JPH0826819A - Production of compound sintered compact of titanium oxycarbide with aluminum oxide - Google Patents
Production of compound sintered compact of titanium oxycarbide with aluminum oxideInfo
- Publication number
- JPH0826819A JPH0826819A JP6190862A JP19086294A JPH0826819A JP H0826819 A JPH0826819 A JP H0826819A JP 6190862 A JP6190862 A JP 6190862A JP 19086294 A JP19086294 A JP 19086294A JP H0826819 A JPH0826819 A JP H0826819A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum oxide
- oxide powder
- powder
- compact
- embedded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はチタンのオキシカーバイ
ドと酸化アルミニウムの複合焼結体の製造方法に関す
る。この複合焼結体は切削工具用材料、耐摩耗部材とし
て有用なものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a composite sintered body of titanium oxycarbide and aluminum oxide. This composite sintered body is useful as a material for cutting tools and a wear resistant member.
【0002】[0002]
【従来の技術】Al2O3は高強度、高硬度などの優れ
た特性を持つが、低靭性であるという欠点を有してい
る。そこで高強度、高硬度、高靭性であるTiCを複合
化させることにより両長所を兼ね備えたTiC−Al2
O3複合焼結体とすることは知られている。しかし、ホ
ットプレス法によって、焼結体を製造している。即ち成
分の一つであるTiCは難焼結性であるため、常圧で焼
結させるには高温度で焼結させる必要があり、高温で焼
結させようとするとAl2O3が蒸発するので緻密な複
合焼結体として得られなかったため、ホットプレス法に
よって製造していた。そこで、特公平5−11062号
で炭化チタン粉末10〜60重量%と酸化アルミニウム
粉末90〜40重量%の均質混合物を圧粉体に成形し、
この圧粉体を酸化アルミニウム粉末に包埋し、中性また
は還元雰囲気下で、1700℃〜1900℃で常圧焼結
することを特徴とするチタンのオキシカーバイドと酸化
アルミニウムの複合焼結体の製造方法で、焼結中のAl
2O3の蒸発を抑え、ホットプレス法で製造した複合焼
結体に匹敵する緻密な焼結体が得られた事が示されてい
る。2. Description of the Related Art Al 2 O 3 has excellent characteristics such as high strength and high hardness, but has a drawback of low toughness. Therefore, by combining TiC, which has high strength, high hardness, and high toughness, TiC-Al 2 having both advantages.
It is known to use an O 3 composite sintered body. However, the sintered body is manufactured by the hot pressing method. That is, since TiC, which is one of the components, is difficult to sinter, it is necessary to sinter at a high temperature in order to sinter under normal pressure, and Al 2 O 3 evaporates when attempting to sinter at a high temperature. Since it was not obtained as a dense composite sintered body, it was manufactured by the hot pressing method. Therefore, in Japanese Patent Publication No. 5-11062, a homogeneous mixture of 10 to 60% by weight of titanium carbide powder and 90 to 40% by weight of aluminum oxide powder is molded into a green compact,
A compact sintered body of titanium oxycarbide and aluminum oxide, characterized by embedding this green compact in aluminum oxide powder and sintering at 1700 ° C to 1900 ° C under atmospheric pressure in a neutral or reducing atmosphere. In the manufacturing method, Al during sintering
It is shown that the evaporation of 2 O 3 was suppressed and a dense sintered body comparable to the composite sintered body produced by the hot pressing method was obtained.
【0003】[0003]
【発明が解決しようとする課題】包埋原料粉末として、
比較的安価な純度が99%程度の酸化アルミニウム粉末
を使用すると得られた複合焼結体に包埋粉末が強固に付
着してしまう。焼結後、サンドブラスト処理しても除去
できず、研削工程が必要となり、焼結後研削などの機械
加工が不要となりうるという常圧焼結法の特徴がなくな
ってしまう。さらに包埋原料が強固に複合焼結体に付着
すると、密度が低下し、十分な特性が得られないなどの
問題があった。本発明は以上のような問題点を解消さ
せ、焼結後、サンドブラスト処理で簡単に包埋Al2O
3粉末を除去できる。高密度の複合焼結体を製造する方
法を提供することを目的とする。As an embedding raw material powder,
When the relatively inexpensive aluminum oxide powder having a purity of about 99% is used, the embedding powder adheres strongly to the obtained composite sintered body. After sintering, it cannot be removed even by sandblasting, a grinding step is required, and the characteristic of the atmospheric pressure sintering method that machining such as grinding after sintering may be unnecessary is lost. Further, when the embedding material is firmly adhered to the composite sintered body, there is a problem that the density is lowered and sufficient characteristics cannot be obtained. The present invention solves the above problems, and after sintering, the embedded Al 2 O can be easily processed by sandblasting.
3 powders can be removed. An object of the present invention is to provide a method for producing a high density composite sintered body.
【0004】[0004]
【課題を解決するための手段】炭化チタン粉末10〜6
0重量%と酸化アルミニウム粉末90〜40重量%の均
質混合物を成形して、この成形体を酸化アルミニウム粉
末に包埋し、中性または還元雰囲気下で1700℃〜1
900℃で常圧焼結する複合材料の製造方法において包
埋原料として、純度が99.9%以上の高純度酸化アル
ミニウム粉末を使用することで上記問題点を解決するこ
とに成功した。Means for Solving the Problems Titanium carbide powders 10-6
0% by weight and 90-40% by weight of aluminum oxide powder are molded into a homogeneous mixture, the molded body is embedded in aluminum oxide powder, and the temperature is 1700 ° C.
In the method for producing a composite material which is sintered under normal pressure at 900 ° C., it has succeeded in solving the above problems by using a high purity aluminum oxide powder having a purity of 99.9% or more as an embedding raw material.
【0005】[0005]
【作用】包埋原料粉末として、99.9%以上の純度の
酸化アルミニウム粉末を使用すると、焼結後、サンドブ
ラスト処理で簡単に包埋した酸化アルミニウムを除去す
ることができる。また、得られた複合焼結体は、理論密
度の99.9%と緻密であり、3点曲げ強度が800M
Pa、破壊靭性値が6.5MPa√mと優れた機械的特
性を示した。一方、包埋原料粉末として、0.1%以上
のSiO2などの不純物を含んだ酸化アルミニウム粉末
を使用すると、包埋した酸化アルミニウムは、複合焼結
体と一部焼結し、強固に付着した。また、得られた複合
焼結体は、密度低下し、そのため、3点曲げ強度も、破
壊靭性値も低下した。強固に付着した酸化アルミニウム
は、サンドブラストでは、除去できず、ダイヤモンドに
よる研削加工が必要であった。When the aluminum oxide powder having a purity of 99.9% or higher is used as the embedding raw material powder, the embedded aluminum oxide can be easily removed by sandblasting after sintering. Further, the obtained composite sintered body was dense with a theoretical density of 99.9% and a three-point bending strength of 800M.
It exhibited excellent mechanical properties such as Pa and a fracture toughness value of 6.5 MPa√m. On the other hand, when aluminum oxide powder containing impurities such as SiO 2 of 0.1% or more is used as the embedding raw material powder, the embedded aluminum oxide partially sinters with the composite sintered body and firmly adheres to it. did. In addition, the density of the obtained composite sintered body was lowered, so that the three-point bending strength and the fracture toughness value were also lowered. The strongly adhered aluminum oxide could not be removed by sandblasting, and needed to be ground by diamond.
【0006】[0006]
【実施例】以下、本発明の一実施例を説明する。平均粒
径0.1μmのTiC粉末30wt%と平均粒径0.2
μmのAl2O3粉末70wt%と平均粒径0.01μ
mのMgO粉末をAl2O3の0.2wt%を均質混合
し、5Kg1cm2で加圧鋳込成形することで、ポンプ
インペラーの成形体を得た。平均粒径0.2μ、0.4
μ、1.5μの純度99.99%と99.9%のAl2
O3粉末で包埋し、Ar気流中で1850℃焼結した。
得られた複合焼結体の包埋したAl2O3の除去法、相
対密度、3点曲げ強度、破壊靭性値を表1に示す。EXAMPLE An example of the present invention will be described below. 30% by weight of TiC powder having an average particle size of 0.1 μm and an average particle size of 0.2
70% by weight of Al 2 O 3 powder having a particle diameter of 0.01 μm and an average particle diameter of 0.01 μm
mOg powder of Mg was mixed homogeneously with 0.2 wt% of Al 2 O 3 and press-molded at 5 kg 1 cm 2 to obtain a pump impeller molded body. Average particle size 0.2μ, 0.4
μ, 1.5μ purity 99.99% and 99.9% Al 2
It was embedded with O 3 powder and sintered at 1850 ° C. in an Ar stream.
Table 1 shows the removal method of embedded Al 2 O 3 , the relative density, the three-point bending strength, and the fracture toughness value of the obtained composite sintered body.
【0007】[0007]
【表1】 [Table 1]
【0008】[0008]
【比較例】実施例1、2と同様にして成形体を作り、こ
れを純度99%と90%のAl2O 3粉末で包埋し、A
r気流中で1850℃で焼結した。得られた複合焼結体
の包埋したAl2O3の除去法、相対密度、3点曲げ強
度、破壊靭性値を表−2に示す。Comparative Example A molded body was prepared in the same manner as in Examples 1 and 2, and embedded in Al 2 O 3 powder having a purity of 99% and 90%.
Sintered at 1850 ° C. in a stream of air. Table 2 shows the removal method of embedded Al 2 O 3 in the obtained composite sintered body, the relative density, the three-point bending strength, and the fracture toughness value.
【0009】[0009]
【表2】 [Table 2]
【0010】[0010]
【発明の効果】以上記したように、本発明に係る高純度
酸化アルミニウム粉末での包埋で得られる複合焼結体は
付着物もなく、高密度、高強度、高靭性として得られる
といった効果があり、この複合焼結体は切削工具用材
料、耐摩耗部材の分野で非常に有効といえる。As described above, the effect that the composite sintered body obtained by embedding with the high-purity aluminum oxide powder according to the present invention has no deposit and has high density, high strength and high toughness. Therefore, it can be said that this composite sintered body is very effective in the fields of materials for cutting tools and wear resistant members.
Claims (1)
化アルミニウム粉末90〜40重量%の均質混合物を成
形し、この成形体を酸化アルミニウム粉末に包埋し、中
性または還元雰囲気下で、1700℃〜1900℃で常
圧焼結する複合材料の製造方法において、包埋原料とし
て99.9%以上の高純度酸化アルミニウム粉末を使用
することを特徴とするチタンのオキシカーバイドと酸化
アルミニウムの複合焼結体の製造方法。1. A homogeneous mixture of 10 to 60% by weight of titanium carbide powder and 90 to 40% by weight of aluminum oxide powder is molded, and the molded body is embedded in aluminum oxide powder, and the mixture is neutralized or reduced to 1700. In a method for producing a composite material which is sintered under normal pressure at 1900C to 1900C, characterized in that 99.9% or more of high-purity aluminum oxide powder is used as an embedding raw material, and a composite calcination of titanium oxycarbide and aluminum oxide. A method for producing a bound body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6190862A JPH0826819A (en) | 1994-07-12 | 1994-07-12 | Production of compound sintered compact of titanium oxycarbide with aluminum oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6190862A JPH0826819A (en) | 1994-07-12 | 1994-07-12 | Production of compound sintered compact of titanium oxycarbide with aluminum oxide |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0826819A true JPH0826819A (en) | 1996-01-30 |
Family
ID=16265010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6190862A Withdrawn JPH0826819A (en) | 1994-07-12 | 1994-07-12 | Production of compound sintered compact of titanium oxycarbide with aluminum oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0826819A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8110516B2 (en) * | 2008-11-28 | 2012-02-07 | Tdk Corporation | Sintered body and production method thereof |
US8173563B2 (en) * | 2008-11-28 | 2012-05-08 | Tdk Corporation | Sintered body and production method thereof |
-
1994
- 1994-07-12 JP JP6190862A patent/JPH0826819A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8110516B2 (en) * | 2008-11-28 | 2012-02-07 | Tdk Corporation | Sintered body and production method thereof |
US8173563B2 (en) * | 2008-11-28 | 2012-05-08 | Tdk Corporation | Sintered body and production method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1892227B1 (en) | Process for producing a boron carbide based sintered body | |
JPS61111970A (en) | Silicon nitride sintered body and manufacture | |
JPH0826819A (en) | Production of compound sintered compact of titanium oxycarbide with aluminum oxide | |
CA2495998A1 (en) | Highly shock-resistant ceramic material | |
JP2507480B2 (en) | SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof | |
JP3145470B2 (en) | Tungsten carbide-alumina sintered body and method for producing the same | |
JPS63236763A (en) | Boron carbide sintered body and manufacture | |
JP3810183B2 (en) | Silicon nitride sintered body | |
JPH0867568A (en) | Silicon carbide/silicon nitride composite material and production thereof | |
JPH0688832B2 (en) | Polycrystalline ceramic product and manufacturing method thereof | |
JPH0451512B2 (en) | ||
JPH09316589A (en) | Aluminum oxide-tungsten carbide-cobalt composite material having high toughness, high strength, and high hardness | |
JP2003137655A (en) | Boron carbide-aluminum nitride sintered compact, and production method therefor | |
JPH09227233A (en) | Production of silicon carbide sintered compact | |
JP3114302B2 (en) | Silicon nitride sintered body and method for producing the same | |
JPH06116045A (en) | Silicon nitride sintered compact and its production | |
JPH02116675A (en) | Production of sintered sic body | |
JP2001322009A (en) | Alumina ceramic cutting tool and manufacturing method therefor | |
JP2944271B2 (en) | Method for producing alumina-based composite sintered body and alumina-based composite sintered body | |
JPS61270265A (en) | High strength high tougness tib2 base composite sintered body | |
JP2006193353A (en) | Alumina sintered body, cutting insert, and cutting tool | |
JPH0639344B2 (en) | Manufacturing method of ceramic products | |
JPS62158168A (en) | Silicon nitride base sintered body | |
JPH09295869A (en) | Sialon ceramic excellent in impact resistance and its production | |
JPH08197307A (en) | Cutting tool made of cubic system boron nitride base superhigh pressure sintered material having high strength and high toughness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20011002 |