowledge about the difference in data between plants is obtained.

【0009】本発明者らはNi/Fe比コントロールや
Zn注水時の放射能発生と移行挙動に及ぼす水質の影響
をステンレス鋼(Fe基合金)、インコネル(Ni基合
金)およびステライト(Co基合金)の腐食挙動を調べ
た結果、Ni/Fe比コントロールにより炉水のNi濃
度が0.2ppbに低下した条件下では、ステンレス鋼の外層
に形成されるNiFe2 4 やNi基合金およびCo基
合金の表層に形成されるそれぞれNiOやCoOの酸化
物が不安定化することがわかった。
The present inventors have investigated the influence of water quality on the Ni / Fe ratio control and the radioactivity generation and migration behavior during Zn water injection, such as stainless steel (Fe base alloy), inconel (Ni base alloy) and stellite (Co base alloy). result of examining the corrosion behavior of), Ni / Fe under the conditions Ni concentration in the reactor water is decreased to 0.2ppb by ratio control, NiFe 2 O 4 or Ni-based alloys and Co-based alloy which is formed on the outer layer of stainless steel It was found that the oxides of NiO and CoO formed on the surface layer of were unstable.

【0010】Ni濃度が0.2ppbと低い濃度でZn注入を
実施した場合、炉心部に使われているSUS304鋼や
炉内に使われているNi基合金(Co基合金)の腐食増
加は、それぞれこれらの材料表面に形成されるNiFe
2 4 ゃNiO(CoO)の酸化物とZnFe2 4
ZnOの酸化物の結晶形態が異なるためZn注入により
これら酸化物が不安定になることがわかった。
When Zn is implanted at a low Ni concentration of 0.2 ppb, the increase in corrosion of SUS304 steel used in the core and Ni-based alloy (Co-based alloy) used in the reactor is NiFe formed on the surface of these materials
Oxide and ZnFe 2 O 4, and their oxides by Zn implantation crystal forms are different because of the oxide of ZnO of 2 O 4 Ya NiO (CoO) was found to be unstable.

【0011】また、炉内に使われている材料の腐食速度
の評価に適している金属や放射性核種について原子炉一
次系に使われているステンレス鋼、インコネルおよびス
テライトの腐食データからそれぞれCr、51Crおよび
Coのイオンの主な発生源であり、炉水には腐食量に比
例しほぼ全量が放出されるため、トレーサーに適してい
ることがわかった。また、Crおよび51Crについて
は、燃料クラッドとしての付着や炉心外への付着が小さ
くほぼ全量が炉水浄化系で除去される。
Further, regarding metals and radionuclides suitable for evaluating the corrosion rate of materials used in the reactor, from the corrosion data of stainless steel, inconel and stellite used in the primary reactor system, Cr and 51 respectively. It was found that it is a main source of Cr and Co ions, and almost all of it is released to the reactor water in proportion to the amount of corrosion, and thus it is suitable for a tracer. Further, as for Cr and 51 Cr, the adhesion as fuel clad and the adhesion to the outside of the core are small, and almost all of them are removed by the reactor water purification system.

【0012】本発明は、上記課題を解決するためになさ
れたもので材料の腐食挙動に基づく放射能の発生移行挙
動に着目し、炉水に放出される放射能の発生を低減し、
炉心外配管や機器への放射能の付着を低減できる沸騰水
型原子炉プラントの水質管理方法を提供することにあ
る。
The present invention has been made in order to solve the above problems, and pays attention to the generation and transfer behavior of radioactivity based on the corrosion behavior of materials, and reduces the generation of radioactivity released into reactor water,
An object of the present invention is to provide a water quality control method for a boiling water reactor plant, which can reduce the adhesion of radioactivity to the out-of-core piping and equipment.

【0013】[0013]

【課題を解決するための手段】本発明は炉水中のNiお
よびZnの金属イオン濃度を、それぞれ2〜10および3
〜 15ppbの範囲に制御する他は、通常運転時および水素
注入時ともに中性・純水を基本的な水質管理とすること
を特徴とする。
According to the present invention, the metal ion concentrations of Ni and Zn in reactor water are set to 2 to 10 and 3, respectively.
In addition to controlling within the range of up to 15 ppb, it is characterized by neutral and pure water as the basic water quality control both during normal operation and during hydrogen injection.

【0014】本発明は炉水中のNiおよびZnの金属イ
オン濃度を、それぞれ2〜10および3〜 15ppbの範囲に
水質を制御した条件下で大気中で時効硬化処理したNi基
合金をバネ部材とする燃料を使用することを特徴とす
る。
According to the present invention, a Ni-base alloy, which is age-hardened in the atmosphere under the condition that the water quality is controlled to be within the range of 2 to 10 and 3 to 15 ppb in the reactor water, is used as the spring member. It is characterized by using the fuel to be used.

【0015】本発明は炉水中のNiおよびZnの金属イ
オン濃度を、それぞれ2〜10および3〜 15ppbの範囲に
水質を制御した条件下で電解研磨したオーステナイト系
ステンレス鋼の炉水再循環系配管を使用することを特徴
とする。
The present invention is a reactor water recirculation system piping of austenitic stainless steel electrolytically polished under the condition that the water quality is controlled within the range of 2 to 10 and 3 to 15 ppb for the metal ion concentration of Ni and Zn in the reactor water. Is used.

【0016】本発明は炉水中のNiおよびZnの金属イ
オン濃度を、それぞれ2〜10および3〜 15ppbの範囲に
水質を制御した条件下で原子炉系の配管や機器に炭素鋼
または低合金鋼を使用することを特徴とする。
The present invention provides carbon steel or low alloy steel for pipes and equipment of a reactor system under the condition that the water quality is controlled within the range of 2 to 10 and 3 to 15 ppb, respectively, for the concentration of Ni and Zn in reactor water. Is used.

【0017】本発明は炉水中のNiイオン濃度を高める
ため、復水系に給水からの流入鉄量を極力抑制(鉄濃度
で0.1ppb以下)する復水全量を浄化する中空糸膜復水ろ
過器を設けて抑制することを特徴とする。
The present invention is a hollow fiber membrane condensate filter for purifying the total amount of condensate that suppresses the amount of iron inflowing from the feed water into the condensate system as much as possible (in order to reduce the iron concentration to 0.1 ppb or less) in order to increase the concentration of Ni ions in the reactor water. Is provided to suppress.

【0018】本発明は前記炉水中のNiおよびZnの金
属イオン濃度が、それぞれ2および3ppb 以下と低い場
合に、所定濃度範囲に制御するため、給水または炉水系
に金属イオンを注水することを特徴とする。
The present invention is characterized in that when the metal ion concentrations of Ni and Zn in the reactor water are as low as 2 and 3 ppb or less, respectively, the metal ions are injected into the feed water or the reactor water system in order to control the concentration within a predetermined range. And

【0019】本発明は前記炉水中のNiイオン濃度が 1
0ppb以上と高い場合、復水系に設置した中空糸膜復水ろ
過器をバイパスしてイオン交換樹脂を充填した復水脱塩
装置への鉄負荷量を増大し、給水から原子炉への鉄持込
量を増大することにより炉水中のNiイオン濃度を 10p
pb以下に制御することを特徴とする。
In the present invention, the Ni ion concentration in the reactor water is 1
When it is higher than 0 ppb, the iron load on the condensate desalination equipment filled with the ion exchange resin is increased by bypassing the hollow fiber membrane condensate filter installed in the condensate system, and the iron retention from the feed water to the reactor is increased. The Ni ion concentration in the reactor water was increased to 10p
It is characterized by controlling to pb or less.

【0020】本発明は前記の鉄負荷量を定量的に行うた
め、前記バイパスラインに流量調整弁を設けることを特
徴とする。本発明は炉水中のNiおよびZnの金属イオ
ン濃度を測定するため、炉水浄化系のサンプリング配管
に自動イオンクロマト分析装置を接続することを特徴と
する。
The present invention is characterized in that a flow rate adjusting valve is provided in the bypass line in order to quantitatively perform the iron loading. The present invention is characterized by connecting an automatic ion chromatographic analyzer to the sampling pipe of the reactor water purification system in order to measure the metal ion concentrations of Ni and Zn in the reactor water.

【0021】本発明は炉水中のNiおよびZnの金属イ
オン濃度の測定値を復水脱塩装置の下流側に設けた金属
イオン注入装置にフィードバックし、適切な注入量を自
動設定する金属イオン注入制御装置を設けたことを特徴
とする。
The present invention feeds back measured values of the metal ion concentrations of Ni and Zn in the reactor water to a metal ion implanter provided on the downstream side of the condensate demineralizer to automatically set an appropriate dose. A control device is provided.

【0022】本発明は前記自動イオンクロマト分析装置
を用いて炉水中のCrイオン濃度を測定するとともに、
炉水の51Crイオン濃度を自動γ線核種分析装置により
測定することを特徴とする。
According to the present invention, the Cr ion concentration in the reactor water is measured using the automatic ion chromatographic analyzer,
The feature is that the 51 Cr ion concentration in the reactor water is measured by an automatic γ-ray nuclide analyzer.

【0023】本発明は前記自動γ線核種分析装置を用い
て炉水の51Cr,58Co,60Coなどのイオン濃度を測
定するとともに、炉水再循環系または炉水浄化系等の原
子炉系の配管に付着した51Cr,58Co,60Coなどの
放射能を自動γ線核種分析装置により測定することを特
徴とする。
According to the present invention, the ion concentration of 51 Cr, 58 Co, 60 Co, etc. in reactor water is measured by using the automatic γ-ray nuclide analyzer, and the reactor water in the reactor water recirculation system or reactor water purification system is also measured. The feature is that the radioactivity of 51 Cr, 58 Co, 60 Co, etc. adhering to the piping of the system is measured by an automatic γ-ray nuclide analyzer.

【0024】本発明は前記自動イオンクロマト分析装置
から得られる金属や、不純物や、他の水質測定から得ら
れる溶存化学種のデータとの関連によって材料腐食およ
び放射能の発生移行の変化とその要因である水質との関
連を解析装置により評価することを特徴とする。
The present invention relates to the changes in the generation and transfer of material corrosion and radioactivity due to the relation with the data of metals, impurities and other dissolved chemical species obtained from the measurement of water quality obtained from the automatic ion chromatograph and the factors thereof. It is characterized in that the relationship with the water quality is evaluated by an analyzer.

【0025】[0025]

【作用】本発明は、沸騰水型原子炉に使われているステ
ンレス鋼(Fe基合金)、インコネル(Ni基合金)お
よびステライト(Co基合金)の各種耐食性材料の腐食
抑制するための水質条件として、NiおよびZnの金属
イオン濃度をともに高めることを基本とする。
The present invention provides water quality conditions for suppressing corrosion of various corrosion resistant materials such as stainless steel (Fe-based alloy), inconel (Ni-based alloy) and stellite (Co-based alloy) used in boiling water reactors. As a basic rule, the metal ion concentrations of Ni and Zn are both increased.

【0026】一般に、図1の電位−pH図に示すごとく、
pH= 5.6± 0.2のBWRの水質基準では、NiFe2
4 およびNiOはそれぞれの亜鉛酸化物であるZnF
24 およびZnOより安定な領域が広く安定である
ことがわかる。
Generally, as shown in the potential-pH diagram of FIG.
With the water quality standard of BWR of pH = 5.6 ± 0.2, NiFe 2
O 4 and NiO are zinc oxides, ZnF
It can be seen that the stable region is wider and more stable than e 2 O 4 and ZnO.

【0027】従って、炉水のNi濃度が2ppb 以上とZ
nイオン濃度と同程度の場合にはステンレス鋼の表面に
はNiFe2 4 がZnFe2 4 が、インコネル(N
iOの皮膜を生成)の表面にはNiOがZnOに比べて
優勢に形成される。
Therefore, the Ni concentration in the reactor water is 2 ppb or more and Z
When the concentration of n-ions is about the same, NiFe 2 O 4 and ZnFe 2 O 4 and Inconel (N
NiO is formed more predominantly than ZnO on the surface of (forming an iO film).

【0028】この場合、Ni/Fe比コントロールを実
施した場合の炉水Niイオン濃度0.2ppbに比べて10倍以
上高いため、NiFe2 4 およびNiOが安定化され
る。このため、これら耐食性材料の腐食は図2に示すご
とく1/3以下に低減されることが認められている。
In this case, the Ni ion concentration in the reactor water when the Ni / Fe ratio is controlled is higher than 0.2 ppb by a factor of 10 or more, so that NiFe 2 O 4 and NiO are stabilized. Therefore, it is recognized that the corrosion of these corrosion resistant materials is reduced to 1/3 or less as shown in FIG.

【0029】また、NiOはCoOと同じ結晶構造でほ
ぼ等しい格子定数を持つため、炉水Niイオン濃度を高
めることにより、ステライト(CoOの皮膜を生成)の
腐食もほぼ1/3に低減される。
Further, since NiO has the same crystal structure as CoO and substantially the same lattice constant, by increasing the Ni ion concentration in the reactor water, the corrosion of stellite (which forms a CoO film) is also reduced to about 1/3. .

【0030】Niイオンの上限値は燃料皮膜管の表面に
NiOとしての析出しない濃度として実験より決定し
た。NiOはCoOと類似の酸化物をもつため、Coの
取り込みが大きく、その溶解度はNiFe2 4 に比べ
て約100 倍大きいため、溶解しやすく不安定である。こ
のため、60Coの発生源となる。
The upper limit of Ni ions was determined experimentally as the concentration at which NiO did not precipitate on the surface of the fuel film tube. Since NiO has an oxide similar to CoO, it has a large uptake of Co and its solubility is about 100 times larger than that of NiFe 2 O 4 , so it is easily dissolved and unstable. Therefore, it becomes a source of 60 Co.

【0031】Znイオンの上限値は、効果と経済性との
関連から決定した。下限値は、各種耐食性材料の腐食が
従来の水質であるNi/Fe比コントロールの1/3程
度に抑制する濃度範囲として決定した。
The upper limit of Zn ion was determined from the relation between effect and economy. The lower limit value was determined as a concentration range in which the corrosion of various corrosion resistant materials is suppressed to about 1/3 of the conventional water quality Ni / Fe ratio control.

【0032】また、炉水Niイオン濃度を高めるために
は給水からの原子炉内への鉄持込量を極力低減する必要
がある。つまり、給水から原子炉内に持ち込まれた鉄
は、燃料に付着し炉水Niイオンと反応しやすくNiF
2 4 を生成する。ステンレス鋼等の腐食によって内
層皮膜を拡散し外表面に到達した鉄イオンは溶解度が小
さいため、炉水のNiイオンと反応してNiFe2 4
を生成する。
In order to increase the concentration of Ni ions in the reactor water, it is necessary to reduce the amount of iron carried into the reactor from the feed water as much as possible. That is, the iron brought into the reactor from the water supply easily adheres to the fuel and easily reacts with the Ni ions in the reactor water.
e 2 O 4 is produced. Since iron ions that have diffused through the inner layer coating and reached the outer surface due to corrosion of stainless steel, etc. have a low solubility, they react with Ni ions in the reactor water to form NiFe 2 O 4
Generate

【0033】炉水Niイオン濃度が所定濃度より高く、
Niが発生量が鉄に比べて過剰の場合は給水系から原子
炉内に持ち込む鉄量を増加させる。逆に、炉水Niイオ
ン濃度が低くNiが発生量が不足している場合は注入に
より補う必要がある。一方、ZnはNiに比べると鉄と
の反応性は小さく、Niの濃度がNiFe2 4 の溶解
度の0.2ppb以上である場合、鉄との反応は無視できる。
When the Ni ion concentration in the reactor water is higher than the predetermined concentration,
If the amount of Ni generated is excessive compared to iron, the amount of iron brought into the reactor from the water supply system is increased. On the contrary, when the Ni ion concentration in the reactor water is low and the amount of Ni generated is insufficient, it is necessary to make up by injection. On the other hand, Zn is less reactive with iron than Ni, and the reaction with iron is negligible when the concentration of Ni is 0.2 ppb or more, which is the solubility of NiFe 2 O 4 .

【0034】しかし、耐食性材料の腐食皮膜中のクロム
酸化物と反応しZnCr2 4 を生成する。Znは、原
子炉一次系材料の腐食発生により所定の炉水濃度に達し
ないため、注入により炉水浄化系で除去される量と耐食
性材料の腐食皮膜に取り込まれる量を注入により補う必
要がある。
However, it reacts with the chromium oxide in the corrosion film of the corrosion resistant material to form ZnCr 2 O 4 . Since Zn does not reach the predetermined reactor water concentration due to the occurrence of corrosion of the primary reactor material, it is necessary to supplement the amount removed by the reactor water purification system by injection and the amount taken into the corrosion coating of the corrosion resistant material by injection. .

【0035】また、材料腐食や放射能の発生移行挙動の
解析評価については、これまで着目されていなかった実
プラントにおけるCrおよび51Crに着目した。ステン
レス鋼およびインコネルの腐食速度は、炉水のCrおよ
51Crのイオン濃度より概略評価できることが分かっ
た。さらに、材料腐食速度と放射能の発生移行速度とを
関連づけ、プラントデータから放射能の60Co,58Co
および51Crの発生と移行のバランスを評価する。
Regarding the analytical evaluation of material corrosion and the generation and transfer behavior of radioactivity, Cr and 51 Cr in an actual plant, which had not been paid attention so far, were focused on. It was found that the corrosion rates of stainless steel and Inconel can be roughly estimated from the ion concentrations of Cr and 51 Cr in the reactor water. Furthermore, by correlating the material corrosion rate with the generation and transfer rate of radioactivity, the plant data show that 60 Co and 58 Co
The balance between the generation and migration of Cr and 51 Cr is evaluated.

【0036】炉水のNiおよびZnの金属イオン濃度
を、それぞれ2および3ppb 以上にともに高めることに
より、腐食皮膜の強化による材料腐食の減少とNiと同
様の挙動を示すが期待できる。
It can be expected that by increasing the metal ion concentrations of Ni and Zn in the reactor water to 2 and 3 ppb or more, respectively, the material corrosion is reduced due to the strengthening of the corrosion film and the behavior similar to that of Ni is exhibited.

【0037】沸騰水型原子炉に使われているステンレス
鋼(Fe基合金)、インコネル(Ni基合金)およびス
テライト(Co基合金)などの耐食性材料および炭素鋼
について図2に示すごとく腐食を1/3程度に抑制する
ことができる。
Corrosion-resistant materials such as stainless steel (Fe-based alloy), inconel (Ni-based alloy) and stellite (Co-based alloy) used in boiling water nuclear reactors and carbon steel are subject to corrosion as shown in FIG. It can be suppressed to about / 3.

【0038】ステンレス鋼の場合、Niが外層のNiF
2 4 を安定化し、ZnがZnCr2 4 の生成によ
り内層のクロマイト層を強化するためである。これによ
り、電解研磨による放射能の抑制効果の経年的な減少も
認められなくなった。
In the case of stainless steel, Ni is the outer layer of NiF.
This is because e 2 O 4 is stabilized and Zn strengthens the inner chromite layer by the formation of ZnCr 2 O 4 . As a result, the effect of suppressing the radioactivity due to electropolishing did not decrease over time.

【0039】インコネルに対しては、NiはNiOを強
化しZnはZnCr2 4 の生成によりクロム酸化物を
より安定化させる。また、大気中で時効硬化処理した燃
料バネ材の場合にも、外層のNiFe2 4 は安定化し
ており皮膜の剥離による腐食増加は認められなかった。
For Inconel, Ni strengthens NiO and Zn further stabilizes the chromium oxide by forming ZnCr 2 O 4 . Also, in the case of the fuel spring material which was age-hardened in the atmosphere, NiFe 2 O 4 in the outer layer was stabilized and no increase in corrosion due to peeling of the film was observed.

【0040】ステライトについては、NiはCoOを強
化しZnはZnCr2 4 の生成によりクロム酸化物を
より安定化させる。炭素鋼の場合については、Niおよ
びZnともに腐食抑制効果が認められた。炭素鋼の防食
性を示す皮膜はFe3 4 と考えられているが、NiF
2 4 やZnFe2 4 の生成により腐食が抑制され
ると考えられる。
For stellite, Ni strengthens CoO and Zn stabilizes the chromium oxide by the formation of ZnCr 2 O 4 . In the case of carbon steel, the effect of inhibiting corrosion was confirmed for both Ni and Zn. The film showing the anticorrosion property of carbon steel is considered to be Fe 3 O 4 , but NiF
It is considered that corrosion is suppressed by the formation of e 2 O 4 and ZnFe 2 O 4 .

【0041】低合金鋼の場合については、ステンレス鋼
および炭素鋼でNiとZnのシナジー(相乗)効果が確
認されており、腐食抑制効果のあることが推察される。
また、水素注入を行った水質でも、材料腐食抑制に対す
るNiとZnのシナジー効果が確認された。通常運転時
の水質条件と比較すると、Niに比べてややZnの添加
の効果が大きい傾向にあるが、炉水中のNiおよびZn
の金属イオン濃度がそれぞれ2〜10および3〜15ppb の
範囲で1/4に近い腐食抑制が認められた。
In the case of low alloy steel, the synergistic effect of Ni and Zn has been confirmed in stainless steel and carbon steel, and it is presumed that there is a corrosion inhibiting effect.
In addition, the synergistic effect of Ni and Zn on the inhibition of material corrosion was confirmed even in the water quality of hydrogen injection. Compared with the water quality conditions during normal operation, the effect of Zn addition tends to be slightly greater than that of Ni, but Ni and Zn in the reactor water
Corrosion inhibition close to 1/4 was observed in the range of metal ion concentrations of 2 to 10 and 3 to 15 ppb, respectively.

【0042】なお、インコネルおよびステライトについ
ても同様のNiとZnのシナジー効果が認められた。し
かしながら、大気中で時効硬化処理した燃料バネ材につ
いては水素注入により腐食速度は大幅に低減し、重量減
の測定下限値に近いため定量的には明らかにはできなか
った。
A similar synergistic effect between Ni and Zn was also found for inconel and stellite. However, it was not possible to quantitatively clarify the corrosion rate of the fuel spring material that had been age-hardened in the atmosphere, because the hydrogen injection significantly reduced the corrosion rate and was close to the lower limit of the weight loss measurement.

【0043】以上の結果から、通常運転時の水質条件で
炉心構造材の腐食によって直接炉水へ放出される60Co
および58Coの発生量は1/3程度に減少する。なお、
大気中で時効硬化処理した燃料バネ材を用いた場合には
1/10以下に低減できる。
From the above results, 60 Co released directly into reactor water due to corrosion of the core structural material under the water quality condition during normal operation.
And the amount of 58 Co generated is reduced to about 1/3. In addition,
When using a fuel spring material that has been age hardened in the atmosphere, it can be reduced to 1/10 or less.

【0044】一方、燃料クラッドについては、給水鉄持
込量を従来の1/3程度に低減すると、60Coの生成源
となるNiFe2 4 の付着量を1/3以下に低減でき
る。また、炉水中のNiイオン濃度はCoのイオン濃度
に比べて大幅に上昇し、かつ原子炉系の耐食性材料の腐
食量の減少とともないCoの発生量も1/3程度に減少
するため、大幅な低減が期待できる。
On the other hand, with respect to the fuel clad, if the amount of iron feedwater brought in is reduced to about 1/3 of the conventional amount, the amount of NiFe 2 O 4 , which is a production source of 60 Co, can be reduced to 1/3 or less. Further, the Ni ion concentration in the reactor water is significantly increased compared to the Co ion concentration, and the amount of Co generated is reduced to about 1/3 as the corrosion amount of the corrosion resistant material of the reactor system is reduced. Can be expected to be reduced.

【0045】従って、60Coの生成源となるCoの付着
量は1/3以下に大幅に低減される。また、クロムの濃
縮も付着クラッドの低減、材料腐食の低減に基づく炉内
発生クロムの減少により低減され、Znの導入により不
安定なCoCr2 4 の生成も抑制される。
Therefore, the amount of Co deposited, which is the source of 60 Co, is greatly reduced to 1/3 or less. Further, the concentration of chromium is also reduced by reducing the amount of deposited clad and the amount of chromium generated in the furnace due to the reduction of material corrosion, and the introduction of Zn also suppresses the unstable formation of CoCr 2 O 4 .

【0046】炉水のpHは、炉水中のNiおよびZnの
金属イオン濃度の増加と炉内の耐食性材料の腐食抑制に
伴うクロムイオン濃度の減少により通常の弱酸性から弱
アルカリ性に制御できる。このため、燃料付着クラッド
の主体であるNiFe2 4溶解度は減少し、燃料付着
クラッドに含まれる60Coの溶出も1/10程度に大幅に
減少できる。
The pH of the reactor water can be controlled from normal weak acidity to weak alkalinity by increasing the metal ion concentrations of Ni and Zn in the reactor water and decreasing the chromium ion concentration accompanying the inhibition of corrosion of the corrosion resistant material in the reactor. Therefore, the solubility of NiFe 2 O 4 which is the main component of the fuel-adhering clad is reduced, and the elution of 60 Co contained in the fuel-adhering clad can be greatly reduced to about 1/10.

【0047】また、60Coおよび58Coの放射能が取り
込まれる炉心外配管機器表面のステンレス鋼の腐食皮膜
量が減少するとともに、Coのフェライトおよびクロマ
イトへの取り込み抑制により単位皮膜重量当たりの放射
能の取り込み量も減少する。従って、放射能の付着につ
いても1/3程度に減少できる。
Further, the amount of corrosion coating of stainless steel on the surface of the out-core piping equipment where the radioactivity of 60 Co and 58 Co is incorporated is reduced, and the incorporation of Co into ferrite and chromite is suppressed, and the radioactivity per unit coating weight is reduced. The amount of uptake is also reduced. Therefore, the adhesion of radioactivity can be reduced to about 1/3.

【0048】以上の結果から、Ni/Fe比コントロー
ルによる炉水の60Coおよび58Coイオンを低減しない
場合でも従来の1/10程度に炉心外の放射能を低減でき
ると試算された。
From the above results, it was estimated that the radioactivity outside the core could be reduced to about 1/10 of the conventional value even if the 60 Co and 58 Co ions of the reactor water were not reduced by controlling the Ni / Fe ratio.

【0049】また、炉水の水質および炉心外配管の放射
能の測定を行うことにより、材料の腐食、放射能挙動お
よび水質との関連が解析でき、最適な水質管理や定検時
の被ばく評価が事前に把握できるようになる。
Further, by measuring the water quality of the reactor water and the radioactivity of the pipe outside the core, it is possible to analyze the relation between the corrosion of the material, the behavior of the radioactivity and the water quality, and to carry out the optimum water quality control and the exposure assessment during the regular inspection. Can be grasped in advance.

【0050】[0050]

【実施例】図3から図5により本発明に係る沸騰水型原
子炉プラントの水質管理方法の一実施例を説明する。な
お、図3は本発明の実施例を説明するためのシステム系
統図である。
EXAMPLE An example of a water quality control method for a boiling water reactor plant according to the present invention will be described with reference to FIGS. 3 is a system diagram for explaining the embodiment of the present invention.

【0051】図3中、符号1は沸騰水型原子炉の原子炉
圧力容器で、この原子炉圧力容器1内には燃料集合体を
多数体装荷した炉心2が配設されている。原子炉圧力容
器1の蒸気出口側は主蒸気管3により蒸気タービン4に
接続している。蒸気タービン4の蒸気出口側は復水器5
に接続し、復水器5は復水ポンプ6を介して中空糸膜復
水ろ過装置7に接続し、中空糸膜復水ろ過装置7はイオ
ン交換樹脂を充填した復水脱塩装置8に接続している。
In FIG. 3, reference numeral 1 is a reactor pressure vessel of a boiling water reactor, and in this reactor pressure vessel 1, a core 2 loaded with a large number of fuel assemblies is arranged. The steam outlet side of the reactor pressure vessel 1 is connected to a steam turbine 4 by a main steam pipe 3. The steam outlet side of the steam turbine 4 is a condenser 5
The condenser 5 is connected to the hollow fiber membrane condensate filtration device 7 via the condensate pump 6, and the hollow fiber membrane condensate filtration device 7 is connected to the condensate desalination device 8 filled with an ion exchange resin. Connected.

【0052】中空糸膜復水ろ過装置7の出入口側に流量
調整弁9を有するバイパスライン10が設けられている。
復水脱塩装置8の下流側には低圧給水加熱器11,給水ポ
ンプ12および高圧給水加熱器13が順次接続されており、
高圧給水加熱器13は給水管14により原子炉圧力容器1に
接続している。
A bypass line 10 having a flow rate adjusting valve 9 is provided on the inlet / outlet side of the hollow fiber membrane condensate filtration device 7.
A low-pressure feed water heater 11, a feed water pump 12, and a high-pressure feed water heater 13 are sequentially connected on the downstream side of the condensate demineralizer 8.
The high-pressure feed water heater 13 is connected to the reactor pressure vessel 1 by a feed water pipe 14.

【0053】原子炉圧力容器1には原子炉炉水を循環さ
せる再循環系配管15が設けられ、再循環系配管15には原
子炉再循環ポンプ16が設けられている。また、再循環系
配管15と給水管14とを接続する原子炉冷却材浄化系(C
UW)配管17が設けられ、この炉水浄化系配管17には熱
交換器18,CUWポンプ19およびろ過脱塩器20が設けら
れている。
The reactor pressure vessel 1 is provided with a recirculation system pipe 15 for circulating the reactor water, and the recirculation system pipe 15 is provided with a reactor recirculation pump 16. Further, a reactor coolant purification system (C which connects the recirculation system pipe 15 and the water supply pipe 14)
A UW) pipe 17 is provided, and the reactor water purification system pipe 17 is provided with a heat exchanger 18, a CUW pump 19 and a filter desalting device 20.

【0054】低圧給水加熱器11と給水ポンプ12との間の
配管に金属イオン注入配管21の一端が接続し、この金属
イオン注入配管21の他端には金属イオン注入ポンプ22と
金属イオン注入装置23が接続している。CUWポンプ19
とろ過脱塩器20との間の配管に炉水サンプリング配管24
の一端が接続し、この炉水サンプリング配管24の他端は
自動イオンクロマト分析装置25と放射能濃度測定用γ線
核種分析装置26に接続している。
One end of a metal ion implantation pipe 21 is connected to a pipe between the low-pressure feed water heater 11 and the feed water pump 12, and the metal ion implantation pump 22 and the metal ion implantation device are connected to the other end of the metal ion implantation pipe 21. 23 is connected. CUW pump 19
To the pipe between the filter and the desalinizer 20 and the reactor water sampling pipe 24
Is connected to one end, and the other end of the reactor water sampling pipe 24 is connected to an automatic ion chromatographic analyzer 25 and a radioactivity concentration measuring γ-ray nuclide analyzer 26.

【0055】金属イオン注入装置23と自動イオンクロマ
ト分析装置25は信号線27,28により金属イオン注入制御
装置29に電気的に接続している。再循環系配管15には配
管付着放射能測定用γ線核種分析装置30が設けられ、こ
のγ線核種分析装置30は信号線31により材料腐食・放射
能発生移行挙動解析装置32に電気的に接続しており、こ
の解析装置32には自動イオンクロマトグラフ分析装置25
と放射能濃度測定用γ線核種分析装置26が信号線33,34
により電気的に接続している。
The metal ion implantation device 23 and the automatic ion chromatographic analysis device 25 are electrically connected to the metal ion implantation control device 29 by signal lines 27 and 28. The recirculation system pipe 15 is provided with a γ-ray nuclide analyzer 30 for measuring the radioactivity attached to the pipe, and this γ-ray nuclide analyzer 30 is electrically connected to the material corrosion / radiation generation transfer behavior analysis device 32 by a signal line 31. This analyzer 32 is connected to the automatic ion chromatograph analyzer 25.
And γ-ray nuclide analyzer 26 for measuring radioactivity concentration are signal lines 33, 34
It is electrically connected by.

【0056】給水からの鉄の持込みは、復水系で発生し
た鉄が復水浄化系をリークしたものが主体であるので、
通常復水の中空糸膜復水ろ過器7で浄化され0.1ppb以下
に制御される。
Since iron produced in the condensate system leaks from the condensate purification system, iron is mainly brought in from the water supply.
Normally, the condensate is purified by the hollow fiber membrane condensate filter 7 and controlled to 0.1 ppb or less.

【0057】Niは、高温部の高圧給水加熱器13および
原子炉圧力容器1内の炉心2で使われているインコネ
ル、主として燃料バネ部品からイオンの形態で腐食発生
する。発生したNiの一部は、燃料に付着した鉄および
炉内のステンレス鋼の腐食により発生した鉄と反応とN
iFe2 4 を生成する。残りは、炉水浄化系で除去さ
れる。
Ni is corroded in the form of ions from Inconel, which is used in the high pressure feed water heater 13 in the high temperature section and the core 2 in the reactor pressure vessel 1, mainly in the fuel spring parts. A part of the generated Ni reacts with the iron adhered to the fuel and the iron generated by the corrosion of the stainless steel in the furnace and reacts with N.
iFe 2 O 4 is produced. The rest is removed by the reactor water purification system.

【0058】炉水のNiイオン濃度が2ppb 以下の場
合、給水系に設置した金属イオン注入装置23から供給す
る。一方、10ppb 以上の場合は、中空糸膜復水ろ過器7
のバイパスライン10の流量調節弁9を開き、復水脱塩装
置8内のイオン交換樹脂に復水系で発生した鉄を負荷さ
せリーク鉄量を増やすことにより炉水のNiイオン濃度
を所定の濃度範囲に制御する。
When the Ni ion concentration in the reactor water is 2 ppb or less, the water is supplied from the metal ion implanter 23 installed in the water supply system. On the other hand, in the case of 10 ppb or more, the hollow fiber membrane condensate filter 7
Open the flow control valve 9 of the bypass line 10 to increase the amount of leaked iron by loading iron generated in the condensate system into the ion-exchange resin in the condensate demineralizer 8 to increase the Ni ion concentration in the reactor water to a predetermined concentration. Control in range.

【0059】また、Znは、給水系に設置した金属イオ
ン注入装置23から供給する。なお、金属イオン注入装置
23は、給水系ではなく、炉水浄化系や炉水再循環系配管
などの原子炉に接続されていてもかまわない。
Zn is supplied from the metal ion implanter 23 installed in the water supply system. In addition, metal ion implanter
23 may be connected to a reactor such as a reactor water purification system or a reactor water recirculation system pipe instead of the water supply system.

【0060】炉水のNiおよびZnの金属イオン濃度が
適性範囲にあるか否かは、炉水系に設置した自動イオン
クロマト分析装置25で測定する。この自動イオンクロマ
ト分析装置25の信号をとりだし、金属イオン注入装置23
の自動制御を行ってもかまわない。
Whether or not the Ni and Zn metal ion concentrations in the reactor water are within the proper range is measured by an automatic ion chromatography analyzer 25 installed in the reactor water system. The signal from this automatic ion chromatograph analyzer 25 is taken out, and the metal ion implanter 23
It does not matter even if the automatic control of.

【0061】本実施例の効果は、図3の炉水系に設置し
た自動イオンクロマト分析装置25によりクロム酸イオン
濃度を測定するとともに放射能濃度測定用γ線核種分析
装置26により51Crの濃度を監視する。これにより、そ
れぞれ炉内および炉心構造材料の腐食状況を図4に示す
フローシートから把握できる。
The effect of this embodiment is that the chromate ion concentration is measured by the automatic ion chromatograph analyzer 25 installed in the reactor water system of FIG. 3 and the concentration of 51 Cr is measured by the gamma ray nuclide analyzer 26 for measuring the radioactivity concentration. Monitor. As a result, the corrosion state of the core structural material and the core structural material can be understood from the flow sheet shown in FIG.

【0062】図4(a)は実プラントにおける耐食性材
料の腐食速度の評価方法を示すフロー図で、51Crから
インコネルの腐食速度を評価する方法で、図4(b)は
同じく炉心外構造材の評価方法を示すフロー図で、Cr
からステンレス鋼の腐食速度を評価する方法である。
FIG. 4 (a) is a flow chart showing the method of evaluating the corrosion rate of the corrosion resistant material in an actual plant. The method of evaluating the corrosion rate of Inconel from 51 Cr is shown in FIG. In the flow chart showing the evaluation method of
To evaluate the corrosion rate of stainless steel.

【0063】原子炉内に使われているステンレス鋼(F
e基合金)、インコネル(Ni基合金)およびステライ
ト(Co基合金)の各種材料からのCrの腐食発生量は
接触面積、Crの含有率、腐食速度およびCrの腐食溶
出率(Crの腐食溶出量と金属母材の腐食量との比率で
全腐食量に対する腐食被膜のCrの残存割合から計算で
き、インコネルおよびステライトではほぼ 100%、ステ
ンレス鋼で88%以上と評価される)との積から算出され
る。
Stainless steel used in nuclear reactors (F
e-based alloy), inconel (Ni-based alloy), and stellite (Co-based alloy), the amount of corrosion of Cr depends on the contact area, content of Cr, corrosion rate and corrosion elution rate of Cr (corrosion elution of Cr). It can be calculated from the residual ratio of Cr in the corrosion coating to the total corrosion amount by the ratio of the amount of corrosion to the amount of corrosion of the metal base material, and is estimated to be approximately 100% for Inconel and Stellite and 88% or more for stainless steel). It is calculated.

【0064】また、炉心構造材からの51Crの発生は、
比放射能を算出できる中性子束を与えることにより発生
量が計算できる。ラボの腐食試験結果からCrおよび51
Crのそれぞれの主要発生源は、炉内ステンレス鋼およ
び燃料バネであることが知られている。
The generation of 51 Cr from the core structural material is
The yield can be calculated by giving a neutron flux that can calculate the specific activity. Laboratory corrosion test results show that Cr and 51
It is known that the respective main sources of Cr are in-reactor stainless steel and fuel springs.

【0065】一方、炉内および炉心構造材料の腐食によ
り発生したCrや51Crは、クロム酸イオンの形態で存
在し溶解度が高いため燃料への付着量や炉心外への付着
量は少ない。このため、ほぼ全量が炉水浄化系で除去さ
れる。
On the other hand, Cr and 51 Cr generated in the core and by the corrosion of the core structural material are present in the form of chromate ions and have high solubility, so that the amount of adhesion to the fuel and the amount of adhesion outside the core are small. Therefore, almost all is removed by the reactor water purification system.

【0066】従って、図4(a),(b)中のCrや51
Crの移行量(2) は、一次近似として炉水浄化系の除去
量から求めることができる。もちろん、燃料クラッドの
分析から得られる燃料Cr付着量や、放射能測定から得
られる炉心外への51Cr付着量がわかれば移行量(2) の
精度が良くなる。
Therefore, Cr and 51 in FIGS.
The transfer amount (2) of Cr can be obtained from the removal amount of the reactor water purification system as a first-order approximation. Of course, the accuracy of the transfer amount (2) can be improved by knowing the fuel Cr deposition amount obtained from the analysis of the fuel clad and the 51 Cr deposition amount outside the core obtained from the radioactivity measurement.

【0067】図5に、炉水の60Coおよび58Coのイオ
ン濃度の測定および炉水再循環系配管付着放射能の60
o測定から得られる60Coの発生移行挙動を評価フロー
を示す。図5により材料腐食挙動および放射能の発生移
行挙動と自動イオンクロマト分析装置から得られる金属
や、不純物や、他の水質測定から得られる溶存化学種の
データとの関連によって材料腐食および放射能の発生移
行の変化とその要因である水質との関連を評価する。
FIG. 5 shows measurement of ion concentration of 60 Co and 58 Co of reactor water and 60 C of radioactivity adhering to piping of reactor water recirculation system.
An evaluation flow of the generation and transfer behavior of 60 Co obtained from o measurement is shown. Fig. 5 shows the relationship between material corrosion and radioactivity generation and transfer behavior and the data of metals, impurities, and other dissolved chemical species data obtained from other water quality measurements obtained from automatic ion chromatographic analyzers. Assess the relationship between changes in developmental shifts and the water quality that is the factor.

【0068】この評価方法は60Coの発生源は燃料クラ
ッドと炉心構造材のふたつであるが、60Coの同位体で
同じ化学的挙動を示す58Coは炉心構造材の発生が主体
であることに着目して、60Coの発生源の寄与を分別す
る方法である。
In this evaluation method, the sources of 60 Co are the fuel clad and the core structure material, but 58 Co showing the same chemical behavior with the isotope of 60 Co is mainly the generation of the core structure material. This is a method of distinguishing the contribution of the 60 Co generation source, focusing on.

【0069】図4に示す51Crの発生と移行のバランス
より炉心構造材の腐食速度が評価され、炉心構造材から
51Cr,58Coおよび60Coの発生量を計算(1) でき
る。また、炉水に占める炉心構造材からの60Coイオン
の発生寄与分は、炉水58Coイオンが炉心構造材から発
生したものであることより、炉水58Coイオン濃度と炉
心構造材の60Coと58Coの腐食発生の比率との積(2)
から計算される。
The corrosion rate of the core structural material is evaluated from the balance between the generation and migration of 51 Cr shown in FIG. 4, and the amounts of 51 Cr, 58 Co and 60 Co generated from the core structural material can be calculated (1). Further, 60 Co generation contribution of ions from the core structural material occupying the reactor water, than that reactor water 58 Co ions are those generated from the core structural material, the reactor water 58 Co ion concentration and reactor core structural member 60 Product of Co and the rate of occurrence of corrosion of 58 Co (2)
Calculated from

【0070】また、炉水の60Coの実測値と炉心構造材
の発生寄与分との差が燃料クラッドからの発生寄与分
(3) となる。従って、燃料クラッドからの60Coの発生
量は、炉心構造材からの60Coの発生量を計算(1) と炉
水の60Coイオンに占める燃料クラッドと炉心構造材の
発生寄与の比率との積で示される。
The difference between the measured value of 60 Co in the reactor water and the contribution to the generation of the core structural material is the contribution to the generation from the fuel clad.
(3) Therefore, the amount of 60 Co generated from the fuel clad is calculated by calculating the amount of 60 Co generated from the core structure material (1) and the ratio of the contribution of the fuel clad and the core structure material to the 60 Co ions of the reactor water. Indicated by the product.

【0071】一方、炉心外への移行量(4) は、下記に示
す(1)式より評価できる。配管付着放射能(A:Bq/m
2 )の増加速度は、次の式により測定部位の腐食量
(m: g/m2 )の増加速度、すなわち腐食速度と結び付
けることができる。 dA/dt =k・dm/dt・C (1) ここで、 k:比例定数 (m3 /g) C:放射能濃度(Bq/ m3 ) (1)式における比例定数kは、材料と水質のファクタ
ーである。
On the other hand, the transfer amount (4) out of the core can be evaluated by the following equation (1). Radioactivity attached to piping (A: Bq / m
The rate of increase in 2 ) can be linked to the rate of increase in the amount of corrosion (m: g / m 2 ) at the measurement site, that is, the corrosion rate, using the following formula. dA / dt = k · dm / dt · C (1) where k: proportional constant (m 3 / g) C: radioactivity concentration (Bq / m 3 ) The proportional constant k in the formula (1) is It is a factor of water quality.

【0072】水質は、通常運転時または水素注入時の酸
化性の化学種の濃度、Ni/FeコントロールやZn注
入の有無により変わる。また、炉心外への放射能の付着
は、接触面積が大きく安定な厚い皮膜を形成するステン
レス鋼が主体で、炉内の酸洗面のステンレス鋼が主体で
ある。
The water quality changes depending on the concentration of oxidizing species during normal operation or hydrogen injection, Ni / Fe control, and the presence or absence of Zn injection. Further, the deposition of radioactivity outside the core is mainly made of stainless steel which forms a stable and thick film with a large contact area, and is mainly made of stainless steel on the pickled surface in the reactor.

【0073】従って、(1) と(3) の60Co和(炉心構造
材と燃料クラッドの合計)から炉水浄化系除去量(炉水
濃度、浄化流量および除去率の積)と(4) の炉水外ステ
ンレス鋼(炉内のステンレス鋼が主体)への付着量の差
分が燃料クラッドへの移行分としてバランスより評価さ
れる。
Therefore, from the 60 Co sum of (1) and (3) (total of core structure material and fuel clad), the removal amount of reactor water purification system (product of reactor water concentration, purification flow rate and removal rate) and (4) The difference in the adhesion amount to the stainless steel outside the reactor water (mainly the stainless steel inside the reactor) is evaluated from the balance as the amount transferred to the fuel clad.

【0074】図3に示す放射能濃度測定用γ線核種分析
装置26および炉水再循環または炉水浄化系の配管に設置
したγ線核種分析装置30により、それぞれ炉水および炉
水再循環系配管付着放射能を測定し、放射能の付着速度
を求めることができる。
By the γ-ray nuclide analyzer 26 for measuring the radioactivity concentration and the γ-ray nuclide analyzer 30 installed in the pipe of the reactor water recirculation or reactor water purification system shown in FIG. The radioactivity adhering to the pipe can be measured to determine the radioactivity adhering rate.

【0075】一般に、電解研磨などの表面処理を実施し
た再循環系のステンレス鋼配管の腐食速度は、接触面積
の大きい炉内の酸洗面のステンレス鋼と異なる。再循環
系のステンレス鋼配管の腐食速度は、図3に示した配管
60Co付着量の測定結果を使って上記(1) 式より逆に
求めることができる。
Generally, the corrosion rate of a recirculation system stainless steel pipe that has been subjected to a surface treatment such as electrolytic polishing is different from that of a pickled surface in a furnace having a large contact area. The corrosion rate of the stainless steel pipe of the recirculation system can be obtained in reverse from the above equation (1) using the measurement result of 60 Co deposition amount of the pipe shown in FIG.

【0076】電解研磨などの表面処理を実施した再循環
系のステンレス鋼配管と炉心外ステンレス鋼の腐食速度
の比は、電解研磨の効果そのものを示す。また、炉水浄
化系の炭素鋼配管の付着放射能を測定すれば、ステンレ
ス鋼と炭素鋼との付着放射能の挙動の差がわかる。
The ratio of the corrosion rates of the recirculation system stainless steel pipe subjected to the surface treatment such as electrolytic polishing and the out-of-core stainless steel shows the effect of electrolytic polishing itself. Further, by measuring the attached radioactivity of the carbon steel pipe of the reactor water purification system, the difference in the behavior of the attached radioactivity between the stainless steel and the carbon steel can be found.

【0077】また、放射能の発生移行挙動および材料の
腐食挙動と図3に示した自動イオンクロマト分析装置25
の測定から得られる金属や不純物のイオン濃度や他の溶
存化学種の水質データとの関連より、その変化要因が検
討できる。
Further, the generation and transfer behavior of radioactivity and the corrosion behavior of materials and the automatic ion chromatograph analyzer 25 shown in FIG.
The factors responsible for the change can be examined based on the relations between the ion concentrations of metals and impurities and the water quality data of other dissolved chemical species obtained from the measurement.

【0078】[0078]

【発明の効果】本発明によれば例えば原子力プラントの
定期検査時の被ばく低減のため、炉心構造材の腐食を抑
制し、また燃料に付着し放射化され生成された放射能の
溶出を抑制することにより炉水に放出される放射能の発
生を低減するとともに、炭素鋼およびオーステナイト系
ステンレス鋼からなる炉心外配管や機器への放射能の付
着を低減することができる。
EFFECTS OF THE INVENTION According to the present invention, for example, in order to reduce the exposure during the periodic inspection of a nuclear power plant, the corrosion of the core structural material is suppressed, and the elution of the radioactivity generated by being activated by being attached to the fuel is suppressed. As a result, it is possible to reduce the generation of radioactivity released into the reactor water and reduce the adhesion of radioactivity to the out-of-core piping and equipment made of carbon steel and austenitic stainless steel.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の作用を説明するためのNi−
Fe−H2 O系の安定性を示す電位−pH図、(b)は
同じくZn−Fe−H2 O系の安定性を示す電位−pH
図。
FIG. 1 (a) is a Ni- layer for explaining the function of the present invention.
Fe-H 2 O system potential -pH diagram showing the stability of, (b) potential also shown an Zn-Fe-H 2 O system stability of -pH
Fig.

【図2】図1と同じく耐食性材料の腐食速度の水質依存
性を示す特性図。
FIG. 2 is a characteristic diagram showing the water quality dependence of the corrosion rate of the corrosion resistant material, as in FIG.

【図3】本発明の実施例を説明するためのシステム系統
図。
FIG. 3 is a system system diagram for explaining an embodiment of the present invention.

【図4】(a)は本発明の実施例を説明するための実プ
ラントにおける耐食性材料の腐食速度の評価方法を示す
フロー図、(b)は同じく炉心外構造材の評価方法を示
すフロー図。
FIG. 4 (a) is a flow chart showing a method for evaluating a corrosion rate of a corrosion resistant material in an actual plant for explaining an embodiment of the present invention, and FIG. 4 (b) is a flow chart showing a method for evaluating a structure outside the core. .

【図5】本発明の実施例を説明するための実プラントに
おける60Coイオンの発生移行挙動の評価方法を示すフ
ロー図。
FIG. 5 is a flow chart showing an evaluation method of 60 Co ion generation and transfer behavior in an actual plant for explaining an example of the present invention.

【符号の説明】[Explanation of symbols]

1…原子炉圧力容器、2…炉心、3…主蒸気管、4…蒸
気タービン、5…復水器、6…復水ポンプ、7…中空糸
膜復水ろ過器、8…復水脱塩装置、9…流量調整弁、10
…バイパスライン、11…低圧給水加熱器、12…給水ポン
プ、13…高圧給水加熱器、14…給水管、15…再循環系配
管、16…原子炉再循環ポンプ、17…原子炉冷却材浄化系
配管、18…熱交換器、19…CUWポンプ、20…ろ過脱塩
器、21…金属イオン注入配管、22…金属イオン注入ポン
プ、23…金属イオン注入装置、24…炉水サンプリング配
管、25…自動イオンクロマト分析装置、26…放射能濃度
測定用γ線核種分析装置、27,28,31,33,34…信号
線、29…金属イオン注入制御装置、30…配管付着放射能
測定用γ線核種分析装置、32…材料腐食・放射能発生移
行挙動解析装置。
1 ... Reactor pressure vessel, 2 ... Reactor core, 3 ... Main steam pipe, 4 ... Steam turbine, 5 ... Condenser, 6 ... Condensate pump, 7 ... Hollow fiber membrane condensate filter, 8 ... Condensate desalination Device, 9 ... Flow control valve, 10
… Bypass line, 11… Low pressure feed water heater, 12… Water feed pump, 13… High pressure feed water heater, 14… Water supply pipe, 15… Recirculation system piping, 16… Reactor recirculation pump, 17… Reactor coolant purification System piping, 18 ... Heat exchanger, 19 ... CUW pump, 20 ... Filtration demineralizer, 21 ... Metal ion injection piping, 22 ... Metal ion injection pump, 23 ... Metal ion injection device, 24 ... Reactor water sampling piping, 25 … Automatic ion chromatograph analyzer, 26… γ-ray nuclide analyzer for measuring radioactivity concentration, 27, 28, 31, 33, 34… Signal line, 29… Metal ion implantation control device, 30… γ for measuring radioactivity adhering to pipes Radionuclide analyzer, 32 ... Material corrosion / radioactivity generation migration behavior analyzer.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G21D 1/00 GDBW GDBY ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location G21D 1/00 GDBW GDBY

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 炉水中のNiおよびZnの金属イオン濃
度を、それぞれ2〜10および3〜 15ppbの範囲に制御す
ることを特徴とする沸騰水型原子炉プラントの水質管理
方法。
1. A water quality control method for a boiling water reactor plant, characterized in that the metal ion concentrations of Ni and Zn in the reactor water are controlled in the ranges of 2 to 10 and 3 to 15 ppb, respectively.
【請求項2】 前記炉水中のNiおよびZnの金属イオ
ン濃度を、それぞれ2〜10および3〜 15ppbの範囲に水
質を制御した条件下で、大気中で時効硬化処理したNi基
合金をバネ部材とする燃料を使用することを特徴とする
請求項1記載の沸騰水型原子炉プラントの水質管理方
法。
2. A spring member made of a Ni-based alloy that has been age-hardened in the atmosphere under the condition that the water quality is controlled so that the metal ion concentrations of Ni and Zn in the reactor water are in the ranges of 2 to 10 and 3 to 15 ppb, respectively. The water quality control method for a boiling water reactor plant according to claim 1, wherein the fuel is used.
【請求項3】 前記炉水中のNiおよびZnの金属イオ
ン濃度を、それぞれ2〜10および3〜 15ppbの範囲に水
質を制御した条件下で、電解研磨したオーステナイト系
ステンレス鋼の炉水再循環系配管を使用することを特徴
とする請求項1記載の沸騰水型原子炉の水質管理方法。
3. A reactor water recirculation system of austenitic stainless steel electrolytically polished under the condition that the water qualities of Ni and Zn in the reactor water are controlled within the ranges of 2 to 10 and 3 to 15 ppb, respectively. The water quality control method for a boiling water reactor according to claim 1, wherein a pipe is used.
【請求項4】 前記炉水中のNiおよびZnの金属イオ
ン濃度を、それぞれ2〜10および3〜 15ppbの範囲に水
質を制御した条件下で、原子炉系の配管や機器に炭素鋼
または低合金鋼を使用することを特徴とする請求項1記
載の沸騰水型原子炉の水質管理方法。
4. Carbon steel or a low alloy for pipes and equipment of a reactor system under the condition that the water quality is controlled such that the metal ion concentrations of Ni and Zn in the reactor water are in the ranges of 2 to 10 and 3 to 15 ppb, respectively. The water quality control method for a boiling water reactor according to claim 1, characterized in that steel is used.
【請求項5】 前記炉水中のNiイオン濃度を高め復水
を浄化するため、給水からの流入鉄量を鉄濃度で0.1ppb
以下に復水系中空糸膜復水ろ過器により抑制することを
特徴とする請求項1記載の沸騰水型原子炉の水質管理方
法。
5. The amount of iron inflowing from the feed water is 0.1 ppb in terms of iron concentration in order to increase the Ni ion concentration in the reactor water and purify the condensate.
The water quality control method for a boiling water reactor according to claim 1, wherein the method is controlled by a condensate-type hollow fiber membrane condensate filter below.
【請求項6】 前記炉水中のNiおよびZnの金属イオ
ン濃度が、それぞれ2および3ppb 以下と低い場合、所
定濃度範囲に制御するため、給水または炉水系に金属イ
オンを注水することを特徴とする請求項1記載の沸騰水
型原子炉プラントの水質管理方法。
6. When the metal ion concentrations of Ni and Zn in the reactor water are as low as 2 and 3 ppb or less, respectively, the metal ions are injected into the feed water or the reactor water system to control the concentration within a predetermined range. The water quality control method for a boiling water reactor plant according to claim 1.
【請求項7】 前記炉水中のNiイオン濃度が 10ppb以
上と高い場合、前記復水系の中空糸膜復水ろ過器をバイ
パスしてイオン交換樹脂を充填した復水脱塩装置への鉄
負荷量を増大し、給水から原子炉への鉄持込量を増大す
ることにより炉水中のNiイオン濃度を 10ppb以下に制
御することを特徴とする請求項1記載の沸騰水型原子炉
の水質管理方法。
7. When the concentration of Ni ions in the reactor water is as high as 10 ppb or higher, the iron load on the condensate desalination device that bypasses the condensate hollow fiber membrane condensate filter and is filled with ion exchange resin. The water quality control method for a boiling water reactor according to claim 1, wherein the Ni ion concentration in the reactor water is controlled to 10 ppb or less by increasing the amount of iron introduced from the feed water to the reactor. .
【請求項8】 前記鉄負荷量を定量的に行うため、前記
バイパスラインに流量調整弁を設けることを特徴とする
請求項7記載の沸騰水型原子炉の水質管理方法。
8. The water quality control method for a boiling water reactor according to claim 7, wherein a flow rate adjusting valve is provided in the bypass line to quantitatively perform the iron load.
【請求項9】 炉水中のNiおよびZnの金属イオン濃
度を測定するため、炉水浄化系のサンプリング配管に自
動イオンクロマト分析装置を接続することを特徴とする
請求項1記載の沸騰水型原子炉の水質管理方法。
9. A boiling water atom according to claim 1, wherein an automatic ion chromatographic analyzer is connected to the sampling pipe of the reactor water purification system in order to measure the metal ion concentrations of Ni and Zn in the reactor water. Reactor water quality management method.
【請求項10】 炉水中のNiおよびZnの金属イオン
濃度の測定値を復水脱塩装置の下流側に設けた金属イオ
ン注入装置にフィードバックし、適切な注入量を自動設
定する金属イオン注入制御装置を設けたことを特徴とす
る請求項1記載の沸騰水型原子炉の水質管理方法。
10. A metal ion implantation control for feeding back measured values of metal ion concentrations of Ni and Zn in reactor water to a metal ion implantation device provided on the downstream side of a condensate desalination device to automatically set an appropriate implantation amount. The water quality control method for a boiling water reactor according to claim 1, further comprising a device.
【請求項11】 前記自動イオンクロマト分析装置を用
いて炉水中のCrイオン濃度を測定するとともに、炉水
51Crイオン濃度を自動γ線核種分析装置により測定
することを特徴とする請求項1記載の沸騰水型原子炉プ
ラントの水質管理方法
11. The Cr ion concentration in the reactor water is measured by using the automatic ion chromatographic analyzer, and the 51 Cr ion concentration in the reactor water is measured by an automatic γ-ray nuclide analyzer. Water quality control method for boiling water reactor plant described
【請求項12】 前記自動γ線核種分析装置を用いて炉
水の51Cr,58Co,60Coなどのイオン濃度を測定す
るとともに、炉水再循環系または炉水浄化系等の原子炉
系の配管に付着した51Cr,58Co,60Coなどの放射
能を自動γ線核種分析装置により測定することを特徴と
する請求項1記載の沸騰水型原子炉プラントの水質管理
方法。
12. The ion concentration of 51 Cr, 58 Co, 60 Co, etc. in reactor water is measured using the automatic γ-ray nuclide analyzer, and the reactor system such as reactor water recirculation system or reactor water purification system is measured. The water quality control method for a boiling water reactor plant according to claim 1, wherein the radioactivity of 51 Cr, 58 Co, 60 Co, etc. adhering to the pipe of (1) is measured by an automatic γ-ray nuclide analyzer.
【請求項13】 前記自動イオンクロマト分析装置から
得られる金属や、不純物や、他の水質測定から得られる
溶存化学種のデータとの関連によって材料腐食および放
射能の発生移行の変化とその要因である水質との関連を
解析装置により評価することを特徴とする請求項1記載
の沸騰水型原子炉プラントの水質管理方法。
13. Due to changes in material corrosion and radioactivity generation and transfer due to changes in factors related to metals and impurities obtained from the automatic ion chromatograph and data of dissolved chemical species obtained from other water quality measurements. The water quality control method for a boiling water reactor plant according to claim 1, wherein a relation with a certain water quality is evaluated by an analyzer.
JP06464295A 1995-03-24 1995-03-24 Water quality control method for boiling water reactor plant Expired - Lifetime JP3281213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06464295A JP3281213B2 (en) 1995-03-24 1995-03-24 Water quality control method for boiling water reactor plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06464295A JP3281213B2 (en) 1995-03-24 1995-03-24 Water quality control method for boiling water reactor plant

Publications (2)

Publication Number Publication Date
JPH08262186A true JPH08262186A (en) 1996-10-11
JP3281213B2 JP3281213B2 (en) 2002-05-13

Family

ID=13264131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06464295A Expired - Lifetime JP3281213B2 (en) 1995-03-24 1995-03-24 Water quality control method for boiling water reactor plant

Country Status (1)

Country Link
JP (1) JP3281213B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001027933A1 (en) * 1999-10-08 2001-04-19 General Electric Company Method for controlling zinc addition to power reactor
JP2006038811A (en) * 2004-07-30 2006-02-09 Hitachi Ltd Operation method of nuclear power plant
JP2007182604A (en) * 2006-01-06 2007-07-19 Hitachi Ltd Method for inhibiting corrosion of carbon steel, and apparatus therefor
JP2008304381A (en) * 2007-06-08 2008-12-18 Hitachi-Ge Nuclear Energy Ltd Method of restraining radionuclide from being deposited onto nuclear power plant component, and ferrite film forming device
JP2015200591A (en) * 2014-04-09 2015-11-12 日立Geニュークリア・エナジー株式会社 Zinc concentration measurement method of nuclear plant, zinc concentration measurement device thereof and zinc concentration control method thereof
JP2016003940A (en) * 2014-06-17 2016-01-12 日立Geニュークリア・エナジー株式会社 Method for suppressing adhesion of radionuclides to carbon steel members of nuclear power plant
JP2016161466A (en) * 2015-03-04 2016-09-05 日立Geニュークリア・エナジー株式会社 Method of suppressing sticking of radioactive nuclide on atomic power plant constitution member
JP2023033163A (en) * 2021-08-27 2023-03-09 生態環境部南京環境科学研究所 Method for analyzing black and odorous water body sediment heavy metal source based on multiple variables and pmf model

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001027933A1 (en) * 1999-10-08 2001-04-19 General Electric Company Method for controlling zinc addition to power reactor
JP2002542458A (en) * 1999-10-08 2002-12-10 ゼネラル・エレクトリック・カンパニイ A method for controlling zinc addition to a power reactor.
JP2006038811A (en) * 2004-07-30 2006-02-09 Hitachi Ltd Operation method of nuclear power plant
JP2007182604A (en) * 2006-01-06 2007-07-19 Hitachi Ltd Method for inhibiting corrosion of carbon steel, and apparatus therefor
JP2008304381A (en) * 2007-06-08 2008-12-18 Hitachi-Ge Nuclear Energy Ltd Method of restraining radionuclide from being deposited onto nuclear power plant component, and ferrite film forming device
JP2015200591A (en) * 2014-04-09 2015-11-12 日立Geニュークリア・エナジー株式会社 Zinc concentration measurement method of nuclear plant, zinc concentration measurement device thereof and zinc concentration control method thereof
JP2016003940A (en) * 2014-06-17 2016-01-12 日立Geニュークリア・エナジー株式会社 Method for suppressing adhesion of radionuclides to carbon steel members of nuclear power plant
JP2016161466A (en) * 2015-03-04 2016-09-05 日立Geニュークリア・エナジー株式会社 Method of suppressing sticking of radioactive nuclide on atomic power plant constitution member
JP2023033163A (en) * 2021-08-27 2023-03-09 生態環境部南京環境科学研究所 Method for analyzing black and odorous water body sediment heavy metal source based on multiple variables and pmf model

Also Published As

Publication number Publication date
JP3281213B2 (en) 2002-05-13

Similar Documents

Publication Publication Date Title
Lister et al. The mechanism and kinetics of corrosion product release from stainless steel in lithiated high temperature water
JP3281213B2 (en) Water quality control method for boiling water reactor plant
Rebak et al. Zinc water chemistry reduces dissolution of FeCrAl for nuclear fuel cladding
Hosokawa et al. Investigation of cobalt deposition behavior with zinc injection on stainless steel under BWR conditions
Lin et al. Effects of hydrogen water chemistry on radiation field buildup in BWRs
Lister et al. Effects of magnesium and zinc additives on corrosion and cobalt contamination of stainless steels in simulated BWR coolant
JP2011089942A (en) Method for controlling water quality in boiling water reactor plant
Ishigure et al. Water chemistry experience of nuclear power plants in Japan
JP3289679B2 (en) Water quality control method for boiling water nuclear power plant
Wood Recent developments in LWR radiation field control
Fuse et al. Cobalt radioactivity behaviors in a BWR environment and countermeasures for dose rate reduction
JP3156113B2 (en) Water quality control method and device
Usui et al. Effects of hydrogen peroxide on radioactive cobalt deposition on stainless steel surface in high temperature water
Uchida et al. Water Quality Control in Primary Cooling System of Crud Concentration Suppressed Boiling Water Reactor,(I) Water Chemistry Experience in Latest Crud Conentration Suppressed BWR
JPH08304584A (en) Radioactive concentration reducing method in reactor primary system water
JP7446960B2 (en) Prediction model building device and prediction device
Cowan et al. Control of radiation fields in BWRs after noble metal chemical addition
Hettiarachchi NobleChem TM for commercial power plant application
Ocken et al. Recent development in PWR zinc injection
Alder et al. Corrosion products, activity transport and deposition in boiling water reactor recirculation systems
JP2010096582A (en) Radioactive decontamination method and device
JPS5989775A (en) Method for inhibiting leaching of cobalt from metal containing cobalt
JPH0249479B2 (en)
Nordmann et al. Key Emerging Issues and Recent Progress Related to Plant Chemistry/Corrosion (PWRs, VVERs, CANDUs, PHWRs, and auxiliary systems)
Ishigure Current status of water chemistry in Japan

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 12

EXPY Cancellation because of completion of term