[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0826425B2 - Conductive fiber and manufacturing method thereof - Google Patents

Conductive fiber and manufacturing method thereof

Info

Publication number
JPH0826425B2
JPH0826425B2 JP63229859A JP22985988A JPH0826425B2 JP H0826425 B2 JPH0826425 B2 JP H0826425B2 JP 63229859 A JP63229859 A JP 63229859A JP 22985988 A JP22985988 A JP 22985988A JP H0826425 B2 JPH0826425 B2 JP H0826425B2
Authority
JP
Japan
Prior art keywords
composition ratio
melt
conductive fiber
average
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63229859A
Other languages
Japanese (ja)
Other versions
JPH0280534A (en
Inventor
明典 横山
斉 中島
Original Assignee
旭化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成工業株式会社 filed Critical 旭化成工業株式会社
Priority to JP63229859A priority Critical patent/JPH0826425B2/en
Publication of JPH0280534A publication Critical patent/JPH0280534A/en
Publication of JPH0826425B2 publication Critical patent/JPH0826425B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は導電材料、電磁遮蔽材料、制電防止材料等と
して有用な導電性繊維およびその製法に関するものであ
る。
The present invention relates to a conductive fiber useful as a conductive material, an electromagnetic shielding material, an antistatic material, and the like, and a method for producing the same.

[従来の技術] 導電性繊維として、金、銀、銅、アルミニウム繊維あ
るいは金、銀あるいは銅鍍金した繊維が知られている。
これら公知の導電性繊維はあるいは素材が希少で高価で
あり、あるいは安定性に欠けており酸化的劣化を起こし
易く、あるいは製法が複雑で高価につく等の欠点があっ
た。
[Prior Art] As conductive fibers, gold, silver, copper, aluminum fibers or gold, silver or copper plated fibers are known.
These known conductive fibers have the drawbacks that the materials are rare and expensive, or that they lack stability and are prone to oxidative deterioration, or that the manufacturing method is complicated and expensive.

[発明が解決しようとする課題] 本発明は希少で高価な素材を大量に使用しないで、製
造が簡単で、かつ、安定性の良好な導電性繊維およびそ
の製法を提供しようとするものである。
[Problems to be Solved by the Invention] The present invention intends to provide a conductive fiber which is easy to manufacture and has good stability, and a method for producing the same, without using a large amount of rare and expensive materials. .

[課題を解決するための手段] 本発明者等は前記のような課題を解決すべく導電性繊
維に付いて鋭意検討した結果、Agとある種の金属の特定
組成が有用であることを見出し、本発明に至った。
[Means for Solving the Problems] The inventors of the present invention have found that the specific composition of Ag and a certain kind of metal is useful as a result of diligently studying the conductive fiber to solve the above problems. The present invention has been reached.

即ち、本発明は全体平均組成がAgXM1-X(ただし、M
はNi、Co、Cu、Fe、Tiより選ばれた1種以上の金属、0.
01≦X≦0.2)で表わされ、かつ、表面のAg組成比が全
体平均のAg組成比より大きいことを特徴とする導電性繊
維、並びにAgXM1-X(ただし、MはNi、Co、Cu、Fe、Ti
より選ばれた1種以上の金属、0.01≦X≦0.2)なる組
成の融液をノズルから噴出させ、急冷凝固することを特
徴とする導電性繊維の製法である。
That is, in the present invention, the overall average composition is Ag X M 1-X (where M
Is one or more metals selected from Ni, Co, Cu, Fe and Ti, 0.
01 ≦ X ≦ 0.2) and the surface Ag composition ratio is larger than the average Ag composition ratio, and conductive fibers, and Ag X M 1-X (where M is Ni, Co, Cu, Fe, Ti
A method for producing a conductive fiber characterized in that a melt having a composition of 0.01 ≦ X ≦ 0.2) selected from one or more metals selected from the above is jetted from a nozzle and rapidly solidified.

本発明の導電性繊維はAgとM(ただし、MはNi、Co、
Cu、Fe、Tiより選ばれた1種以上の金属)より構成さ
れ、MとしてはCuならびにNiより選ばれた1種以上の金
属がとくに好ましい。Xは0.01以上、0.2以下であり、
0.01未満では導電性の耐酸化性が乏しく経時低下が起こ
り、0.2を越えるほど希少かつ高価な銀を用いる必要は
ない。好ましくは0.02≦X≦0.2であり、さらに好まし
くは0.05≦X≦0.2である。本発明の導電性繊維は表面
のAg組成比が全体平均のAg組成比より大きいことを特徴
としており、Ag組成比が粉体の表面に向かって次第に増
大する領域を有する。表面のAg組成比は全体平均のAg組
成比の2倍以上、好ましくは4倍以上、更に好ましくは
10倍以上である。ここにAg組成比とはAg/M(原子比)を
意味する。表面のAg組成比の測定はXPS(X線光電子分
光分析装置)を用いて下記の方法で行った。アルゴンイ
オンでエッチングした後、X線源としてマグネシウムの
Kα線を用いて分析した。このエッチングついで分析の
操作を5回繰り返し、5回の分析の平均値を表面組成値
とした。アルゴンエッチングは、毎回、アルゴン圧力10
-7Torr、加速電圧3kevで90度の入射角で、10分間行っ
た。全体平均のAg組成比の測定は試料を濃硝酸中で溶解
し、ICP(高周波誘導結合型プラズマ発光分析計)を用
いて分析した。
The conductive fibers of the present invention are Ag and M (where M is Ni, Co,
It is particularly preferable that M is one or more metals selected from Cu, Fe and Ti), and M is preferably one or more metals selected from Cu and Ni. X is 0.01 or more and 0.2 or less,
If it is less than 0.01, the conductive oxidation resistance is poor and deterioration with time occurs, and it is not necessary to use rare and expensive silver exceeding 0.2. 0.02 ≦ X ≦ 0.2 is preferable, and 0.05 ≦ X ≦ 0.2 is more preferable. The conductive fiber of the present invention is characterized in that the Ag composition ratio on the surface is higher than the average Ag composition ratio on the whole, and has a region where the Ag composition ratio gradually increases toward the surface of the powder. The surface Ag composition ratio is 2 times or more, preferably 4 times or more, and more preferably the average Ag composition ratio.
It is more than 10 times. Here, the Ag composition ratio means Ag / M (atomic ratio). The Ag composition ratio on the surface was measured by the following method using XPS (X-ray photoelectron spectroscopy analyzer). After etching with argon ions, it was analyzed using magnesium Kα radiation as an X-ray source. After this etching, the analysis operation was repeated 5 times, and the average value of 5 times of analysis was taken as the surface composition value. Argon etching is performed at an argon pressure of 10 each time.
It was carried out at -7 Torr and an acceleration voltage of 3 kev at an incident angle of 90 degrees for 10 minutes. To measure the average Ag composition ratio, the sample was dissolved in concentrated nitric acid and analyzed using ICP (high frequency inductively coupled plasma emission spectrometer).

本発明のAgXM1-X(ただし、Mは、Ni、Co、Cu、Fe、T
iより選ばれた1種以上の金属、0.01≦X≦0.2)なる組
成を有する融液(以下、本発明の融液と称する)を急冷
凝固する方法としては、ノズルから噴出した本発明の融
液を、好ましくは不活性ガス中で、熱伝導性のよい高速
回転体へ衝突させる方法等がある。特に、回転液中紡糸
法(日刊工業新聞社刊、工業材料、34巻第7号、77ペー
ジに開示されている)、すなわち、第1および第2図に
例示したように、回転するドラムの内側側面、好ましく
は水などを用いた冷却液体層を設け、に向けて融液を衝
突させ急冷凝固させる方法が好ましい方法である。熱伝
導性のよい高速回転体とは、好ましくは、銅、銅系合
金、鉄系合金などの金属製であり、形状はドラム状等が
好ましい。
Ag X M 1-X of the present invention (where M is Ni, Co, Cu, Fe, T
As a method for rapidly solidifying a melt having a composition of one or more metals selected from i, 0.01 ≦ X ≦ 0.2) (hereinafter referred to as the melt of the present invention), the melt of the present invention ejected from a nozzle is used. There is a method of causing the liquid to collide with a high-speed rotating body having good thermal conductivity, preferably in an inert gas. In particular, the spinning submerged spinning method (disclosed in Nikkan Kogyo Shimbun Publishing Co., Ltd., Industrial Materials, Vol. 34, No. 7, p. 77), that is, as shown in FIGS. A preferable method is a method in which a cooling liquid layer using water or the like is provided on the inner side surface, and the melt is collided toward the side surface for rapid cooling and solidification. The high-speed rotating body having good thermal conductivity is preferably made of a metal such as copper, a copper-based alloy, or an iron-based alloy, and preferably has a drum shape or the like.

本発明において、急冷とは凝固前後での冷却速度が10
3℃/秒以上の速度での冷却をいう。
In the present invention, quenching means that the cooling rate before and after solidification is 10
Cooling at a rate of 3 ° C / sec or more.

高速回転体の回転周速度は衝突位置で100〜100000m/m
inが好ましく、1000〜10000m/minがさらに好ましい。高
速回転体には水などの冷媒を用いた冷却機構をつけても
よい。
The peripheral speed of the high-speed rotating body is 100 to 100,000 m / m at the collision position.
in is preferable, and 1000 to 10000 m / min is more preferable. A cooling mechanism using a refrigerant such as water may be attached to the high-speed rotating body.

前記の不活性ガスとは本発明の融液と全くあるいはき
わめて緩やかにしか反応しないガスであり、例えば、ア
ルゴン、ヘリウム、窒素あるいはそれらの混合物であ
る。
The inert gas is a gas that reacts with the melt of the present invention at all or only very slowly, and is, for example, argon, helium, nitrogen or a mixture thereof.

[実施例] 以下、実施例によって本発明を具体的に説明する。[Examples] Hereinafter, the present invention will be specifically described with reference to Examples.

実施例1 銀粉(高純度化学製、純度99.9%)5gと銅粉(高純度
化学製、純度99.9%)45gを混合し、アルゴン雰囲気中
で融解混合した。ついで、ノズル付き石英管(内径15m
m、長さ200mm、ノズル部内径0.2mm)に充填し、高周波
誘導加熱により融解した。この融液を、アルゴン雰囲気
中で、銅製回転ドラム(内径600mm、回転周速度3000m/m
in)の内側外面に向けて、差圧0.1kg/cm2で、噴出させ
て急冷固化した。平均径0.2mmの繊維が得られた。ICP分
析による全体平均の組成比Ag/Cuは0.065、XPSに依りエ
ッチング−分析を5回繰り返し、分析値Ag/Cuは、表面
より0.2、0.18、0.16、0.14、0.12であり、表面のAg組
成比(5回の測定の平均値)は0.16であった。この繊維
の電気抵抗率(導電率の逆数)は、4端子法により測定
したところ6×10-6Ω・cmであった。さらに、80℃、湿
度90%の大気中に3日間放置したが電気抵抗率はほとん
ど変化しなかった。
Example 1 5 g of silver powder (manufactured by Kojundo Chemical, purity 99.9%) and 45 g of copper powder (manufactured by Kojundo Chemical, purity 99.9%) were mixed and melt-mixed in an argon atmosphere. Then, a quartz tube with a nozzle (15m inner diameter)
m, length 200 mm, nozzle inner diameter 0.2 mm), and melted by high frequency induction heating. This melt was placed in an argon atmosphere and a copper rotating drum (inner diameter 600 mm, rotating peripheral speed 3000 m / m)
(in) toward the inner and outer surfaces, with a pressure difference of 0.1 kg / cm 2 and jetting to rapidly solidify. Fibers with an average diameter of 0.2 mm were obtained. The overall average composition ratio Ag / Cu by ICP analysis is 0.065, etching-analysis is repeated 5 times by XPS, and the analysis values Ag / Cu are 0.2, 0.18, 0.16, 0.14, 0.12 from the surface, and the Ag composition of the surface is The ratio (average value of 5 measurements) was 0.16. The electrical resistivity (reciprocal of conductivity) of this fiber was 6 × 10 −6 Ω · cm as measured by the 4-probe method. Furthermore, the sample was left to stand in an atmosphere of 80 ° C. and a humidity of 90% for 3 days, but the electric resistivity hardly changed.

実施例2 銀粉16.2gと銅粉53.9gを混合し、実施例1と同様にし
て融解混合した。ついで、ノズル付き石英管(内径10m
m、長さ120mm、ノズル部内径0.2mm)に充填し、実施例
1と同様にして融解した。この融液を銅製の回転ドラム
(直径200mm、回転周速度1800m/min)へ向けて、アルゴ
ン雰囲気中、差圧0.2kg/cm2で、噴出させて急冷固化し
た。平均径0.3mmの繊維が得られた。ICP分析による全体
平均の組成比Ag/Cuは0.17、XPSに依る測定値は、表面よ
り、0.6、0.58、0.56、0.54、0.52であり、したがっ
て、表面のAg組成比(5回の測定の平均値)は0.56であ
った。銀が表面に濃縮されていることが示された。この
繊維の電気抵抗率は2×10-6Ω・cmであった。さらに、
80℃、湿度90%の大気中に3日間放置したが電気抵抗率
はほとんど変化しなかった。
Example 2 16.2 g of silver powder and 53.9 g of copper powder were mixed and melt-mixed in the same manner as in Example 1. Then, a quartz tube with a nozzle (inner diameter 10m
m, length 120 mm, inner diameter of nozzle part 0.2 mm), and melted in the same manner as in Example 1. The melt was jetted toward a copper rotary drum (diameter 200 mm, rotary peripheral speed 1800 m / min) at a differential pressure of 0.2 kg / cm 2 in an argon atmosphere to rapidly solidify. Fibers with an average diameter of 0.3 mm were obtained. The overall average composition ratio Ag / Cu by ICP analysis is 0.17, and the measured values by XPS are 0.6, 0.58, 0.56, 0.54, and 0.52 from the surface. Therefore, the Ag composition ratio of the surface (average of five measurements The value) was 0.56. It was shown that the silver was concentrated on the surface. The electrical resistivity of this fiber was 2 × 10 −6 Ω · cm. further,
It was left for 3 days in the atmosphere of 80 ° C and 90% of humidity, but the electric resistivity hardly changed.

実施例3 銀粉5.4gとニッケル粉(高純度化学製、純度99.9%)
55.8gを混合し、実施例1と同様にして融解混合した。
ついで、ノズル付き石英管(内径10mm、長さ120mm、ノ
ズル部径0.2mm)に充填し、実施例1と同様に融解し
た。この融液を銅製の回転ドラム(直径200mm、回転周
速度1800m/min)へ向けて、アルゴン雰囲気中、0.2kg/c
m2の差圧で、噴出させ急冷固化した。平均径0.25の繊維
が得られた。ICP分析による全体平均の組成比Ag/Niは0.
053、XPSに依る測定値は、表面より、0.55、0.53、0.5
1、0.49、0.47であり、したがって、表面のAg組成比
(5回の測定の平均値)は0.51であった。銀が表面に濃
縮されていることが示された。この繊維の電気抵抗率は
3×10-6Ω・cmであった。さらに、80℃、湿度90%の大
気中に3日間放置したが電気抵抗率はほとんど変化しな
かった。
Example 3 5.4 g of silver powder and nickel powder (manufactured by Kojundo Chemical Co., Ltd., purity 99.9%)
55.8 g were mixed and melt-mixed in the same manner as in Example 1.
Then, a quartz tube with a nozzle (inner diameter 10 mm, length 120 mm, nozzle diameter 0.2 mm) was filled and melted in the same manner as in Example 1. Direct this melt to a copper rotating drum (diameter 200 mm, rotating peripheral speed 1800 m / min) in an argon atmosphere at 0.2 kg / c.
With a pressure difference of m 2 , it was jetted and rapidly solidified. Fibers with an average diameter of 0.25 were obtained. The overall average composition ratio Ag / Ni by ICP analysis is 0.
053, the measured value by XPS is 0.55, 0.53, 0.5 from the surface
1, 0.49, 0.47, and therefore the surface Ag composition ratio (average value of 5 measurements) was 0.51. It was shown that the silver was concentrated on the surface. The electrical resistivity of this fiber was 3 × 10 −6 Ω · cm. Furthermore, the sample was left to stand in an atmosphere of 80 ° C. and a humidity of 90% for 3 days, but the electric resistivity hardly changed.

比較例1 銅粉5gを実施例2と同形状の石英管中で融解し、実施
例2と同じ装置並びに条件で急冷固化した。平均径0.3m
mの繊維が得られた。この繊維の電気抵抗率は3×10-6
Ω・cmであった。さらに、80℃、湿度90%の大気中に3
日間放置したところ、電気抵抗率は1×10-5Ω・cmと大
きくなっており、導電率の低下が認められた。
Comparative Example 1 5 g of copper powder was melted in a quartz tube having the same shape as in Example 2 and rapidly cooled and solidified under the same apparatus and conditions as in Example 2. Average diameter 0.3m
m fibers were obtained. The electrical resistivity of this fiber is 3 × 10 -6
It was Ω · cm. Furthermore, in the air at 80 ℃ and 90% humidity, 3
When left for a day, the electrical resistivity was as large as 1 × 10 −5 Ω · cm, and a decrease in conductivity was observed.

[発明の効果] 以上説明したように、本発明は高導電性、安定性を有
し、銀の使用量を低減した導電性繊維およびその製法を
提供することができる。
[Effects of the Invention] As described above, the present invention can provide a conductive fiber having high conductivity and stability and a reduced amount of silver used, and a method for producing the same.

【図面の簡単な説明】[Brief description of drawings]

第1図は回転液中紡糸法の装置の一例の斜視図、第2図
はその構成を説明する図。
FIG. 1 is a perspective view of an example of an apparatus for a spinning in liquid spinning method, and FIG. 2 is a diagram for explaining the configuration thereof.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】全体平均組成がAgXM1-X(ただし、MはN
i、Co、Cu、Fe、Tiより選ばれた1種以上の金属、0.01
≦X≦0.2)で表わされ、かつ、表面のAg組成比が全体
平均のAg組成比より大きいことを特徴とする導電性繊
維。
1. The overall average composition is Ag X M 1-X (where M is N
One or more metals selected from i, Co, Cu, Fe and Ti, 0.01
≦ X ≦ 0.2) and the surface Ag composition ratio is higher than the overall average Ag composition ratio.
【請求項2】AgXM1-X(ただし、MはNi、Co、Cu、Fe、T
iより選ばれた1種以上の金属、0.01≦X≦0.2)なる組
成の融液をノズルから噴出させ、急冷凝固することを特
徴とする請求項(1)記載の導電性繊維の製法。
2. Ag X M 1-X (where M is Ni, Co, Cu, Fe, T
The method for producing a conductive fiber according to claim 1, wherein a melt having a composition of 0.01 ≦ X ≦ 0.2) of at least one metal selected from i is jetted from a nozzle and rapidly solidified.
JP63229859A 1988-09-16 1988-09-16 Conductive fiber and manufacturing method thereof Expired - Lifetime JPH0826425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63229859A JPH0826425B2 (en) 1988-09-16 1988-09-16 Conductive fiber and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63229859A JPH0826425B2 (en) 1988-09-16 1988-09-16 Conductive fiber and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0280534A JPH0280534A (en) 1990-03-20
JPH0826425B2 true JPH0826425B2 (en) 1996-03-13

Family

ID=16898813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63229859A Expired - Lifetime JPH0826425B2 (en) 1988-09-16 1988-09-16 Conductive fiber and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0826425B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6181367B2 (en) * 2012-12-14 2017-08-16 ユニチカ株式会社 Coated fibrous copper particulate aggregate
JP6181368B2 (en) * 2012-12-14 2017-08-16 ユニチカ株式会社 Aggregates of fibrous silver particles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238230A (en) * 1987-03-25 1988-10-04 Matsushita Electric Works Ltd Conducting composite material and its production

Also Published As

Publication number Publication date
JPH0280534A (en) 1990-03-20

Similar Documents

Publication Publication Date Title
JP2691126B2 (en) Method for producing superconducting oxide and superconducting oxide / metal composite
JP2702796B2 (en) Silver alloy conductive paste
DE69009473T2 (en) ALUMINUM-BASED OXIDS, MOLDED BODIES THEREOF AND THE PRODUCTION OF SUCH OXIDS.
EP2796228A1 (en) Silver-coated copper alloy powder and method for manufacturing same
DE2606581A1 (en) PROCESS FOR MANUFACTURING METAL ALLOY FEMS
Suryanarayana et al. Solidification of aluminium-germanium alloys at high cooling rates
CN108531762A (en) A kind of nanoporous AgCu supersaturated solid solutions alloy and method based on the preparation of a variety of non-crystaline amorphous metal presomas
US5292359A (en) Process for preparing silver-palladium powders
CN111872376B (en) Preparation method of silver-coated micro-alloyed copper powder with high oxidation resistance
KR920008674B1 (en) Conductive metal powders and process for preparation thereof and use thereof
JPS6227533A (en) Manufacture of internal oxidation alloy and its molding
JPH0826425B2 (en) Conductive fiber and manufacturing method thereof
JP2767729B2 (en) Alloy powder, dispersion-type conductor using the alloy powder, and method for producing alloy powder
CN111068647A (en) Nano TiO (titanium dioxide)2-SnO2Preparation method of solid solution photocatalytic material
Vojtěchovský et al. Mössbauer study of the Fe-Si intermetallic compounds
JPS63105939A (en) Production of dispersion ageing treatment alloy based on copper
JP3346861B2 (en) High strength copper alloy
JPH0280618A (en) Electrically conductive fiber and production thereof
JPH0672242B2 (en) Conductive metal powder, its manufacturing method and use
JP2000282165A (en) Lithium-containing magnesium alloy, and crucible for its smelting
JP3076068B2 (en) Manufacturing method of metal beryllium pebble
JPS5693848A (en) Rare earth intermetallic compound magnet
JPH0711003B2 (en) Metal powder and its manufacturing method
JPH05335271A (en) Sputtering target and manufacture thereof as well as wiring of electronic device
JP6654880B2 (en) Powder for conductive filler

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080313

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 13