[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08264498A - Silicon wafer cleaning method - Google Patents

Silicon wafer cleaning method

Info

Publication number
JPH08264498A
JPH08264498A JP7068162A JP6816295A JPH08264498A JP H08264498 A JPH08264498 A JP H08264498A JP 7068162 A JP7068162 A JP 7068162A JP 6816295 A JP6816295 A JP 6816295A JP H08264498 A JPH08264498 A JP H08264498A
Authority
JP
Japan
Prior art keywords
cleaning
ozone
wafer
hydrogen peroxide
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7068162A
Other languages
Japanese (ja)
Other versions
JP3325739B2 (en
Inventor
Hisashi Muraoka
久志 村岡
Yoshiharu Ota
嘉治 太田
Yuji Fukazawa
雄二 深澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PURE RETSUKUSU KK
Toshiba Corp
Nomura Micro Science Co Ltd
Original Assignee
PURE RETSUKUSU KK
Toshiba Corp
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PURE RETSUKUSU KK, Toshiba Corp, Nomura Micro Science Co Ltd filed Critical PURE RETSUKUSU KK
Priority to JP06816295A priority Critical patent/JP3325739B2/en
Publication of JPH08264498A publication Critical patent/JPH08264498A/en
Application granted granted Critical
Publication of JP3325739B2 publication Critical patent/JP3325739B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Detergent Compositions (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PURPOSE: To remove various kinds of metal elements seized in a naturally oxidized film by washing a silicon wafer with a cleaning liquid including hydrogen peroxide and then rinsing the wafer with a rinsing solution formed of ultrapure water containing ozone and hydrofluoric acid of such concentration that do not perfectly dissolve the formed naturally oxidized film. CONSTITUTION: In view of cleaning the surface of a silicon wafer, it is then washed with a cleaning solution including hydrogen peroxide to remove fine particles and form a naturally oxidized film. Thereafter, the etching effect of the hydrofluoric acid is improved with ozone and then executing the linsing with a rinsing solution formed of the ultrapure water to etch off the naturally oxidized film at the area near the surface and to reflectively bleaching impurity leaving the layer near silicon. Cleaning effect for contamination by addition of ozone is never found but it is remarkably improved when HF is added thereto and when HF is 100ppm, an ordinary cleaning effect can be obtained. HF in the rinsing solution never gives adverse effect on the silicon surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シリコンウエーハの製
造プロセス及びデバイス製造プロセスにおけるシリコン
ウエーハの清浄化方法に係り、特に表面の清浄化された
シリコンウエーハを製造するために、過酸化水素を含有
する洗浄液でシリコンウエーハを洗浄して生じた自然酸
化膜からなる親水性表面を得、次いでオゾン(O3 )と
フッ酸(HF)を添加した超純水からなるリンス液によ
りリンスして前記自然酸化膜を完全に溶解しない程度に
エッチングして微量金属元素を除去するとともに、再汚
染をしがたくしたシリコンウエーハの清浄化方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cleaning a silicon wafer in a silicon wafer manufacturing process and a device manufacturing process, and more particularly to a method for producing a surface-cleaned silicon wafer containing hydrogen peroxide. To obtain a hydrophilic surface composed of a natural oxide film formed by cleaning the silicon wafer with a cleaning solution that is used, and then rinse with a rinse solution composed of ultrapure water to which ozone (O 3 ) and hydrofluoric acid (HF) have been added. The present invention relates to a method for cleaning a silicon wafer in which a trace metal element is removed by etching to such an extent that the oxide film is not completely dissolved and recontamination is difficult.

【0002】[0002]

【従来の技術】近年、液晶や半導体素子(LSI)の集
積度の向上にともない、シリコンウエーハ等の基板上へ
の極微量物質による汚染の影響が大きな問題となってい
る。
2. Description of the Related Art In recent years, as the degree of integration of liquid crystals and semiconductor elements (LSI) has been improved, the influence of contamination of a substrate such as a silicon wafer with a trace amount of substances has become a serious problem.

【0003】こうした汚染の原因としては、微粒子に
よるもの(粒径0.1μmの微粒子であっても問題とな
り、微生物自身やその分解物も含まれる)、金属によ
るもの(アルカリ金属としては特にNa、重金属として
はFe、Cu、Ni、Cr等、その他Zn、Ca、M
g、Al等)、有機物によるもの(環境大気中のリソ
グラフィ材料、プラスチック可塑剤、機械油等)、陰
イオンによるもの(PO4 2-、BF2 - 、SO4 2-、C
- 等)が挙げられる。
The cause of such contamination is caused by fine particles (even fine particles having a particle size of 0.1 μm poses a problem, and includes microorganisms themselves and decomposed products thereof), and metal (especially Na as an alkali metal, Heavy metals such as Fe, Cu, Ni, Cr, etc., other Zn, Ca, M
g, Al, etc.), by organic (lithographic materials in the ambient air, the plastic plasticizer, machine oil, etc.), by anion (PO 4 2-, BF 2 - , SO 4 2-, C
l -, and the like).

【0004】これらの様々な形態の汚染に対し、従来よ
り幾つかの清浄化方法が行われてきた。
Several cleaning methods have been used in the past for these various forms of contamination.

【0005】例えば、水酸化アンモニウムと過酸化水素
を含む水性洗浄液(一般にSC−1と称されている)、
塩酸と過酸化水素を含む水性洗浄液(一般にSC−2と
称されている)、硫酸・過酸化水素からなる洗浄液(硫
酸:過酸化水素(30%)=1:3程度)、稀フッ酸か
らなる洗浄液(通常HF:H2 O=1:50〜200、
一般にDHFと称されている)を用いて洗浄を行うもの
である。
For example, an aqueous cleaning solution containing ammonium hydroxide and hydrogen peroxide (generally called SC-1),
From aqueous cleaning solution containing hydrochloric acid and hydrogen peroxide (generally called SC-2), cleaning solution consisting of sulfuric acid and hydrogen peroxide (sulfuric acid: hydrogen peroxide (30%) = 1: 3), diluted hydrofluoric acid Cleaning liquid (usually HF: H 2 O = 1: 50 to 200,
(Generally referred to as DHF).

【0006】SC−1洗浄液の代表的な組成は、アンモ
ニア水(28重量%)1容+過酸化水素(30重量%)
1容+超純水5容である。
A typical composition of the SC-1 cleaning solution is 1 volume of ammonia water (28% by weight) + hydrogen peroxide (30% by weight).
1 volume + 5 volumes of ultrapure water.

【0007】また、SC−1洗浄はウエーハに対してエ
ッチング作用があるため、SC−1洗浄に際してはシリ
コン表面は自然酸化膜(約10オングストローム)を生
じつつ後退する。
Further, since the SC-1 cleaning has an etching action on the wafer, the silicon surface recedes while forming a natural oxide film (about 10 Å) during the SC-1 cleaning.

【0008】したがって、この時ウエーハ表面は親水性
となっている。
Therefore, at this time, the surface of the wafer is hydrophilic.

【0009】SC−1洗浄は、微粒子を効率よく除去で
きる唯一の洗浄法であり、特に微生物由来の微粒子に対
して洗浄力が強い。また有機物、錯イオンを作る金属、
陰イオンに対しても高い洗浄力を有している。
SC-1 cleaning is the only cleaning method capable of efficiently removing fine particles, and has a particularly strong cleaning power for fine particles derived from microorganisms. In addition, organic substances, metals that make complex ions,
It also has a high detergency against anions.

【0010】しかしながら、前述した代表的な組成で
は、シリコン表面に微細な凹凸(マイクロラフネス)を
生じて酸化膜耐圧特性を低下させることがある。
However, in the above-mentioned typical composition, fine irregularities (microroughness) may occur on the silicon surface to deteriorate the oxide film breakdown voltage characteristic.

【0011】ところで、SC−1洗浄液中にFeやAl
が極微量でも存在していると、例えばキレート剤等の補
助がなければ自然酸化膜中にこれらが取り込まれやす
い。
By the way, Fe and Al are contained in the SC-1 cleaning solution.
If a very small amount is present, these are easily incorporated into the natural oxide film unless assisted by a chelating agent or the like.

【0012】FeやAlが0.1ppb存在した場合、
1011atoms/cm2 程度ウエーハに吸着する。特
にFeならば、ウエーハの不良化が発生するレベルであ
る。また、Zn、Ca、Mg等も、条件によってはこう
した汚染現象を起こす。
When Fe or Al is present at 0.1 ppb,
About 10 11 atoms / cm 2 is adsorbed on the wafer. In particular, Fe is a level at which the wafer becomes defective. Further, Zn, Ca, Mg and the like also cause such a contamination phenomenon depending on the conditions.

【0013】そこで、SC−1洗浄液用の試薬として超
高純度のものを使用したとしても、通常の洗浄装置では
これらの洗浄液はウエーハキャリア処理1回ごとに捨て
られるわけではないので、洗浄液は徐々に汚染されてく
る。
Therefore, even if an ultrahigh-purity reagent is used as the SC-1 cleaning liquid, these cleaning liquids are not thrown away after each wafer carrier treatment in a normal cleaning device, so the cleaning liquid is gradually added. Will be polluted by.

【0014】また、Cuのように比較的洗浄力を発揮す
る元素であっても洗浄力は95%程度なので、例えば通
常の半導体プロセスで起こり得る1012atoms/c
2程度の汚染の場合、5×1010atoms/cm2
程度は残存してしまう。
Further, even if an element such as Cu has a relatively high cleaning power, the cleaning power is about 95%, so that, for example, 10 12 atoms / c which can occur in a normal semiconductor process.
In case of contamination of about m 2 , 5 × 10 10 atoms / cm 2
The degree remains.

【0015】したがって、SC−1洗浄では、ウエーハ
上に通常(5〜10)×1010atoms/cm2 程度
の金属が残留してしまう。
Therefore, in the SC-1 cleaning, usually about 5 to 10 × 10 10 atoms / cm 2 of metal remains on the wafer.

【0016】SC−2洗浄は、エッチング作用はないが
金属汚染に対して洗浄力を有し、露出したシリコン表面
でも自然酸化膜を生じ、ウエーハ表面は親水性となって
いる。 硫酸・過酸化水素からなる洗浄液による洗浄
は、有機物特にフォトレジストに対して強い分解力があ
る。また、金属汚染に対しても洗浄力を有している。こ
の洗浄方法は、約130℃で行われるため露出したシリ
コン表面は比較的厚い自然酸化膜(約15オングストロ
ーム)を生じ、ウエーハ表面は親水性となっている。
上述したように、SC−1洗浄、SC−2洗浄、硫酸・
過酸化水素からなる洗浄液による洗浄では、自然酸化膜
が生じるために自然酸化膜による保護的作用が働き、ウ
エーハの微粒子による汚染は起こりにくくなる。
The SC-2 cleaning has no etching action but has a cleaning power against metal contamination, a natural oxide film is formed even on the exposed silicon surface, and the wafer surface is hydrophilic. Cleaning with a cleaning solution composed of sulfuric acid and hydrogen peroxide has a strong decomposing power for organic substances, especially for photoresists. In addition, it has cleaning power against metal contamination. Since this cleaning method is performed at about 130 ° C., the exposed silicon surface produces a relatively thick natural oxide film (about 15 Å) and the wafer surface is hydrophilic.
As described above, SC-1 cleaning, SC-2 cleaning, sulfuric acid
In the case of cleaning with a cleaning liquid composed of hydrogen peroxide, a natural oxide film is formed, so that the natural oxide film acts as a protective function, and the contamination of the wafer with fine particles is less likely to occur.

【0017】一方、DHF洗浄では、ウエーハ上の自然
酸化膜を溶解除去して自然酸化膜中に取り込まれた不純
物を除去する。そのためウエーハ表面はシリコンが露出
した状態(ベアという)となり、疎水性となっている。
On the other hand, in the DHF cleaning, the natural oxide film on the wafer is dissolved and removed to remove the impurities taken in the natural oxide film. Therefore, the surface of the wafer is exposed to silicon (called bare) and is hydrophobic.

【0018】このDHF洗浄では、金属汚染を効率的に
除去できる。例えば、超純水中にFeが100ppbあ
った場合、ウエーハ上へのFeの吸着量は109 ato
ms/cm2 以下であり、実用的に問題とはならない。
また、Al、Zn、Ca、Mgについても同様な挙動を
示す。しかしながら自然酸化膜中のCuは、イオン化傾
向からその大部分が残存する。そのためCuの除去を行
うために稀フッ酸に過酸化水素を加えたフッ酸過酸化水
素洗浄も提案されている。フッ酸過酸化水素洗浄におい
ても、ウエーハ表面はシリコンが露出した状態(ベア)
となり、疎水性となっている。
In this DHF cleaning, metal contamination can be efficiently removed. For example, when Fe is 100 ppb in ultrapure water, the amount of Fe adsorbed on the wafer is 10 9 ato.
It is less than ms / cm 2, which is not a practical problem.
Also, similar behavior is exhibited for Al, Zn, Ca, and Mg. However, most of Cu in the natural oxide film remains due to the ionization tendency. Therefore, in order to remove Cu, cleaning with hydrogen peroxide hydrofluoric acid in which hydrogen peroxide is added to dilute hydrofluoric acid has also been proposed. Silicon wafer is exposed on the wafer surface even after cleaning with hydrofluoric acid and hydrogen peroxide (bare)
And is hydrophobic.

【0019】上述した洗浄液による洗浄処理は、その後
に超純水によるリンス処理が組み合わされて洗浄の一工
程となっている。これは、洗浄液を完全に除去しないと
ウエーハ表面が洗浄液の腐食作用によって変質するから
である。
The above-mentioned cleaning treatment with the cleaning liquid is one step of the cleaning, which is combined with the rinse treatment with the ultrapure water after that. This is because the surface of the wafer is deteriorated by the corrosive action of the cleaning liquid unless the cleaning liquid is completely removed.

【0020】また、上記したように各洗浄法にはそれぞ
れ特性があり、一つの洗浄法では酸化膜特性不良、PN
接合特性不良等によるデバイス不良化を引き起こす汚染
要因を充分に除去することができない。したがって、通
常は、各洗浄法を組み合わせたRCA洗浄による洗浄方
法が用いられている。
Further, as described above, each cleaning method has its own characteristics, and one cleaning method has poor oxide film characteristics and PN.
It is not possible to sufficiently remove the contaminating factors that cause device failure due to defective joining characteristics and the like. Therefore, normally, a cleaning method by RCA cleaning in which each cleaning method is combined is used.

【0021】すなわち、例えばSC−1洗浄→DHF洗
浄→SC−2洗浄による洗浄方法である。
That is, the cleaning method is, for example, SC-1 cleaning → DHF cleaning → SC-2 cleaning.

【0022】これは、初めにSC−1洗浄で微粒子、有
機物、錯イオンを作る金属、陰イオン等を除去し、次い
でDHF洗浄により自然酸化膜を溶解除去して自然酸化
膜中に取り込まれた不純物(Fe、Al、Zn、Ca
等)を除去する。そして最後にSC−2洗浄によりCu
を含む各種金属を除去してウエーハを清浄化するもので
ある。
First, fine particles, organic substances, metal forming complex ions, anions and the like were removed by SC-1 cleaning, and then the natural oxide film was dissolved and removed by DHF cleaning and incorporated into the natural oxide film. Impurities (Fe, Al, Zn, Ca
Etc.) are removed. And finally Cu by SC-2 cleaning
The wafer is cleaned by removing various metals including.

【0023】しかしながら、ベア表面は微粒子を付着さ
せやすく、したがってDHF洗浄はウエーハキャリアや
洗浄液を溜めている洗浄槽から発生する微粒子をウエー
ハに付着させて除去しがたくする。さらに、SC−2洗
浄は微粒子の除去能力が弱いために、洗浄後も微粒子が
残存するという問題がある。
However, the bare surface easily attaches fine particles, and therefore DHF cleaning makes it difficult to remove the fine particles generated from the wafer carrier or the cleaning tank in which the cleaning liquid is stored, by adhering them to the wafer. Further, since the SC-2 cleaning has a weak ability to remove fine particles, there is a problem that fine particles remain after cleaning.

【0024】そこで、RCA洗浄の順序を変更して、D
HF洗浄→SC−1洗浄→SC−2洗浄として洗浄を行
うことがある。
Therefore, the order of RCA cleaning is changed to D
Cleaning may be performed as HF cleaning → SC-1 cleaning → SC-2 cleaning.

【0025】これは、初めにDHF洗浄によって金属汚
染の大部分を除き、次いでSC−1洗浄により微粒子、
有機物を除去して、最後にSC−2洗浄を行うものであ
るが、SC−1洗浄では洗浄液中のFe、Al、Zn等
が自然酸化膜に取り込まれ、これはSC−2洗浄によっ
ては取り除けないという問題がある。
This is done by first removing most of the metal contamination by DHF washing, then fine particles by SC-1 washing,
The organic substance is removed, and finally SC-2 cleaning is performed. In SC-1 cleaning, Fe, Al, Zn, etc. in the cleaning liquid are taken into the natural oxide film, which can be removed by SC-2 cleaning. There is a problem that there is no.

【0026】そこで、さらにSC−1洗浄→DHF洗浄
→SC−2洗浄→DHF洗浄(またはフッ酸過酸化水素
洗浄)やDHF洗浄→SC−1洗浄→SC−2洗浄→D
HF洗浄(またはフッ酸過酸化水素洗浄)のように最後
の工程で再び自然酸化膜の除去を行って、自然酸化膜に
取り込まれたFe、Al、Zn等を除去する方法も行わ
れているが、これではまたウエーハキャリアや洗浄液を
溜めている洗浄槽から発生する微粒子をウエーハに付着
させて除去しにくくするという問題がある。当然、これ
ら微粒子の発生を極力押さえる工夫がなされてはいる
が、それでもベア表面は輸送中の微粒子汚染や空気との
接触による不完全な自然酸化膜を生じて不良が発生する
という問題がある。
Therefore, further SC-1 cleaning → DHF cleaning → SC-2 cleaning → DHF cleaning (or hydrofluoric acid hydrogen peroxide cleaning) or DHF cleaning → SC-1 cleaning → SC-2 cleaning → D
There is also a method of removing Fe, Al, Zn, etc. taken in the natural oxide film by removing the natural oxide film again in the last step like HF cleaning (or hydrogen peroxide cleaning). However, this also causes a problem that the fine particles generated from the wafer carrier or the cleaning tank accumulating the cleaning liquid are attached to the wafer to make it difficult to remove. Naturally, although measures have been taken to suppress the generation of these fine particles as much as possible, there is still a problem that the bare surface is contaminated with fine particles during transportation and an incomplete natural oxide film is generated due to contact with air, resulting in defects.

【0027】こうした問題を解消するために、一連の洗
浄の直後にオゾンを含む純水による処理を加えて清浄な
酸化膜を形成する方法が出願されている(特開平6−2
44174)。
In order to solve such a problem, a method for forming a clean oxide film by applying a treatment with pure water containing ozone immediately after a series of cleaning has been filed (Japanese Patent Laid-Open No. 6-2).
44174).

【0028】しかし、超純水中にFeが100ppt存
在すると、10分のオゾン水による処理で5×109
1×1010atoms/cm2 程度のFeがウエーハ上
に逆吸着されることが59Feを用いたトレーサー実験で
確認されている。勿論、このような汚染に対し洗浄作用
はない。同様に、Al等の金属元素に対してもこのよう
な吸着作用があり、洗浄効果は期待できないので、オゾ
ン水でウエーハを処理する際には特に純度の管理を厳し
くしなければならない。
However, if 100 ppt of Fe is present in the ultrapure water, the treatment with ozone water for 10 minutes gives 5 × 10 9 to
It has been confirmed by a tracer experiment using 59 Fe that Fe of about 1 × 10 10 atoms / cm 2 is reversely adsorbed on the wafer. Of course, there is no cleaning action for such contamination. Similarly, since a metal element such as Al also has such an adsorption effect and a cleaning effect cannot be expected, it is necessary to strictly control the purity particularly when treating a wafer with ozone water.

【0029】また、この方法によれば洗浄装置の構成は
SC−1槽→リンス槽→DHF槽→リンス槽→SC−2
槽→リンス槽→DHF槽→オゾン水リンス槽と8槽にも
なり、ウエーハの大口径化が進んでいる現在では装置が
大掛かりなものとなる。また、工程が多くなると、それ
だけ搬送間で汚染する機会が増大することになるという
問題がある。
According to this method, the structure of the cleaning device is SC-1 tank → rinse tank → DHF tank → rinse tank → SC-2.
There are 8 tanks, rinsing tank, DHF tank, and ozone water rinsing tank, and the equipment becomes large-scale at the present when the diameter of the wafer is increasing. In addition, there is a problem that the number of processes increases, so that the chance of contamination during transportation increases.

【0030】そこで、次のような洗浄工程を短縮する方
法が提出されている(特開平6−216098)。
Therefore, the following method for shortening the washing step has been proposed (Japanese Patent Laid-Open No. 6-216098).

【0031】すなわち、微粒子除去、有機物除去能力の
あるアルカリ・過酸化水素・水からなる洗浄液(SC−
1)による洗浄において、例えばEDTAやTTHAと
いったコンプレクソン型キレート剤でFe、Zn、Ca
等をキレ−トすることにより洗浄液中のFe、Zn、C
a等がウエーハに付着することを抑え、形成される自然
酸化膜を極力清浄にし、次いで微量のHFを添加した純
水でリンスをして自然酸化膜中に補足されている金属を
自然酸化膜の一部と共に溶かし出すというものである。
That is, a cleaning liquid (SC- consisting of alkali, hydrogen peroxide and water capable of removing fine particles and organic substances)
In the cleaning by 1), Fe, Zn, Ca are used with a complexon type chelating agent such as EDTA or TTHA.
Fe, Zn, C in the cleaning liquid by chelating etc.
The natural oxide film formed is prevented from adhering to the wafer as much as possible, and the formed natural oxide film is cleaned as much as possible, and then rinsed with pure water containing a slight amount of HF to remove the metal captured in the natural oxide film. It begins to melt with a part of.

【0032】しかしながら、微量のHFを添加した純水
によるリンスのみで残存金属を十分に除去しようとする
場合、リンス液を約50℃まで加温したり、HF濃度を
1000ppm程度にしなければならない。
However, in order to sufficiently remove the residual metal only by rinsing with pure water to which a trace amount of HF is added, it is necessary to heat the rinsing liquid to about 50 ° C. or set the HF concentration to about 1000 ppm.

【0033】こうした条件の下では、リンス槽周辺の大
気中のHF濃度が上昇し、これがウエーハ表面に選択的
に強く付着して、ウエーハの腐食を生じるので、装置内
の排気等に特別な工夫が必要となる。
Under these conditions, the HF concentration in the atmosphere around the rinsing tank rises and selectively adheres strongly to the wafer surface, causing the wafer to corrode. Is required.

【0034】また、ウエーハ上に微量の有機物が残存す
ると、超高性能LSIの場合、酸化膜特性を低下させる
ことが解明された。したがってSC−1中に微量といえ
ども有機物のキレート剤を添加すると、それがウエーハ
上に吸着して酸化膜特性を低下させるので、これを十分
に除去しなければならず、そのためHFを添加した純水
によるリンスの時間を長く取らねばならず、実用性に欠
けるという問題があった。
Further, it has been clarified that when a trace amount of organic substances remain on the wafer, the oxide film characteristics are deteriorated in the case of an ultra-high performance LSI. Therefore, even if a trace amount of an organic chelating agent is added to SC-1, it adsorbs on the wafer and deteriorates the oxide film characteristics. Therefore, it must be sufficiently removed. Therefore, HF was added. There has been a problem that the rinse with pure water has to take a long time, which is not practical.

【0035】[0035]

【発明が解決しようとする課題】本発明は上述した従来
の多くの洗浄方法の問題点を解決すべくなされたもの
で、ウエーハ上の残存微粒子を低減し、自然酸化膜を保
存した状態で自然酸化膜中に補足された各種金属を除去
するとともに、これらの金属による再汚染を生じにくく
するシリコンウエーハの清浄化方法を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of many conventional cleaning methods, and reduces residual fine particles on a wafer and naturally preserves a natural oxide film. It is an object of the present invention to provide a method for cleaning a silicon wafer which removes various metals trapped in an oxide film and makes re-contamination by these metals less likely to occur.

【0036】[0036]

【課題を解決するための手段】本発明のシリコンウエー
ハの清浄化方法は、過酸化水素を含有する洗浄液で洗浄
し、次いで形成された自然酸化膜を完全に溶解しない濃
度のオゾンとフッ酸を含有する超純水からなるリンス液
によりリンスする工程を含むことを特徴としている。
A method of cleaning a silicon wafer according to the present invention is a method of cleaning a silicon wafer with a cleaning liquid containing hydrogen peroxide, and then removing ozone and hydrofluoric acid at concentrations that do not completely dissolve the formed natural oxide film. The method is characterized by including a step of rinsing with a rinsing liquid containing ultrapure water.

【0037】上記の洗浄液としては、(a)過酸化水素
とアルカリ、(b)過酸化水素と酸(好ましくは塩
酸)、(c)過酸化水素と酸(好ましくは硫酸)、のい
ずれかを含有することが望ましい。また、上記工程の後
に、超純水による洗浄工程をさらに加えることが望まし
い。また上記のリンス液中のオゾンの平均濃度は0.5
〜10ppmであり、フッ酸の平均濃度が1〜100p
pmであることが望ましい。 本発明において、過酸化
水素を含有する洗浄液は過酸化水素とアルカリと水から
構成される強い親水性表面を得られるものが最も好まし
い。アルカリとしては、NH4 OH、N(CH3 4
OH、N(CH3 3 (CH2 CH2 OH)・OH等が
使用でき、これらは高い微粒子除去能力を有している。
また、過酸化水素と塩酸と水からなる洗浄液や硫酸と過
酸化水素からなる洗浄液も使用可能である。 本発明を
構成する過酸化水素を含有する洗浄液の組成は、一般的
な組成であるアンモニア水(28重量%)1容+過酸化
水素(30重量%)1容+超純水5容で十分であるが、
より好ましくはアンモニア水(28重量%)1容+過酸
化水素(30重量%)1容+超純水10〜30容がよ
い。また、洗浄温度は60〜80℃程度の範囲が好まし
い。さらにウエーハの洗浄形態は、単に浸漬すれば十分
な洗浄効果が得られるものである。
As the above cleaning solution, any one of (a) hydrogen peroxide and alkali, (b) hydrogen peroxide and acid (preferably hydrochloric acid), and (c) hydrogen peroxide and acid (preferably sulfuric acid) is used. It is desirable to contain. Further, it is desirable to add a cleaning process using ultrapure water after the above process. The average concentration of ozone in the rinse liquid is 0.5.
10 to 10 ppm, and the average concentration of hydrofluoric acid is 1 to 100 p
pm is preferred. In the present invention, the cleaning solution containing hydrogen peroxide is most preferably one that can obtain a strong hydrophilic surface composed of hydrogen peroxide, alkali and water. The alkali, NH 4 OH, N (CH 3) 4 ·
OH, N (CH 3 ) 3 (CH 2 CH 2 OH) · OH and the like can be used, and these have high ability to remove fine particles.
Further, a cleaning liquid composed of hydrogen peroxide, hydrochloric acid and water and a cleaning liquid composed of sulfuric acid and hydrogen peroxide can also be used. As for the composition of the cleaning liquid containing hydrogen peroxide that constitutes the present invention, 1 volume of aqueous ammonia (28% by weight) + 1 volume of hydrogen peroxide (30% by weight) + 5 volumes of ultrapure water, which is a general composition, are sufficient. In Although,
More preferably, 1 volume of ammonia water (28% by weight) +1 volume of hydrogen peroxide (30% by weight) +10 to 30 volumes of ultrapure water is preferable. The washing temperature is preferably in the range of about 60 to 80 ° C. Furthermore, the wafer cleaning method is such that a sufficient cleaning effect can be obtained by simply immersing the wafer.

【0038】また、本発明によるリンス液は、オゾンの
平均濃度が0.5〜10ppmであり、フッ酸の平均濃
度が1〜100ppmであるが、より好ましくはオゾン
の平均濃度が1〜2ppm、フッ酸の平均濃度が10〜
100ppmであるとよい。また、リンス液は室温下で
十分な洗浄効果が得られるものである。また、ウエーハ
のリンス形態は、浸漬状態として常時オーバーフローさ
せることが望ましい。勿論、スプレーやシャワーでも構
わない。 本発明を構成する洗浄液とウエーハの洗浄に
使用される超純水は、比抵抗18MΩ以上の一般的な規
格の純度を有すればよく、特にリンス液自体が強い洗浄
力をもっているので、規格以内であれば特別の保守を要
しない点が本発明の方法の特長である。
In the rinse liquid according to the present invention, the average concentration of ozone is 0.5 to 10 ppm, and the average concentration of hydrofluoric acid is 1 to 100 ppm, more preferably the average concentration of ozone is 1 to 2 ppm. The average concentration of hydrofluoric acid is 10
It is good that it is 100 ppm. In addition, the rinse liquid has a sufficient cleaning effect at room temperature. In addition, it is desirable that the rinse form of the wafer is constantly overflowed in the immersed state. Of course, you can use a spray or a shower. The cleaning liquid constituting the present invention and the ultrapure water used for cleaning the wafer should have a general standard purity of 18 MΩ or more in specific resistance. Especially, since the rinse liquid itself has a strong cleaning power, it is within the specifications. In that case, it is a feature of the method of the present invention that no special maintenance is required.

【0039】リンス工程の後に残る自然酸化膜は、元素
分析と干渉光による計測結果によるとほぼ5〜10オン
グストローム程度のものである
The natural oxide film remaining after the rinse step is an element
Approximately 5-10 on according to the analysis and measurement result by interference light
It's about Gstrom .

【0040】[0040]

【作用】本発明においては、シリコンウエーハの表面を
清浄化するために、シリコンウエーハを過酸化水素を含
有する洗浄液で洗浄して微粒子の除去と清浄な自然酸化
膜の形成を行い、その後、オゾンによりフッ酸のエッチ
ング作用を向上させて自然酸化膜の表面に近いところを
エッチオフし、かつシリコンに近い層は残してその不純
物を効果的にリーチングするため、オゾンとフッ酸を添
加した超純水からなるリンス液によるリンスを行い、自
然酸化膜の一部を保存したまま、しかもその膜中に捕捉
された各種金属を含む汚染物質をデバイスの不良化を起
こさない範囲にまで除去する。
In the present invention, in order to clean the surface of the silicon wafer, the silicon wafer is washed with a cleaning liquid containing hydrogen peroxide to remove fine particles and form a clean natural oxide film, and then to remove ozone. To improve the etching action of hydrofluoric acid to etch off near the surface of the natural oxide film, and leave the layer close to silicon effectively to reach the impurities. Rinsing is performed with a rinse liquid made of water to remove contaminants containing various metals trapped in the native oxide film to a range that does not cause device failure, while preserving a part of the native oxide film.

【0041】オゾン添加水にフッ酸を加えてシリコン表
面をリンスしても、自然酸化膜があるとHF分子は表面
に付着し難い。通常の高性能ゲート酸化膜用前処理のD
HF浸漬の後では、勿論シリコン表面にHF分子が吸着
する。このFは後続する最終超純水リンスの間に容易に
除去されるといわれているが、放射性トレーサ18FをD
HF中のフッ酸に標識してこの挙動を追跡してみると、
超純水10分のリンス後でも5×1013原子/cm2
上のF原子がシリコン表面に残存していることがわか
る。
Even if hydrofluoric acid is added to ozone-added water to rinse the silicon surface, HF molecules are difficult to adhere to the surface if there is a natural oxide film. Normal high performance gate oxide pretreatment D
After immersion in HF, HF molecules are of course adsorbed on the silicon surface. This F is said to be easily removed during the subsequent final ultrapure water rinse, but the radioactive tracer 18 F
When we trace this behavior by labeling hydrofluoric acid in HF,
It can be seen that 5 × 10 13 atoms / cm 2 or more of F atoms remain on the silicon surface even after rinsing with ultrapure water for 10 minutes.

【0042】しかし、本発明の場合、最大量の100p
pmがリンス液中にあっても、リンス後シリコン表面に
残るF原子は1013/cm2 以下で従来より少くリンス
液中のHFがシリコン表面に悪影響を及ぼすことはな
い。
However, in the case of the present invention, the maximum amount of 100 p
Even if pm is in the rinsing solution, the F atoms remaining on the silicon surface after rinsing are 10 13 / cm 2 or less, which is smaller than in the conventional case and HF in the rinsing solution does not adversely affect the silicon surface.

【0043】[0043]

【実施例】本発明の特色はシリコン表面の性質に関する
ものであるから、シリコンウエーハで実験を行う代り
に、シリコンウエーハから切り出した2cm×2cmの
チップで実験を行った。これらのシリコンウエーハはす
べて(100)で、実施例1,2はp型を、実施例3で
はn型を用いた。比抵抗はすべて数Ωcmである。
EXAMPLE Since the feature of the present invention relates to the property of the silicon surface, instead of conducting the experiment on the silicon wafer, the experiment was conducted on the chip of 2 cm × 2 cm cut out from the silicon wafer. All of these silicon wafers were (100), p-type was used in Examples 1 and 2, and n-type was used in Example 3. The specific resistance is all several Ωcm.

【0044】また、これらの実験はすべて放射性同位元
素によるトレーサ法で行われた。
All these experiments were carried out by the tracer method using radioisotopes.

【0045】Cuは酢酸銅を用い、この銅原子が64Cu
で標識されている(以下64Cuは64Cuで標識したCu
原子を意味する。)。Feは塩化鉄を用い、この鉄原子
59Feで標識されている(以下59Feは59Feで標識
したFe原子を意味する。)。また、HFによるトレー
サ実験は、このフッ素原子が18Fで標識されている(以
18Fは18Fで標識したF原子を意味する。)。
[0045] Cu is used copper acetate, copper atoms 64 Cu
(The following 64 Cu is Cu labeled with 64 Cu.
Means an atom. ). Fe is an iron chloride, the iron atoms 59 are labeled with Fe (hereinafter 59 Fe means a Fe atom labeled with 59 Fe.). Also, tracer experiments with HF is the fluorine atom is 18 is labeled with F (hereinafter 18 F means labeled F atoms 18 F.).

【0046】オゾンの添加は、純水電解で発生したオゾ
ンを溶解モジュールで純水に添加する方式のオゾン供給
装置(ペルメレック電極(株)製)を利用した。このと
き、無声放電のオゾン発生装置を利用してもよい。バブ
リング方式でもオゾンの純水への溶解は良好であるが、
安定性が悪い。溶解ポンプのものであれば安定に供給で
きる。
For the addition of ozone, an ozone supply device (manufactured by Permelek Electrode Co., Ltd.) of the type in which ozone generated by pure water electrolysis is added to pure water in a dissolution module was used. At this time, a silent discharge ozone generator may be used. Even with the bubbling method, the dissolution of ozone in pure water is good,
Poor stability. If it is a dissolution pump, it can be stably supplied.

【0047】オゾン供給装置から発生した10〜15p
pm程度のオゾンを超純水をいれた補助タンクに加え、
同時にフッ酸を添加して所定の濃度とし、直ちに石英リ
ンス槽に送ってPFAキャリア入チップを室温で浸漬処
理した。補助タンクは2基設け、オーバーフローリンス
を連続してできるようにした。
10 to 15p generated from the ozone supply device
Add about pm of ozone to an auxiliary tank containing ultrapure water,
At the same time, hydrofluoric acid was added to a predetermined concentration and immediately sent to a quartz rinsing bath to dip the PFA carrier-containing chip at room temperature. Two auxiliary tanks were provided to allow continuous overflow rinsing.

【0048】以下、図面を参照して本発明による実施例
を詳細に説明する。
Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings.

【0049】(実施例1)59Feが1ppbとなるよう
に上記塩化鉄を添加したSC−1液(アンモニア水(2
8重量%)1容+過酸化水素(30重量%)1容+水5
容)に上記シリコンチップを70℃,10分間浸漬する
と、Feが約1012atoms/cm2 自然酸化膜に吸
着した汚染試料が得られる。この放射線量(A:cpm
とする)を、シンチレータで正確に測定しておく。
[0049] (Example 1) 59 Fe SC-1 solution was added to the iron chloride so is 1 ppb (aqueous ammonia (2
8 wt%) 1 volume + hydrogen peroxide (30 wt%) 1 volume + water 5
When the silicon chip is dipped in a container) at 70 ° C. for 10 minutes, a contaminated sample in which Fe is adsorbed on a natural oxide film of about 10 12 atoms / cm 2 is obtained. This radiation dose (A: cpm
Accurately) with a scintillator.

【0050】補助タンクのオゾン濃度は常に1〜2pp
mの間にあるように調節しておき、3個のチップの入っ
た石英リンス槽にこのオゾン添加水(室温)を流し込
み、オーバーフローリンスを行った。
The ozone concentration in the auxiliary tank is always 1 to 2 pp.
The ozone-added water (room temperature) was poured into a quartz rinse tank containing three chips, and the overflow rinse was performed.

【0051】1分,3分,10分経過後チップを1個ず
つ引上げ、それぞれの放射線量(B:cpmとする)を
計測した。
After the lapse of 1 minute, 3 minutes, and 10 minutes, the chips were pulled up one by one, and the respective radiation doses (B: cpm) were measured.

【0052】それぞれについてB/Aを求めれば洗浄効
率を示す残存率が得られる。
By obtaining B / A for each of them, the residual rate showing the cleaning efficiency can be obtained.

【0053】次に、HFを1ppm,10ppm,10
0ppmと順に添加し同様の測定を行った。また比較例
としてオゾン添加せず、HF10ppmのみの添加で同
様の実験を行った。
Next, HF was added at 1 ppm, 10 ppm, 10
The same measurement was performed by sequentially adding 0 ppm. As a comparative example, the same experiment was conducted by adding only 10 ppm of HF without adding ozone.

【0054】実験結果を図1に示す。オゾン添加だけで
はFe汚染に対して洗浄効果がないのにさらにHFを添
加すると著しく洗浄効果が上がり、HF100ppmで
は、通常の洗浄剤並の効果があることがわかる。
The experimental results are shown in FIG. It can be seen that the addition of ozone alone does not have a cleaning effect on Fe contamination, but the addition of HF significantly improves the cleaning effect, and 100 ppm of HF has the same effect as a normal cleaning agent.

【0055】(実施例2)64Cuが3ppbになるよう
に上記酢酸銅を添加したフッ化アンモン緩衝フッ酸液に
上記シリコンチップを室温,10分間浸漬し、24時間
放置後SC−2液(塩酸(37重量%)1容+過酸化水
素(30重量%)1容+水5容)中で70℃,10分間
の浸漬を行うと、自然酸化膜のあるCuが約1012at
oms/cm2 吸着した汚染試料が得られる。
(Example 2) The above silicon chip was immersed in a fluorinated ammonium buffered hydrofluoric acid solution containing the above copper acetate so that 64 Cu became 3 ppb at room temperature for 10 minutes, and after standing for 24 hours, SC-2 solution ( Immersion in hydrochloric acid (37% by weight) + hydrogen peroxide (30% by weight 1 volume + water 5 volumes) at 70 ° C for 10 minutes resulted in about 10 12 att of Cu with a natural oxide film.
A contaminated sample adsorbed by oms / cm 2 is obtained.

【0056】この試料に対し、実施例1と全く同様の実
験を行った。
The same experiment as in Example 1 was conducted on this sample.

【0057】実験結果を図2に示す。Cuに対してもオ
ゾンとHFの添加で著しく洗浄効果が向上することがわ
かる。しかも洗浄効果は3分程度でかなりのレベルに達
する。したがって、残り7分は超純水のフローに変えて
しまえば、僅かでもフッ酸を含む水が洗浄系内に残るこ
となく、したがって発錆の問題をさけることができる。
実際の利用にあたっては、リンス液中のフッ酸の濃度
は一定である必要はない。例えば短時間であれば100
0ppmまで上がってもよく、要するに平均濃度が所定
の範囲内であれば目的を達し得る。
The experimental results are shown in FIG. It can be seen that the cleaning effect is remarkably improved by adding ozone and HF to Cu. Moreover, the cleaning effect reaches a considerable level in about 3 minutes. Therefore, if the remaining 7 minutes is changed to the flow of ultrapure water, even a slight amount of water containing hydrofluoric acid does not remain in the cleaning system, and thus the problem of rusting can be avoided.
In actual use, the concentration of hydrofluoric acid in the rinse solution does not need to be constant. For example, 100 for a short time
The concentration may be increased to 0 ppm, and in short, if the average concentration is within a predetermined range, the purpose can be achieved.

【0058】(実施例3)オゾン1ppmを添加した純
水にH18Fを0.1ppm,1ppm,10ppm,1
00ppm添加した試料を作り、それぞれにSC−1
(実施例1と同じ組成)で処理して表面を親水性にした
シリコンチップを室温で10分間浸漬してその際にシリ
コン表面に吸着した18Fの量を放射性計測した求めた。
その結果を図3に示す。リンス液中のHFが100pp
mでもシリコン表面が親水性である場合吸着が1013
toms/cm2 以下であって、全く問題がないことが
わかる。 なお、以上の実施例では試料としてシリコン
チップを用いた例について説明したが、本発明における
オゾンとフッ酸を添加した超純水からなるリンス液によ
る自然酸化膜に対する洗浄効果は、自然酸化膜へのフッ
酸のエッチング作用がオゾンの添加により著しく向上し
て、自然酸化膜そのものの親水性を著しく増加し、リン
ス液を結晶構造上粗い自然酸化膜中に染み込ませて膜中
の不純物をよくリーチングすることによるので、シリコ
ン表面以外にも、熱酸化膜、CVD酸化膜、他結晶シリ
コン膜などの表面の清浄化にも適用可能である。
(Example 3) H 18 F was added to 0.1 ppm, 1 ppm, 10 ppm, 1 of pure water added with 1 ppm of ozone.
Make a sample added with 00ppm, SC-1 for each
A silicon chip treated with (the same composition as in Example 1) to make the surface hydrophilic was immersed at room temperature for 10 minutes, and the amount of 18 F adsorbed on the silicon surface at that time was measured by radioactive measurement.
The result is shown in FIG. HF in rinse solution is 100pp
Adsorption is 10 13 a when the silicon surface is hydrophilic even at m
It can be seen that there is no problem, since it is below toms / cm 2 . In addition, although the example using the silicon chip as the sample has been described in the above examples, the cleaning effect on the natural oxide film by the rinse liquid made of ultrapure water to which ozone and hydrofluoric acid are added in the present invention is The etching effect of hydrofluoric acid is significantly improved by the addition of ozone, the hydrophilicity of the natural oxide film itself is significantly increased, and the rinse liquid is soaked into the natural oxide film that has a rough crystal structure, and the impurities in the film are leached well. Therefore, the present invention can be applied to the cleaning of not only the silicon surface but also the surface of a thermal oxide film, a CVD oxide film, another crystalline silicon film, and the like.

【0059】[0059]

【発明の効果】本発明による過酸化水素を含有する洗浄
液での洗浄と、オゾンとフッ酸を添加した超純水からな
るリンス液によるリンスとの組み合わせによれば、半導
体プロセスで必要とされる金属の付着レベル109 at
oms/cm2 を達成でき、またオゾンもフッ酸も微生
物や有機物に対する除去能力を有しているので、残存微
粒子の数もより減少させられるという効果がある。ま
た、洗浄工程が簡単化し、生産性が著しく向上するとい
う効果もある。
The combination of the cleaning with the cleaning liquid containing hydrogen peroxide according to the present invention and the rinse with the rinse liquid consisting of ozone and hydrofluoric acid-added ultrapure water is required in the semiconductor process. Metal adhesion level 10 9 at
Since it is possible to achieve oms / cm 2 and has the ability to remove both ozone and hydrofluoric acid against microorganisms and organic substances, there is an effect that the number of remaining fine particles can be further reduced. Further, there is an effect that the cleaning process is simplified and the productivity is remarkably improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】HF 0〜100ppmでのリンス時間とリン
ス後のFe残存率との関係を、オゾン無添加の場合(H
F 10ppm)と比較して表した図。
FIG. 1 shows the relationship between the rinsing time at HF 0 to 100 ppm and the Fe residual ratio after rinsing when ozone is not added (H
F represented by 10 ppm).

【図2】HF 0〜100ppmでのリンス時間とリン
ス後のCu残存率との関係を、オゾン無添加の場合(H
F 10ppm)と比較して表した図。
FIG. 2 shows the relationship between the rinsing time at HF 0 to 100 ppm and the Cu residual rate after rinsing when ozone is not added (H
F represented by 10 ppm).

【図3】HF 0.1〜100ppmでのリンス時間と
リンス後のシリコン表面へのF原子の吸着との関係を表
した図。
FIG. 3 is a diagram showing a relationship between a rinsing time at HF 0.1 to 100 ppm and adsorption of F atoms on a silicon surface after rinsing.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C11D 7:18 7:06) (C11D 7/60 7:18 7:08) (72)発明者 太田 嘉治 神奈川県厚木市岡田2丁目9番8号 野村 マイクロ・サイエンス株式会社内 (72)発明者 深澤 雄二 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location C11D 7:18 7:06) (C11D 7/60 7:18 7:08) (72) Inventor Yoshiharu Ota Kanagawa 2-9-8 Okada, Atsugi-shi, Japan Nomura Micro Science Co., Ltd. (72) Inventor Yuji Fukasawa 1 Komukai-Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Incorporated Toshiba Research and Development Center

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 過酸化水素を含有する洗浄液で洗浄し、
次いで形成された自然酸化膜を完全に溶解しない濃度の
オゾンとフッ酸を含有する超純水からなるリンス液によ
りリンスする工程を含むことを特徴とするシリコンウエ
ーハの清浄化方法。
1. Washing with a washing liquid containing hydrogen peroxide,
Next, a method of cleaning a silicon wafer, which comprises a step of rinsing the formed natural oxide film with a rinse liquid composed of ultrapure water containing ozone and hydrofluoric acid at concentrations that do not completely dissolve it.
【請求項2】 前記洗浄液は、(a)過酸化水素とアル
カリ、(b)過酸化水素と酸のいずれかを含有すること
を特徴とする請求項1に記載のシリコンウエーハの清浄
化方法。
2. The method for cleaning a silicon wafer according to claim 1, wherein the cleaning liquid contains (a) hydrogen peroxide and alkali, and (b) hydrogen peroxide and acid.
【請求項3】 前記工程は、超純水による洗浄工程をさ
らに含むことを特徴とする請求項1に記載のシリコンウ
エーハの清浄化方法。
3. The method for cleaning a silicon wafer according to claim 1, wherein the step further includes a cleaning step with ultrapure water.
【請求項4】 前記リンス液中のオゾンの平均濃度が
0.5〜10ppmであり、フッ酸の平均濃度が1〜1
00ppmであることを特徴とする請求項1に記載のシ
リコンウエーハの清浄化方法。
4. The average concentration of ozone in the rinse liquid is 0.5 to 10 ppm, and the average concentration of hydrofluoric acid is 1 to 1
It is 00 ppm, The cleaning method of the silicon wafer of Claim 1 characterized by the above-mentioned.
JP06816295A 1995-03-27 1995-03-27 Silicon wafer cleaning method Expired - Fee Related JP3325739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06816295A JP3325739B2 (en) 1995-03-27 1995-03-27 Silicon wafer cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06816295A JP3325739B2 (en) 1995-03-27 1995-03-27 Silicon wafer cleaning method

Publications (2)

Publication Number Publication Date
JPH08264498A true JPH08264498A (en) 1996-10-11
JP3325739B2 JP3325739B2 (en) 2002-09-17

Family

ID=13365797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06816295A Expired - Fee Related JP3325739B2 (en) 1995-03-27 1995-03-27 Silicon wafer cleaning method

Country Status (1)

Country Link
JP (1) JP3325739B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999005704A1 (en) * 1997-07-22 1999-02-04 Memc Electronic Materials, Inc. Method for washing silicon wafer
EP1070157A4 (en) * 1998-04-06 2003-02-12 Arch Spec Chem Inc Method for removing photoresist and plasma etch residues
JP2003068696A (en) * 2001-05-22 2003-03-07 Mitsubishi Chemicals Corp Method for cleaning substrate surface
WO2005027214A1 (en) * 2003-09-10 2005-03-24 Shin-Etsu Handotai Co., Ltd. Multilayer substrate cleaning method, substrate bonding method, and bonded wafer manufacturing method
JP2006192358A (en) * 2005-01-12 2006-07-27 Fujitsu Ltd Substrate processing method and production method of semiconductor device
JP2007042889A (en) * 2005-08-03 2007-02-15 Siltronic Ag Method for preventing boron pollution on surface of silicon wafer
KR100777696B1 (en) * 2001-03-26 2007-11-21 삼성전자주식회사 Cleaner and method for fabricating thin film transsistor using the cleaner
JP2008166795A (en) * 2006-12-29 2008-07-17 Siltron Inc Method for cleaning silicon wafer
CN109841496A (en) * 2017-11-27 2019-06-04 东莞新科技术研究开发有限公司 The cleaning method of semi-conductor silicon chip
CN116631848A (en) * 2023-07-20 2023-08-22 山东有研艾斯半导体材料有限公司 Silicon wafer cleaning method for improving quality of metal and particles on surface of silicon polished wafer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04103124A (en) * 1990-08-23 1992-04-06 Nec Corp Removal of pollutant from semiconductor substrate
JPH04144131A (en) * 1990-10-05 1992-05-18 Toshiba Corp Method of treating semiconductor wafer
JPH0848996A (en) * 1994-08-05 1996-02-20 Nippon Steel Corp Cleaning fluid for silicon wafer and silicon oxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04103124A (en) * 1990-08-23 1992-04-06 Nec Corp Removal of pollutant from semiconductor substrate
JPH04144131A (en) * 1990-10-05 1992-05-18 Toshiba Corp Method of treating semiconductor wafer
JPH0848996A (en) * 1994-08-05 1996-02-20 Nippon Steel Corp Cleaning fluid for silicon wafer and silicon oxide

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999005704A1 (en) * 1997-07-22 1999-02-04 Memc Electronic Materials, Inc. Method for washing silicon wafer
EP1070157A4 (en) * 1998-04-06 2003-02-12 Arch Spec Chem Inc Method for removing photoresist and plasma etch residues
KR100777696B1 (en) * 2001-03-26 2007-11-21 삼성전자주식회사 Cleaner and method for fabricating thin film transsistor using the cleaner
JP2003068696A (en) * 2001-05-22 2003-03-07 Mitsubishi Chemicals Corp Method for cleaning substrate surface
WO2005027214A1 (en) * 2003-09-10 2005-03-24 Shin-Etsu Handotai Co., Ltd. Multilayer substrate cleaning method, substrate bonding method, and bonded wafer manufacturing method
US7608548B2 (en) 2003-09-10 2009-10-27 Shin-Etsu Handotai Co., Ltd. Method for cleaning a multilayer substrate and method for bonding substrates and method for producing a bonded wafer
JP2006192358A (en) * 2005-01-12 2006-07-27 Fujitsu Ltd Substrate processing method and production method of semiconductor device
JP4612424B2 (en) * 2005-01-12 2011-01-12 富士通セミコンダクター株式会社 Substrate processing method and semiconductor device manufacturing method
JP2007042889A (en) * 2005-08-03 2007-02-15 Siltronic Ag Method for preventing boron pollution on surface of silicon wafer
JP2008166795A (en) * 2006-12-29 2008-07-17 Siltron Inc Method for cleaning silicon wafer
CN109841496A (en) * 2017-11-27 2019-06-04 东莞新科技术研究开发有限公司 The cleaning method of semi-conductor silicon chip
CN116631848A (en) * 2023-07-20 2023-08-22 山东有研艾斯半导体材料有限公司 Silicon wafer cleaning method for improving quality of metal and particles on surface of silicon polished wafer

Also Published As

Publication number Publication date
JP3325739B2 (en) 2002-09-17

Similar Documents

Publication Publication Date Title
JP3154814B2 (en) Semiconductor wafer cleaning method and cleaning apparatus
JP2581268B2 (en) Semiconductor substrate processing method
KR100340274B1 (en) Cleaning Method of Semiconductor Substrate
JPH08264500A (en) Cleaning of substrate
JP3325739B2 (en) Silicon wafer cleaning method
JP3174823B2 (en) Silicon wafer cleaning method
JPH10256211A (en) Cleaning method for semiconductor substrate
JP3239998B2 (en) Semiconductor substrate cleaning method
JP2003218085A (en) Cleaning method of semiconductor substrate
JPS63110732A (en) Washing method for semiconductor substrate
JPH08264499A (en) Cleaning solution for silicon wafer and cleaning method
JPH07283182A (en) Cleaning method of semiconductor substrate
JPH0750281A (en) Cleaning method for silicon wafer
JPH0583520B2 (en)
JPH03208899A (en) Washing method for silicon wafer
JPH0831781A (en) Washing chemicals
JP3454302B2 (en) Semiconductor substrate cleaning method
JP2001326209A (en) Method for treating surface of silicon substrate
JPH07321080A (en) Method for cleaning silicon wafer
JP3749567B2 (en) Semiconductor substrate cleaning method
JPH04101418A (en) Method of increasing lifetime of si wafer
JP2001185521A (en) Method of cleaning semiconductor substrate
JP3198878B2 (en) Surface treatment composition and substrate surface treatment method using the same
JP2001053042A (en) Method of preventing organic contamination of substrate for electronic device from environmental atmosphere and substrate for electronic device subjected to prevention treatment
JP4179098B2 (en) Semiconductor wafer cleaning method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020625

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

LAPS Cancellation because of no payment of annual fees