JPH08264832A - Gallium nitride compound semiconductor light emitting element - Google Patents
Gallium nitride compound semiconductor light emitting elementInfo
- Publication number
- JPH08264832A JPH08264832A JP8608495A JP8608495A JPH08264832A JP H08264832 A JPH08264832 A JP H08264832A JP 8608495 A JP8608495 A JP 8608495A JP 8608495 A JP8608495 A JP 8608495A JP H08264832 A JPH08264832 A JP H08264832A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- light emitting
- gallium nitride
- compound semiconductor
- semiconductor light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Led Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体発光素子に関
し、特に、母材を窒化ガリウム系化合物で構成した青色
発光の半導体発光素子(発光ダイオード)に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device, and more particularly to a blue light emitting semiconductor light emitting device (light emitting diode) whose base material is a gallium nitride compound.
【0002】[0002]
【従来の技術】従来、発光ダイオードとして窒化ガリウ
ム系(例えば AlGaInN)の化合物半導体のものが知られ
ている。その化合物半導体は直接遷移型であることから
発光効率が高いこと、光の3原色の1つである青色を発
光色とすること等から注目されている。2. Description of the Related Art Conventionally, as a light emitting diode, a gallium nitride-based (for example, AlGaInN) compound semiconductor is known. Since the compound semiconductor is a direct transition type, it has been noted that it has high emission efficiency, and that blue, which is one of the three primary colors of light, is used as the emission color.
【0003】窒化ガリウム系半導体においても、Mgをド
ープして電子線を照射したり、熱処理によりp型化で
き、従来のn層と半絶縁層(i層)とを接合させたMIS
型に換えて、AlGaN のp層と、ZnドープのInGaN の発光
層と、AlGaN のn層とを用いたダブルヘテロpn接合を
有する発光ダイオードが提案されている。Also in a gallium nitride-based semiconductor, an MIS in which a conventional n-layer and a semi-insulating layer (i-layer) are joined can be doped with Mg and irradiated with an electron beam or can be turned into p-type by heat treatment.
Instead of the mold, a light emitting diode having a double hetero pn junction using an AlGaN p layer, a Zn-doped InGaN light emitting layer, and an AlGaN n layer has been proposed.
【0004】また発明者らは、さらに発光輝度を向上さ
せるために、未公開の構造(特願平6-113484)を提案し
ている。この窒化ガリウム系化合物発光ダイオードにお
いては、図1と構造はほぼ同等であり、形成する発光層
が単層で、母材にアクセプタである亜鉛(Zn)とドナーで
あるシリコン(Si)が同時にドープされており、その両側
の接合がダブルヘテロ構造であって、420 〜450nm のピ
ーク波長、発光出力1000mcd が実現している。このよう
な青色発光素子としてはマルチカラーディスプレイ用の
青色に需要がある。Further, the inventors have proposed an unpublished structure (Japanese Patent Application No. 6-113484) in order to further improve the emission brightness. In this gallium nitride compound light emitting diode, the structure is almost the same as that of FIG. 1, and the light emitting layer to be formed is a single layer, and the base material is simultaneously doped with zinc (Zn) which is an acceptor and silicon (Si) which is a donor. The junctions on both sides of the structure are double heterostructures, and a peak wavelength of 420 to 450 nm and an emission output of 1000 mcd are realized. There is a demand for a blue color for a multi-color display as such a blue light emitting element.
【0005】また交通信号灯の青は法規によって発光ピ
ーク波長が約500nm 前後の高輝度のランプが要求されて
おり、現状の上記の青色発光素子では波長が短すぎると
いう問題がある。この青色発光素子の発光ピーク波長を
長波長側にしようとするには、発光層のエネルギーバン
ドの幅を短くすることが求められ、発光層のIn組成比を
大きくすることで、より長波長側の発光ピークを得るこ
とができる。In addition, the blue of the traffic signal lamp requires a high-luminance lamp having an emission peak wavelength of about 500 nm, which is problematic in that the blue light emitting element described above has a too short wavelength. In order to set the emission peak wavelength of this blue light emitting element to the long wavelength side, it is required to shorten the width of the energy band of the light emitting layer, and by increasing the In composition ratio of the light emitting layer, the longer wavelength side The emission peak of can be obtained.
【0006】また、窒化ガリウム系化合物半導体発光素
子では、特開平6-268257号公報に示されるような、発光
層44、44’を多重量子井戸構造にして発光出力を向
上させたものがある(図4参照)。Some gallium nitride-based compound semiconductor light-emitting devices have a multi-quantum well structure for the light-emitting layers 44 and 44 'as shown in Japanese Patent Laid-Open No. 6-268257 to improve the light emission output ( (See FIG. 4).
【0007】[0007]
【発明が解決しようとする課題】しかしながら、上記の
井戸層44、44’による出力は向上しているものの、
井戸層に発光中心を添加せず、バンド間発光であるた
め、発光波長は従来と同様、約410nm 付近である。これ
は交通信号機で必要とされる波長500nm として使用する
ことができないという問題がある。従って、より長波長
で、かつより発光輝度の高い発光ダイオードが求められ
ている。従って本発明の目的は、より発光輝度を向上さ
せた窒化ガリウム系化合物半導体発光素子を提供するこ
とである。However, although the output from the above well layers 44 and 44 'is improved,
The emission wavelength is around 410 nm, which is the same as in the conventional case, because the band-to-band emission is obtained without adding an emission center to the well layer. This has the problem that it cannot be used as the wavelength of 500 nm required for traffic signals. Therefore, there is a demand for a light emitting diode having a longer wavelength and higher emission brightness. Therefore, an object of the present invention is to provide a gallium nitride-based compound semiconductor light emitting device with further improved emission brightness.
【0008】[0008]
【課題を解決するための手段】上記の課題を解決するた
め本発明の構成は、発光層を挟むクラッド層の両接合を
ダブルヘテロ構造とした窒化ガリウム系化合物半導体発
光素子において、前記発光層を、アクセプターとドナー
とを同時ドープした、少なくとも一層以上の多重量子井
戸構造(MQW) としたことである。また関連発明の構成
は、前記多重量子井戸構造の井戸層に、アクセプタとド
ナーを同時ドープしたことを特徴とし、あるいはまた、
前記発光層が、インジウムアルミニウムガリウムナイト
ライド(InAlGaN) にアクセプタ不純物、例えば亜鉛(Z
n)、ドナー不純物、例えばシリコン(Si)を添加した活性
層であることを特徴とする。またさらに特徴ある構成
は、前記多重量子井戸構造のバリア層が、前記井戸層と
組成比を変化させたインジウムアルミニウムガリウムナ
イトライド(InAlGaN) 系の材料となっており、望ましく
はバリア層の格子定数と井戸層の格子定数とが等しくな
っていることである。あるいはまた、前記多重量子井戸
構造において、各井戸層の両側のバリア層にアクセプタ
を添加したことを特徴とする。In order to solve the above problems, the structure of the present invention is a gallium nitride-based compound semiconductor light-emitting device having a double heterostructure in both junctions of the cladding layers sandwiching the light-emitting layer. That is, at least one layer of multiple quantum well structure (MQW) is obtained by simultaneously doping the acceptor and the donor. The structure of the related invention is characterized in that the well layer of the multiple quantum well structure is simultaneously doped with an acceptor and a donor, or,
The light emitting layer is composed of indium aluminum gallium nitride (InAlGaN) and acceptor impurities such as zinc (Z
n), a donor impurity, for example, an active layer to which silicon (Si) is added. A further characteristic structure is that the barrier layer of the multiple quantum well structure is made of an indium aluminum gallium nitride (InAlGaN) -based material with a composition ratio changed from that of the well layer, and preferably the lattice constant of the barrier layer. And the lattice constant of the well layer are equal. Alternatively, in the multi-quantum well structure, acceptors are added to the barrier layers on both sides of each well layer.
【0009】[0009]
【作用】多重量子井戸構造(MQW) において井戸層は、そ
の両側にバリア層としてバッドギャップの大きい層が取
り囲んでいるため、バリア層で発生したキャリアがほと
んど井戸層に流れ込み、発光に寄与する。そのため発光
輝度が向上し、出力が増加する構造を有している。ここ
で井戸層に、より発光波長を短くするため、アクセプタ
ーとドナーとを同時に添加してやると、井戸層内ではア
クセプタレベルとドナーレベル間の、より長い波長の発
光があり、キャリアが多いことから発光輝度が高く維持
される。In the multi-quantum well structure (MQW), the well layer is surrounded on both sides by a layer having a large bad gap as a barrier layer, so that almost all carriers generated in the barrier layer flow into the well layer and contribute to light emission. Therefore, it has a structure in which the emission brightness is improved and the output is increased. If an acceptor and a donor are added at the same time to the well layer to make the emission wavelength shorter, emission occurs at a longer wavelength between the acceptor level and the donor level in the well layer, and light is emitted because there are many carriers. The brightness is kept high.
【0010】[0010]
【発明の効果】量子井戸層内でアクセプターとドナーと
の間の発光によって波長が約500nm 程度で発光輝度が従
来の数倍(4〜5cd)となり、実用に十分耐えるものが得ら
れた。また、従来のような極薄膜(5〜50Å) といった技
術によらなくとも、通常の薄膜形成技術(100Å程度) で
適用でき、形成が容易である。The light emission between the acceptor and the donor in the quantum well layer has a wavelength of about 500 nm, and the emission brightness is several times (4 to 5 cd) as compared with the conventional one, and it is possible to obtain the one which is sufficiently practical. In addition, it can be applied by a normal thin film forming technology (about 100 Å) without using a conventional technique such as an ultra-thin film (5 to 50 Å), and the formation is easy.
【0011】[0011]
【実施例】以下、本発明を具体的な実施例に基づいて説
明する。 (第一実施例)図1は、本発明の井戸層からなる多層発
光層5を有する発光ダイオード10の模式的構成断面図
で、多層発光層5部分のより詳しい模式図が図2であ
る。まず第一実施例として多層発光層5として、Alx3In
y3Ga1-x3-y3 N : Zn,Si / Alx2Iny2Ga1-x2-y2 N : Mgで
構成される多重量子井戸構造(MQW) を使用する場合を示
す模式的な構成断面図である。各層は交互に、バリア層
であるAlx2Iny2Ga1-x2-y2N : Mg 層51と、井戸層で
あるAlx3Iny3Ga1-x3-y3 N : Zn,Si 層52とを、ここで
はそれぞれ 100Å形成してある。EXAMPLES The present invention will be described below based on specific examples. (First Embodiment) FIG. 1 is a schematic sectional view of a light emitting diode 10 having a multilayer light emitting layer 5 composed of a well layer according to the present invention. FIG. 2 is a more detailed schematic diagram of the multilayer light emitting layer 5 portion. First, as the first embodiment, as the multilayer light emitting layer 5, Al x3 In
y3 Ga 1-x3-y3 N: Zn, Si / Al x2 In y2 Ga 1-x2-y2 N: Mg Quantum well structure (MQW) is there. Each layer is alternately composed of an Al x2 In y2 Ga 1-x2-y2 N: Mg layer 51 which is a barrier layer and an Al x3 In y3 Ga 1-x3-y3 N: Zn, Si layer 52 which is a well layer, Here, 100Å are formed respectively.
【0012】この構造の発光層5を形成する製法を示
す。発光ダイオードとしての構造は従来と同様であり、
発光層5を形成する前までのクラッド層4を形成する。
クラッド層4は、ここではシリコン(Si)ドープのAlx4In
y4Ga1-x4-y4N層である。A manufacturing method for forming the light emitting layer 5 having this structure will be described. The structure as a light emitting diode is the same as the conventional one,
The clad layer 4 before the formation of the light emitting layer 5 is formed.
Here, the clad layer 4 is made of silicon (Si) -doped Al x4 In.
It is the y4 Ga 1-x4-y4 N layer.
【0013】クラッド層4を形成後、サファイア基板1
の温度を850 ℃に保持し、N2又はH2を20 liter/分、NH
3 を10 liter/分、TMG を 1×10-5モル/分、TMI を 1
×10-4モル/分、及び、シラン(SiH4)およびジエチルジ
ンク(DEZ) を導入し、発光層5の成膜を行う。このと
き、まず最初に約100 Åだけ、添加する不純物をシクロ
ペンタジエニルマグネシウム(Mg(C5H5)2)(以下「CP2Mg
」と記す)を導入してマグネシウム(Mg)ドープの層5
1(バリア層)を形成し、続けて、母材は同じ材料、同
じ厚さ約100 Åで、シランおよびDEZ を用いて亜鉛(Z
n)、シリコン(Si)ドープの層52(井戸層)を形成す
る。続けて同様な厚さで、マグネシウム(Mg)ドープ層5
1(バリア層)、続けて亜鉛(Zn)、シリコン(Si)ドープ
の層52(井戸層)を形成し、というように交互に井戸
層52とバリア層51とを交互に成膜して、全体をおよ
そ膜厚約0.5 μmとなるまで発光層5を形成し、図2に
示すような多層構造とする。なお、この状態で多層発光
層5は、まだ高抵抗である。この発光層5のP層におけ
るマグネシウム(Mg)の濃度は 1×1020/cm3、井戸層で、
亜鉛(Zn)の濃度は 5×1018/cm3であり、シリコン(Si)の
濃度も 5×1018/cm3である。After forming the cladding layer 4, the sapphire substrate 1
Temperature of 850 ℃, N 2 or H 2 20 liter / min, NH
3 for 10 liter / min, TMG for 1 × 10 -5 mol / min, TMI for 1
The light emitting layer 5 is formed by introducing x10 -4 mol / min, silane (SiH 4 ) and diethyl zinc (DEZ). At this time, first, about 100 Å impurities were added to cyclopentadienyl magnesium (Mg (C 5 H 5 ) 2 ) (hereinafter referred to as `` CP 2 Mg
]) And magnesium (Mg) -doped layer 5
1 (barrier layer) is formed, and then the base material is the same material, the same thickness is about 100 Å, and zinc (Z
n), a silicon (Si) -doped layer 52 (well layer) is formed. Continuously with the same thickness, magnesium (Mg) doped layer 5
1 (barrier layer), successively zinc (Zn) and silicon (Si) -doped layers 52 (well layers) are formed, and the well layers 52 and barrier layers 51 are alternately formed. The light emitting layer 5 is formed so as to have a film thickness of about 0.5 μm to form a multilayer structure as shown in FIG. In this state, the multilayer light emitting layer 5 still has high resistance. The concentration of magnesium (Mg) in the P layer of the light emitting layer 5 is 1 × 10 20 / cm 3 , and in the well layer,
The concentration of zinc (Zn) is 5 × 10 18 / cm 3 , and the concentration of silicon (Si) is also 5 × 10 18 / cm 3 .
【0014】その後、従来技術で上側のクラッド層6
(61、62、63)を形成し、最後に、反射電子線回折装置
を用いて、第1コンタクト層63、第2コンタクト層6
2、p層61及びMQW 発光層5に一様に電子線を照射し
た。電子線の照射条件は、加速電圧約10KV、試料電流1
μA、ビームの移動速度0.2mm/sec 、ビーム径60μm
φ、真空度5.0 ×10-5Torrである。この電子線の照射に
より、第1コンタクト層63、第2コンタクト層62、
p層61及びMQW 発光層51は、それぞれ、ホール濃度
7×1017/cm3, 5×1017/cm3, 1×1017/cm3、抵抗率
0.5Ωcm,0.8 Ωcm,4 Ωcmのp伝導型半導体となっ
た。このようにして、図2に示すような多層構造のウエ
ハが得られた。その後、ウエハのまま、各個別の発光素
子(チップ)を形成していくが、この工程は既に周知で
あるので、ここでは説明は省略する。Then, in the conventional technique, the upper cladding layer 6 is formed.
(61, 62, 63) are formed, and finally, the first contact layer 63 and the second contact layer 6 are formed by using a reflection electron beam diffractometer.
2, the p layer 61 and the MQW light emitting layer 5 were uniformly irradiated with an electron beam. Electron beam irradiation conditions are acceleration voltage of about 10KV and sample current of 1
μA, beam moving speed 0.2mm / sec, beam diameter 60μm
φ, vacuum degree is 5.0 × 10 −5 Torr. By the irradiation of this electron beam, the first contact layer 63, the second contact layer 62,
The p-layer 61 and the MQW light-emitting layer 51 each have a hole concentration
7 × 10 17 / cm 3 , 5 × 10 17 / cm 3 , 1 × 10 17 / cm 3 , resistivity
It became a p-conduction type semiconductor of 0.5 Ωcm, 0.8 Ωcm, and 4 Ωcm. In this way, a wafer having a multilayer structure as shown in FIG. 2 was obtained. After that, each individual light emitting element (chip) is formed on the wafer as it is, but since this step is already known, the description thereof is omitted here.
【0015】このMQW 層には、亜鉛(Zn)のアクセプター
レベル、シリコンのドナーレベルによって遷移エネルギ
ーが母材よりも小さくなり、発光するピーク波長が長波
長側にずれ、需要が望まれる約500nm 近傍の波長が得ら
れる。また、マグネシウム(Mg)ドープでp伝導型となっ
た周囲のバリア層からキャリアが沢山流れ込むので、MQ
W 層に形成された亜鉛(Zn)のアクセプターレベル、シリ
コンのドナーレベル間での発光が多く発生し、発光輝度
を向上させる。In this MQW layer, the transition energy becomes smaller than that of the base material due to the acceptor level of zinc (Zn) and the donor level of silicon, the peak wavelength of light emission shifts to the long wavelength side, and the demand is about 500 nm. Near wavelengths are obtained. In addition, since a large amount of carriers flow from the barrier layer around the p-conductivity type doped with magnesium (Mg), MQ
A large amount of light emission occurs between the acceptor level of zinc (Zn) formed in the W layer and the donor level of silicon, which improves the emission brightness.
【0016】このようにして得られた発光ダイオード1
0は、駆動電流20mA、駆動電圧4Vで、発光ピーク波長
が490nm 、発光強度5000mcd であった。これは従来より
も3倍以上の発光輝度を有し、発光ピーク波長も、交通
信号機で求められている500nm に近いものが得られた。The light emitting diode 1 thus obtained
0 was a driving current of 20 mA, a driving voltage of 4 V, an emission peak wavelength of 490 nm, and an emission intensity of 5000 mcd. It has a light emission brightness more than three times that of the conventional one, and the light emission peak wavelength was close to 500 nm required by traffic signals.
【0017】又、上記のMQW 層52における亜鉛(Zn)ま
たはシリコン(Si)のそれぞれの濃度は、それぞれ 1×10
17〜 1×1020/cm3の範囲が発光強度を向上させる点で望
ましい。The concentration of zinc (Zn) or silicon (Si) in the MQW layer 52 is 1 × 10.
The range of 17 to 1 × 10 20 / cm 3 is desirable in terms of improving the emission intensity.
【0018】なお、上記の実施例では、バリア層51、
井戸層52、クラッド層4、6、高キャリア濃度n+ 層
3との間にヘテロ接合が形成され、各層のバリア層51
のAl、In、Gaの成分比は、GaN の高キャリア濃度n+ 層
3の格子定数に一致するように選択されている。In the above embodiment, the barrier layers 51,
A heterojunction is formed between the well layer 52, the cladding layers 4 and 6, and the high carrier concentration n + layer 3, and the barrier layer 51 of each layer is formed.
The Al, In, and Ga component ratios are selected so as to match the lattice constant of the high carrier concentration n + layer 3 of GaN.
【0019】(第二実施例)量子井戸層から成る多層発
光層5として、Alx3Iny3Ga1-x3-y3 N : Zn,Si / Alx2In
y2Ga1-x2-y2 N で構成されるMQW 層を使用する場合を図
3に模式的な構成断面図で示す。つまり、バリア層とし
て特にp伝導型にしなくても、効果は同様である。(Second Embodiment) As a multilayer light emitting layer 5 composed of a quantum well layer, Al x3 In y3 Ga 1-x3-y3 N: Zn, Si / Al x2 In
The case of using the MQW layer composed of y2 Ga 1-x2-y2 N is shown in the schematic sectional view of the structure in FIG. That is, the effect is the same even if the barrier layer is not made to be p-conductivity type.
【0020】この場合も、第一実施例と同様、クラッド
層4を形成後、発光層5の成膜を行う。このとき、まず
最初に約100 Åだけ、添加する不純物を無しにしてアン
ドープの層53(バリア層)を形成し、続けて、母材は
同じ材料、同じ厚さ約100 Åで、シランおよびDEZ を用
いて亜鉛(Zn)、シリコン(Si)ドープの層52(井戸層)
を形成する。続けて同様な厚さで、アンドープ層51、
続けて亜鉛(Zn)、シリコン(Si)ドープの層52を形成
し、というように交互にドープ層52とアンドープ層5
3とを交互に成膜して、全体をおよそ膜厚約0.5 μmと
なるまで発光層5を形成し、図3に示すような多層構造
とする。この多層発光層5における亜鉛(Zn)の濃度は 5
×1018/cm3であり、シリコン(Si)の濃度も 5×1018/cm3
である。Also in this case, as in the first embodiment, the light emitting layer 5 is formed after the cladding layer 4 is formed. At this time, first, an undoped layer 53 (barrier layer) is formed by adding about 100 Å without adding impurities, and subsequently, the base material is the same material, the same thickness is about 100 Å, and silane and DEZ are added. By using zinc (Zn), silicon (Si) doped layer 52 (well layer)
To form. Then, with the same thickness, the undoped layer 51,
Subsequently, a layer 52 doped with zinc (Zn) and silicon (Si) is formed, and so on.
3 and 3 are alternately formed, and the light emitting layer 5 is formed until the entire film has a thickness of about 0.5 μm to form a multilayer structure as shown in FIG. The concentration of zinc (Zn) in the multilayer light emitting layer 5 is 5
× 10 18 / cm 3 and the concentration of silicon (Si) is also 5 × 10 18 / cm 3
Is.
【0021】このようにして得られた発光ダイオード1
0は、駆動電流20mA、駆動電圧4Vで、発光ピーク波長
が490nm 、発光強度4000mcd であった。これも従来より
も2倍以上の発光輝度を有し、発光ピーク波長も、交通
信号機で求められている500nm に近いものが得られてい
る。The light emitting diode 1 thus obtained
0 had a driving current of 20 mA, a driving voltage of 4 V, an emission peak wavelength of 490 nm, and an emission intensity of 4000 mcd. This also has a light emission brightness more than double that of the conventional one, and the light emission peak wavelength is close to 500 nm required by traffic signals.
【0022】なお、発光層5に添加するアクセプターと
ドナーとしては、母材がIII-V 化合物半導体であること
から、2族元素と4族元素との組み合わせで添加する場
合は、亜鉛(Zn)やカドミウム(Cd)、ベリリウム(Be)、マ
グネシウム(Mg)、水銀(Hg)などの2族元素がアクセプタ
ー、シリコン(Si)やゲルマニウム(Ge)、炭素(C) 、錫(S
n)、鉛(Pb)などの4族元素がドナーとなる。また4族元
素と6族元素との組み合わせでは、今度は4族がアクセ
プター、硫黄(S) やセレン(Se)、テルル(Te)などの6族
元素がドナーとなる。As the acceptor and donor to be added to the light emitting layer 5, since the base material is a III-V compound semiconductor, zinc (Zn) is added when a combination of a Group 2 element and a Group 4 element is added. And Group 2 elements such as cadmium (Cd), beryllium (Be), magnesium (Mg), and mercury (Hg) are acceptors, silicon (Si), germanium (Ge), carbon (C), tin (S).
Group 4 elements such as n) and lead (Pb) serve as donors. In addition, in the combination of the group 4 element and the group 6 element, the group 4 element becomes the acceptor, and the group 6 element such as sulfur (S), selenium (Se) and tellurium (Te) serves as the donor.
【図1】本発明の第1実施例に係る発光ダイオードの構
成を示した模式的構成図。FIG. 1 is a schematic configuration diagram showing a configuration of a light emitting diode according to a first embodiment of the present invention.
【図2】多層発光層の構成の模式的説明図。FIG. 2 is a schematic explanatory view of a structure of a multi-layer light emitting layer.
【図3】第2実施例に係る発光層の構成を示した模式的
構成図。FIG. 3 is a schematic configuration diagram showing a configuration of a light emitting layer according to a second example.
【図4】従来の発光ダイオードの構成を示した模式的構
成図。FIG. 4 is a schematic configuration diagram showing a configuration of a conventional light emitting diode.
10 発光ダイオード 1 サファイヤ基板 2 バッファ層 3 高キャリア濃度n+ 層 4 高キャリア濃度n+ 層(クラッド層) 5 多層発光層 51、53 バリア層 52 量子井戸層(MQW層) 6 コンタクト層(クラッド層) 61 p層 62 第2コンタクト層 63 第1コンタクト層 7、8 電極 9 溝10 Light Emitting Diode 1 Sapphire Substrate 2 Buffer Layer 3 High Carrier Concentration n + Layer 4 High Carrier Concentration n + Layer (Clad Layer) 5 Multilayer Light Emitting Layers 51, 53 Barrier Layer 52 Quantum Well Layer (MQW Layer) 6 Contact Layer (Clad Layer) ) 61 p layer 62 second contact layer 63 first contact layer 7, 8 electrode 9 groove
Claims (8)
ヘテロ構造とした窒化ガリウム系化合物半導体発光素子
において、 前記発光層を、アクセプターとドナーとを同時ドープし
た、少なくとも一層以上の多重量子井戸構造(MQW) とし
たことを特徴とする窒化ガリウム系化合物半導体発光素
子。1. A gallium nitride-based compound semiconductor light-emitting device having a double heterostructure in both junctions of cladding layers sandwiching a light-emitting layer, wherein at least one or more multiple quantum wells in which the light-emitting layer is simultaneously doped with an acceptor and a donor. A gallium nitride-based compound semiconductor light-emitting device having a structure (MQW).
プタとドナーを同時ドープしたことを特徴とする請求項
1に記載の窒化ガリウム系化合物半導体発光素子。2. The gallium nitride-based compound semiconductor light emitting device according to claim 1, wherein the well layer having the multiple quantum well structure is co-doped with an acceptor and a donor.
リウムナイトライド(InAlGaN) 系の母材に亜鉛(Zn)、シ
リコン(Si)を添加した活性層であることを特徴とする請
求項1又は2に記載の窒化ガリウム系化合物半導体発光
素子。3. The light emitting layer is an active layer in which zinc (Zn) and silicon (Si) are added to an indium aluminum gallium nitride (InAlGaN) base material. The gallium nitride-based compound semiconductor light-emitting device according to the above.
井戸層と組成比を変化させたインジウムアルミニウムガ
リウムナイトライド(InAlGaN) 系の材料であることを特
徴とする請求項2乃至3記載の窒化ガリウム系化合物半
導体発光素子。4. The indium aluminum gallium nitride (InAlGaN) -based material, the composition ratio of which is different from that of the well layer, in the barrier layer having the multiple quantum well structure. Gallium nitride compound semiconductor light emitting device.
格子定数が前記井戸層の格子定数に一致するように決定
されたことを特徴とする請求項4記載の窒化ガリウム系
化合物半導体発光素子。5. The gallium nitride-based compound semiconductor light emission according to claim 4, wherein the composition ratio of the barrier layer is determined so that the lattice constant of the barrier layer matches the lattice constant of the well layer. element.
の両側のバリア層にアクセプタを添加したことを特徴と
する請求項1乃至5記載の窒化ガリウム系化合物半導体
発光素子。6. The gallium nitride-based compound semiconductor light emitting device according to claim 1, wherein in the multiple quantum well structure, acceptor is added to barrier layers on both sides of each well layer.
Åから200Åの厚さを有することを特徴とする請求項
1乃至6に記載の窒化ガリウム系化合物半導体発光素
子。7. Each well layer of the multiple quantum well structure comprises 50
7. The gallium nitride-based compound semiconductor light emitting device according to claim 1, which has a thickness of Å to 200Å.
の厚さを有することを特徴とする請求項4乃至7記載の
窒化ガリウム系化合物半導体発光素子。8. The gallium nitride-based compound semiconductor light emitting device according to claim 4, wherein the barrier layer has a thickness of between 50Å and 200Å.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08608495A JP3500762B2 (en) | 1995-03-17 | 1995-03-17 | Gallium nitride based compound semiconductor light emitting device |
DE69637304T DE69637304T2 (en) | 1995-03-17 | 1996-03-14 | A semiconductor light-emitting device consisting of a III-V nitride compound |
EP96104051A EP0732754B1 (en) | 1995-03-17 | 1996-03-14 | Light-emitting semiconductor device using group III nitride compound |
US08/616,884 US5945689A (en) | 1995-03-17 | 1996-03-18 | Light-emitting semiconductor device using group III nitride compound |
TW085110285A TW385555B (en) | 1995-03-17 | 1996-08-21 | Light-emitting semiconductor device using group III nitride compound |
US09/346,935 US6288416B1 (en) | 1995-03-17 | 1999-07-02 | Light-emitting semiconductor device using group III nitride compound |
US09/909,895 US6645785B2 (en) | 1995-03-17 | 2001-07-23 | Light-emitting semiconductor device using group III nitride compound |
US10/617,792 US20040018657A1 (en) | 1995-03-17 | 2003-07-14 | Light-emitting semiconductor device using group III nitride compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08608495A JP3500762B2 (en) | 1995-03-17 | 1995-03-17 | Gallium nitride based compound semiconductor light emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08264832A true JPH08264832A (en) | 1996-10-11 |
JP3500762B2 JP3500762B2 (en) | 2004-02-23 |
Family
ID=13876847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08608495A Expired - Fee Related JP3500762B2 (en) | 1995-03-17 | 1995-03-17 | Gallium nitride based compound semiconductor light emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3500762B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6617061B2 (en) * | 1999-12-06 | 2003-09-09 | Toyoda Gosei Co., Ltd. | Group III nitride compound semiconductor device and group III nitride compound semiconductor light-emitting device |
US7176480B2 (en) | 2002-11-06 | 2007-02-13 | Sanken Electric Co., Ltd. | Light-emitting semiconductor device having a quantum well active layer, and method of fabrication |
JP2014135480A (en) * | 2013-01-10 | 2014-07-24 | Lg Innotek Co Ltd | Light-emitting element |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5545269B2 (en) | 2011-05-19 | 2014-07-09 | 豊田合成株式会社 | Group III nitride semiconductor light-emitting device and method for manufacturing the same |
-
1995
- 1995-03-17 JP JP08608495A patent/JP3500762B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6617061B2 (en) * | 1999-12-06 | 2003-09-09 | Toyoda Gosei Co., Ltd. | Group III nitride compound semiconductor device and group III nitride compound semiconductor light-emitting device |
US7176480B2 (en) | 2002-11-06 | 2007-02-13 | Sanken Electric Co., Ltd. | Light-emitting semiconductor device having a quantum well active layer, and method of fabrication |
JP2014135480A (en) * | 2013-01-10 | 2014-07-24 | Lg Innotek Co Ltd | Light-emitting element |
Also Published As
Publication number | Publication date |
---|---|
JP3500762B2 (en) | 2004-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5959401A (en) | Light-emitting semiconductor device using group III nitride compound | |
US6645785B2 (en) | Light-emitting semiconductor device using group III nitride compound | |
JP2666237B2 (en) | Group III nitride semiconductor light emitting device | |
JP2791448B2 (en) | Light emitting diode | |
US6846686B2 (en) | Semiconductor light-emitting device and method of manufacturing the same | |
JP2785254B2 (en) | Gallium nitride based compound semiconductor light emitting device | |
JP2890390B2 (en) | Gallium nitride based compound semiconductor light emitting device | |
JP3298390B2 (en) | Method for manufacturing nitride semiconductor multicolor light emitting device | |
JP2001148507A (en) | Nitride semiconductor device | |
JPH1051030A (en) | Group iii nitride semiconductor light-emitting element | |
JP3152708B2 (en) | Semiconductor light emitting device | |
JPH08167735A (en) | Light emitting element | |
JP3341576B2 (en) | Group III nitride compound semiconductor light emitting device | |
JP2002185044A (en) | Nitride semiconductor multi-colored light-emitting element | |
JP3336855B2 (en) | Group III nitride compound semiconductor light emitting device | |
JP2918139B2 (en) | Gallium nitride based compound semiconductor light emitting device | |
JP3500762B2 (en) | Gallium nitride based compound semiconductor light emitting device | |
JPH08293623A (en) | Method of manufacturing light emitting diode | |
JP3484997B2 (en) | Gallium nitride based compound semiconductor light emitting device | |
JP3216596B2 (en) | Gallium nitride based compound semiconductor light emitting device | |
JP2000174341A (en) | Gallium nitride based compound semiconductor light- emitting element | |
JP3016241B2 (en) | Group III nitride semiconductor light emitting device | |
JP4284862B2 (en) | Epitaxial wafer for light emitting device and light emitting device | |
JP2560964B2 (en) | Gallium nitride compound semiconductor light emitting device | |
JP3307094B2 (en) | Group III nitride semiconductor light emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081212 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091212 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091212 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101212 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |