[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08250470A - Method and device for plasma treatment - Google Patents

Method and device for plasma treatment

Info

Publication number
JPH08250470A
JPH08250470A JP4956295A JP4956295A JPH08250470A JP H08250470 A JPH08250470 A JP H08250470A JP 4956295 A JP4956295 A JP 4956295A JP 4956295 A JP4956295 A JP 4956295A JP H08250470 A JPH08250470 A JP H08250470A
Authority
JP
Japan
Prior art keywords
plasma
processing chamber
vacuum
processing
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4956295A
Other languages
Japanese (ja)
Inventor
Kazunori Tsujimoto
和典 辻本
Naoyuki Koto
直行 小藤
Makoto Arai
眞 新井
Tatsumi Mizutani
巽 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4956295A priority Critical patent/JPH08250470A/en
Publication of JPH08250470A publication Critical patent/JPH08250470A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE: To provide an improved method and device for plasma treatment which can prevent the influence of the internal side faces of a vacuum chamber and can reduce the influence of materials adhering to the internal side faces without cleaning the internal side faces with heat or plasma. CONSTITUTION: In a plasma treatment device, a vacuum treatment chamber 7 is constituted so that the distance (d) from the internal side face 3 of the chamber 7 to the outer periphery of a sample stage 11 and the height (h) of the ceiling of the chamber 7 facing the stage 11 from the stage 11 can meet a relation d/h>=1/2. Therefore, the influence of materials 9 adhering to the internal side face 3 and other internal surfaces of the chamber 7 can be reduced and, at the time of performing dry etching, the etching rate and etch selectivity can be improved and the number of particles generated in the device and the secular change of characteristics of the device can be reduced. At the time of forming films, in addition, the occurrence of foreign matters can be reduced and high-quality thin films can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば半導体基板やガ
ラス基板等の電子部品にドライエッチングや薄膜形成
(成膜と略称)を行なうプラズマ処理方法及び処理装置
に係り、特にプラズマ処理によりプラズマ処理室の側壁
面に付着した付着物が基板上に飛散して、プラズマ処理
面にダメージを与えるのを防止して、つまり、プラズマ
処理室の側壁の影響を防止して安定性の高いプラズマ処
理を行うのに好適なプラズマ処理方法及び処理装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing method and a processing apparatus for performing dry etching or thin film formation (abbreviated as film formation) on electronic parts such as semiconductor substrates and glass substrates, and more particularly to plasma processing by plasma processing. Prevents deposits attached to the side wall surface of the chamber from scattering on the substrate and damaging the plasma processing surface, that is, preventing the side wall of the plasma processing chamber from affecting the plasma processing with high stability. The present invention relates to a plasma processing method and a processing apparatus suitable for performing the processing.

【0002】[0002]

【従来の技術】従来からプラズマ処理においては、試料
基板の置かれたプラズマ処理室の壁面に、プラズマ処理
時のガス組成及び基板の材質等に応じて発生する粒子が
付着し、この付着物がプラズマ処理中に基板の被処理面
に再付着することによりプラズマ処理の品質低下をきた
すことが知られており、種々の対策が講じられている。
2. Description of the Related Art Conventionally, in plasma processing, particles generated according to the gas composition during plasma processing, the material of the substrate, etc. adhere to the wall surface of the plasma processing chamber in which the sample substrate is placed. It is known that redeposition on the surface to be processed of the substrate during the plasma processing causes the quality of the plasma processing to deteriorate, and various measures have been taken.

【0003】以下、プラズマ処理としてドライエッチン
グの場合を代表例に説明する。図2は、従来のドライエ
ッチング装置の概略を示した要部断面図であり、マイク
ロ波プラズマエッチング装置の例を示している。マグネ
トロン1で2.45GHzのマイクロ波を発生させ、導
波管2によりマイクロは導入窓5を通してを真空処理室
7に伝搬させ、真空処理室内にプラズマ放電を発生させ
る。
A typical example of dry etching as plasma processing will be described below. FIG. 2 is a cross-sectional view of an essential part showing an outline of a conventional dry etching apparatus, showing an example of a microwave plasma etching apparatus. The microwave of 2.45 GHz is generated by the magnetron 1, and the microwave is propagated through the introduction window 5 to the vacuum processing chamber 7 by the waveguide 2 to generate plasma discharge in the vacuum processing chamber.

【0004】真空処理室7の外周部には磁場コイル6が
配置され、マイクロ波と磁場により電子サイクロトロン
共鳴を起こしてプラズマ7aを発生する。プラズマ処理
を行う試料8は試料設置台11の上に設置され、真空処
理室7の中に置かれてプラズマにさらされる。試料台1
1の大きさは通常、試料8の直径よりわずかに大きく作
られ、例えば8インチのウェハを試料8とする場合には
試料設置台11の直径は9〜10インチに作られる。こ
の場合、真空処理室7の大きさは直径が14〜16イン
チ、高さhは20〜30cm程度の大きさが通常であ
る。なお、図中の10は不図示の排気ポンプに接続され
る排気口を、14は真空バッファ室を、それぞれ示して
いる。
A magnetic field coil 6 is arranged on the outer peripheral portion of the vacuum processing chamber 7 and causes electron cyclotron resonance by the microwave and the magnetic field to generate plasma 7a. A sample 8 to be subjected to plasma processing is set on a sample setting table 11, placed in a vacuum processing chamber 7 and exposed to plasma. Sample table 1
The size of 1 is usually made slightly larger than the diameter of the sample 8. For example, when the wafer of 8 inches is used as the sample 8, the diameter of the sample mounting table 11 is made 9 to 10 inches. In this case, the vacuum processing chamber 7 usually has a diameter of 14 to 16 inches and a height h of about 20 to 30 cm. In the figure, 10 indicates an exhaust port connected to an exhaust pump (not shown), and 14 indicates a vacuum buffer chamber.

【0005】上記従来装置においては、処理室7の側壁
面3から試料設置台11の周辺部分までの距離dが2〜
3.5インチ(約5〜8.7cm)であった。この場
合、プラズマエッチング処理中にウェハ表面から発生す
る物質(エッチングされた微粒子など)が側壁面3に付
着し易く、また、側壁面3に付着した物質9が試料表面
に再付着し、エッチング処理の安定性を阻害していた。
In the above conventional apparatus, the distance d from the side wall surface 3 of the processing chamber 7 to the peripheral portion of the sample installation table 11 is 2 to 2.
It was 3.5 inches (about 5 to 8.7 cm). In this case, a substance (such as etched fine particles) generated from the wafer surface during the plasma etching process is easily attached to the side wall surface 3, and the substance 9 attached to the side wall surface 3 is redeposited on the sample surface, so that the etching process is performed. It was inhibiting the stability of.

【0006】このような付着物9は真空処理室7の側壁
面3に付着し易いため、側壁面3が試料8に近いほどこ
のような影響が大であった。このような壁面の影響を少
しでも減少させるため、従来は側壁面3をヒータ等で1
00℃程度に加熱することによって付着物9を処理室外
に排気して減少させる方法などが用いられていた。しか
し、真空処理室7の側壁面3が例えば石英などの加熱し
にくい物質でカバーされている場合などがあり、真空処
理室7の金属容器(通常、ステンレス鋼製)の加熱のみ
では付着物の除去が不十分な場合があった。
Since such deposits 9 easily adhere to the side wall surface 3 of the vacuum processing chamber 7, the closer the side wall surface 3 is to the sample 8, the greater the influence. In order to reduce the influence of such a wall surface as much as possible, conventionally, the side wall surface 3 is formed by a heater or the like.
A method has been used in which the deposit 9 is exhausted to the outside of the processing chamber and reduced by heating to about 00 ° C. However, there are cases where the side wall surface 3 of the vacuum processing chamber 7 is covered with a substance that is difficult to heat, such as quartz, and the deposition of the adhered substances is only possible by heating the metal container (usually made of stainless steel) of the vacuum processing chamber 7. In some cases, the removal was insufficient.

【0007】さらに、側壁面3を加熱する代わりに、一
旦付着した物質9をプラズマ7aなどを用いたクリーニ
ングにより除去する方法も用いられていた。この場合で
も、プラズマクリーニングのみで完全に真空処理室7の
内壁面3を清浄化することが困難であり、しかもクリー
ニングに長時間を要するためプロセス処理時間が長くな
るなどの問題があった。
Further, instead of heating the side wall surface 3, a method has also been used in which the substance 9 once attached is removed by cleaning using plasma 7a or the like. Even in this case, it is difficult to completely clean the inner wall surface 3 of the vacuum processing chamber 7 only by plasma cleaning, and there is a problem that the processing time becomes long because cleaning takes a long time.

【0008】以上、プラズマ処理としてドライエッチン
グの場合を例に説明したが、成膜についても取り扱う原
料ガスが異なるだけで原理的にはドライエッチングの場
合と同様の問題があった。
The case of dry etching as the plasma treatment has been described above as an example. However, the same problem as in dry etching is involved in the principle of film formation because the raw material gas handled is different.

【0009】なお、本件従来技術に関連するものとして
は、例えば米国真空学会雑誌、ジャーナル・バキューム
・ソサイテイ・テクノロジー・B8(6)、第1192
頁〜第1198頁、11月/12月、1990年〔J.
Vac.Sci.Technol.B8(6),pp1
192−1198,Nov/Dec,(1990)〕が
挙げられる。
[0009] As related to the prior art of the present invention, for example, the Journal of the American Vacuum Society, Journal Vacuum Society Technology B8 (6), No. 1192
P. To p. 1198, November / December, 1990 [J.
Vac. Sci. Technol. B8 (6), pp1
192-1198, Nov / Dec, (1990)].

【0010】[0010]

【発明が解決しようとする課題】したがって、本発明の
目的は、このような従来の問題点を解消することにあ
り、真空処理室の側壁面の加熱やプラズマによる壁面ク
リーニングによらず、側壁面の影響を防止し、真空処理
室側壁面に付着する物質の影響を減少させ得る改良され
たプラズマ処理方法及び処理装置を提供することにあ
る。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to eliminate such a conventional problem, and does not rely on heating of the side wall surface of the vacuum processing chamber or cleaning of the side wall surface by plasma, but the side wall surface. It is an object of the present invention to provide an improved plasma processing method and processing apparatus capable of preventing the effects of the above and reducing the effects of substances adhering to the side wall surface of the vacuum processing chamber.

【0011】[0011]

【課題を解決するための手段】本発明者等は、上記目的
を達成するために種々実験検討したところ、試料台と試
料台を取り巻く真空処理室内壁との関係を特定の条件下
に設定することにより、従来必須とされていた真空処理
室の側壁面の加熱やプラズマによる壁面クリーニングを
必要とせずに、真空処理室の側壁面の影響を防止し、真
空処理室側壁面に付着する物質の影響を減少させること
ができ、結果として成膜処理にしても、エッチング処理
にしても良好なプラズマ処理が実現できると云う有効な
知見を得ることができた。
Means for Solving the Problems The inventors of the present invention have conducted various experiments to achieve the above-mentioned object. As a result, the relationship between the sample stage and the vacuum processing chamber inner wall surrounding the sample stage is set under specific conditions. This prevents the side wall surface of the vacuum processing chamber from being affected by heating the side wall surface of the vacuum processing chamber and the wall surface cleaning with plasma, which are conventionally required, and prevents the substances adhering to the side wall surface of the vacuum processing chamber. It was possible to reduce the influence, and as a result, it was possible to obtain effective knowledge that a good plasma treatment can be realized regardless of whether it is a film forming treatment or an etching treatment.

【0012】本発明は、このような知見に基づいてなさ
れたものであり、真空処理室7の側壁面3を試料台11
の最外周部から一定距離遠ざけ、この最短距離をdと
し、試料台11からそれに対向する上部天井壁(図2の
場合にはマイクロは導入窓5の表面)までの高さ(間
隔)をhとしたとき、両者の関係をd/h≧1/2とし
て構成する。
The present invention has been made on the basis of such knowledge, and the side wall surface 3 of the vacuum processing chamber 7 is fixed to the sample table 11.
A certain distance from the outermost peripheral portion of the sample, and the shortest distance is d, and the height (spacing) from the sample table 11 to the upper ceiling wall (in the case of FIG. 2, the surface of the introduction window 5 is micro in the case of FIG. 2) is h. Then, the relationship between them is configured as d / h ≧ 1/2.

【0013】このd/hの値が1/2より小さくなると
効果が激減し、従来装置の場合に近づき好ましくないこ
とがわかった。本発明者等の実験によれば、より好まし
くはd/h≧1であり、さらに好ましくはd/h≧3/
2である。なお、d/hの上限は装置構成上の制約から
実用的には3≧d/hが望ましい。
It has been found that when the value of d / h is less than 1/2, the effect is drastically reduced, approaching the case of the conventional device, which is not preferable. According to experiments conducted by the present inventors, d / h ≧ 1 is more preferable, and d / h ≧ 3 / is more preferable.
It is 2. It should be noted that the upper limit of d / h is preferably 3 ≧ d / h for practical purposes due to restrictions on the device configuration.

【0014】また、真空処理室7の排気口部分のコンダ
クタンスを大きくする構造にし、かつ試料設置台11と
対向する処理室天井の間隔hを小さくし、試料表面から
処理室側壁面3を見込む見込角を小さくすることが望ま
しい。
Further, the structure is such that the conductance of the exhaust port of the vacuum processing chamber 7 is increased, the interval h between the processing chamber ceiling facing the sample installation table 11 is reduced, and the processing chamber side wall surface 3 is expected to be seen from the sample surface. It is desirable to have small corners.

【0015】プラズマ発生手段としては、高周波エネル
ギ印加により放電させる手段で構成され、例えばマイク
ロ波放電、とりわけ高いプラズマ密度を得るには電子サ
イクロトロン共鳴(ECR)が望ましいが、その他の高
周波放電(RF放電)など周知の発生源が使用できる。
The plasma generating means is constituted by a means for discharging by applying high frequency energy. For example, microwave discharge, especially electron cyclotron resonance (ECR) is desirable to obtain high plasma density, but other high frequency discharge (RF discharge). Known sources can be used.

【0016】具体的には、試料台もしくはそれに対向す
る天井部分にプラズマを発生するエネルギー供給源を設
けて、試料台と天井部分との間隙部分にプラズマを発生
させる際に、プラズマ密度の109cm-3以上の部分が
真空処理室側壁に接触させない構成とすることである。
すなわち、プラズマ処理領域となる試料基板上のプラズ
マ密度は、通常、1010〜1011cm-3程度、もしくは
場合によってはこれ以上であることから、真空処理室側
壁の密度を109cm-3以下とすれば真空処理室の側壁
面の影響を防止し、側面に付着する物質の影響を減少さ
せることができる。
Specifically, when an energy supply source for generating plasma is provided on the sample table or the ceiling portion facing the sample table and plasma is generated in the gap between the sample table and the ceiling portion, the plasma density of 10 9 The configuration is such that the portion of cm -3 or more does not contact the side wall of the vacuum processing chamber.
That is, since the plasma density on the sample substrate to be the plasma processing region is usually about 10 10 to 10 11 cm −3 , or higher in some cases, the density of the side wall of the vacuum processing chamber is set to 10 9 cm −3. The following can prevent the influence of the side wall surface of the vacuum processing chamber and reduce the influence of the substance attached to the side surface.

【0017】このような構成から成るプラズマ処理装置
を用いて、プラズマエッチングもしくはプラズマ成膜処
理する方法について説明する。先ず、試料台に所定の被
処理基板を載置し、真空処理室外に設けられた原料供給
ガス源から所定の流量で原料ガスを真空処理室内に供給
する。原料ガスが成膜材料であれば、原料ガスはプラズ
マ発生手段により形成されたプラズマ中で分解し、被処
理基板上に薄膜が形成される。
A method of performing plasma etching or plasma film formation processing using the plasma processing apparatus having the above-described structure will be described. First, a predetermined substrate to be processed is placed on the sample table, and a source gas is supplied into the vacuum processing chamber from a source supply gas source provided outside the vacuum processing chamber at a predetermined flow rate. When the raw material gas is a film forming material, the raw material gas is decomposed in the plasma formed by the plasma generating means, and a thin film is formed on the substrate to be processed.

【0018】一方、原料ガスがエッチングガスであれ
ば、被処理基板表面がエッチングされて所定のパターン
が基板上に形成される。これら何れのプラズマ処理にお
いても、真空処理室側壁のプラズマ密度は109cm-3
以下に制御されているので、側壁面の影響は防止され、
壁面に付着する物質の影響を減少させることができるの
で、高品質のプラズマ処理が実現される。
On the other hand, if the source gas is an etching gas, the surface of the substrate to be processed is etched and a predetermined pattern is formed on the substrate. In any of these plasma processes, the plasma density on the side wall of the vacuum processing chamber is 10 9 cm -3.
Since it is controlled below, the influence of the side wall surface is prevented,
Since the influence of substances adhering to the wall surface can be reduced, high quality plasma processing is realized.

【0019】[0019]

【作用】真空処理室側壁面を試料表面から遠ざけること
により、処理中に試料表面から発生する物質が処理室側
壁面に付着しにくくなり、また、プラズマが処理室側壁
面から離れたところで発生するため、たとえ壁面に物質
が付着したとしてもプラズマの影響で側壁面から再離脱
して試料表面に付着することは防止できる。側壁面は試
料表面から遠く、かつ排気口に近い配置となっているた
め、再離脱物を真空処理室外に有効に排気できる。試料
台とその天井壁との間隔を小さくすることにより、試料
表面からみる処理室側壁面の見込角が小さくなり、側壁
面からの再離脱物質が試料表面に戻りにくくなってい
る。
By moving the side wall surface of the vacuum processing chamber away from the sample surface, substances generated from the sample surface during processing are less likely to adhere to the side wall surface of the processing chamber, and plasma is generated at a position distant from the side wall surface of the processing chamber. Therefore, even if the substance adheres to the wall surface, it is possible to prevent the substance from re-separating from the side wall surface and adhering to the sample surface due to the influence of the plasma. Since the side wall surface is located far from the sample surface and close to the exhaust port, the re-extracted material can be effectively exhausted to the outside of the vacuum processing chamber. By reducing the distance between the sample table and its ceiling wall, the projected angle of the side wall surface of the processing chamber viewed from the sample surface becomes small, and it becomes difficult for the re-desorbed substance from the side wall surface to return to the sample surface.

【0020】プラズマ密度は、一般に基板上のプラズマ
処理領域から側壁方向に拡散することにより急激に低下
する。本発明はこの現象を効果的に応用したものであ
り、先のd/h≧1/2の条件は、真空処理室側壁のプ
ラズマ密度を109cm-3以下に制御する条件でもあ
る。
The plasma density generally sharply decreases by diffusing from the plasma processing region on the substrate toward the side wall. The present invention effectively applies this phenomenon, and the above condition of d / h ≧ 1/2 is also a condition for controlling the plasma density on the side wall of the vacuum processing chamber to 10 9 cm −3 or less.

【0021】[0021]

【実施例】以下、本発明の一実施例を図面にしたがって
説明する。 〈実施例1〉 (1)プラズマ処理装置の構成例 図1は、本発明の一実施例となるプラズマ処理装置の要
部断面図を示したものである。プラズマ発生手段とし
て、マグネトロン1で2.45GHzのマイクロ波を発
生させ、導波管2によりマイクロは導入窓5を通して真
空処理室7に伝搬させ、真空処理室内にプラズマ放電を
発生させる。真空処理室7の外周部には磁場コイル6が
配置され、マイクロ波と磁場の作用により電子サイクロ
トロン共鳴を起こしてプラズマ7aを発生する。プラズ
マ処理を行う試料8は試料台11の上に設置され、真空
処理室7の中に置かれてプラズマ7aにさらされる。真
空処理室7には原料ガス供給管12が接続され、不図示
のガス供給源から流量計を介してプラズマ処理に必要な
ガスが処理室7内に供給される。
An embodiment of the present invention will be described below with reference to the drawings. <Embodiment 1> (1) Configuration example of plasma processing apparatus FIG. 1 is a sectional view of a main part of a plasma processing apparatus according to an embodiment of the present invention. As a plasma generating means, a microwave of 2.45 GHz is generated by the magnetron 1, and the microwave is propagated to the vacuum processing chamber 7 through the introduction window 5 by the waveguide 2 to generate plasma discharge in the vacuum processing chamber. A magnetic field coil 6 is arranged on the outer peripheral portion of the vacuum processing chamber 7, and electron cyclotron resonance is caused by the action of the microwave and the magnetic field to generate plasma 7a. A sample 8 to be subjected to plasma processing is set on a sample table 11, placed in a vacuum processing chamber 7 and exposed to plasma 7a. A raw material gas supply pipe 12 is connected to the vacuum processing chamber 7, and a gas required for plasma processing is supplied into the processing chamber 7 from a gas supply source (not shown) via a flow meter.

【0022】試料台11は、その上に試料8として8イ
ンチのウェハが十分に載置できる大きさを有している。
試料台11の上部対向側の真空処理室7の内壁はマイク
ロ波導入窓5であり、この試料台11とマイクロ波導入
窓5との間隔hを約20cmとした。
The sample table 11 is large enough to mount an 8-inch wafer as a sample 8 thereon.
The inner wall of the vacuum processing chamber 7 on the upper facing side of the sample table 11 is the microwave introduction window 5, and the distance h between the sample table 11 and the microwave introduction window 5 is set to about 20 cm.

【0023】処理室側壁面3は、図2の従来装置のよう
な構造から図1のように横に幅を広げ、hの高さよりも
上下幅の大きい壁面h0(30cm)とすると共に、試
料台11の外周部からこの側壁面3までの距離dを約1
5cmとした。この距離dと高さhとの関係は、d/h
=3/4(=0.75)である。
The side wall surface 3 of the processing chamber is a wall surface h 0 (30 cm) whose width is widened laterally as shown in FIG. 1 from the structure of the conventional apparatus shown in FIG. The distance d from the outer peripheral portion of the sample table 11 to the side wall surface 3 is about 1
It was 5 cm. The relationship between the distance d and the height h is d / h
= 3/4 (= 0.75).

【0024】なお、h0/hの実用的に好ましい範囲は
0/h≧1.5であり、上限を限定する理由はない
が、装置が必要以上に大きくなるのを避けるために3≧
0/h≧1.5が望ましい。
A practically preferable range of h 0 / h is h 0 /h≧1.5, and there is no reason to limit the upper limit, but in order to prevent the device from becoming unnecessarily large, 3 ≧.
It is desirable that h 0 /h≧1.5.

【0025】(2)プラズマ処理方法(ドライエッチン
グ)の例 図1のマイクロ波プラズマ処理装置のガス供給管12
に、原料ガスとしてエッチングガスを導入することによ
り、この装置をプラズマエッチング処理装置として使用
する。以下に示す手順によりポリシリコンのドライエッ
チングを行った。
(2) Example of plasma processing method (dry etching) Gas supply pipe 12 of the microwave plasma processing apparatus of FIG.
Then, this apparatus is used as a plasma etching processing apparatus by introducing an etching gas as a source gas. Dry etching of polysilicon was performed by the procedure shown below.

【0026】先ず、試料基板8として、予めシリコンウ
ェハにSiO2膜を、さらにその上にポリシリコン膜を
順次形成し、ポリシリコン膜上にレジストパターン(マ
スク)を形成したものを準備する。エッチングガスとし
てガス供給管12からCl2ガスを処理室7内に供給
し、ポリシリコンのエッチングを行った。
First, a sample substrate 8 is prepared by forming a SiO 2 film on a silicon wafer in advance, a polysilicon film thereon in sequence, and forming a resist pattern (mask) on the polysilicon film. As the etching gas, Cl 2 gas was supplied from the gas supply pipe 12 into the processing chamber 7 to etch the polysilicon.

【0027】このときのマイクロ波パワーは1KW、バ
イアスパワーは50W、ガス圧力は5mTorr、ガス
流量は100sccmとした。エッチング結果として、
ポリシリコンのエッチ速度は400nm/min、ポリ
シリコン/SiO2選択比が50であった。なお、比較
例として行なった図2の従来装置(d/h=7cm/2
5cm=0.28)では、同様の条件でポリシリコン/
SiO2選択比は25であったので、本実施例では選択
比を従来装置の2倍にする効果があった。
At this time, the microwave power was 1 kW, the bias power was 50 W, the gas pressure was 5 mTorr, and the gas flow rate was 100 sccm. As a result of etching,
The polysilicon etching rate was 400 nm / min, and the polysilicon / SiO 2 selection ratio was 50. The conventional device of FIG. 2 (d / h = 7 cm / 2) used as a comparative example.
5 cm = 0.28), polysilicon /
Since the SiO 2 selection ratio was 25, this example had the effect of doubling the selection ratio of the conventional device.

【0028】なお、図3は、ポリシリコン/SiO2
択比および装置内パーテイクル数(個/ウェハ)にd/
hが如何なる影響を及ぼすかについて測定した結果を示
した特性曲線図である。前述の通りdは試料台11の外
周から真空処理室側壁面3までの距離、hは試料台11
から上方天井壁面までの高さである。図1の装置のhを
20cmに固定し、dの値を変化させて測定したもので
ある。
In FIG. 3, the polysilicon / SiO 2 selectivity and the number of particles in the apparatus (piece / wafer) are d /
It is a characteristic curve figure which showed the result of having measured what kind of effect h has. As described above, d is the distance from the outer periphery of the sample table 11 to the side wall surface 3 of the vacuum processing chamber, and h is the sample table 11
To the ceiling wall above. It is measured by fixing h of the apparatus of FIG. 1 to 20 cm and changing the value of d.

【0029】この図から明らかなように、ポリシリコン
/SiO2選択比は、d/h値を大きくするほど、すな
わち、距離dを大きくするほど増加する。例えば距離d
が7cmのところが比較例(従来装置d/h=0.2
8)に該当し、このときの選択比は25であるが、dが
さらに遠ざかり15cmのところではd/h=0.75
で従来の2倍の選択比、さらに25cmのところでは、
d/h=1.25で従来の2.5倍以上の選択比を示し
ている。
As is apparent from this figure, the polysilicon / SiO 2 selection ratio increases as the d / h value increases, that is, the distance d increases. For example, the distance d
Where 7 cm is a comparative example (conventional device d / h = 0.2
8), and the selection ratio at this time is 25, but d / h = 0.75 when d is further away and 15 cm.
With the selection ratio twice that of the conventional one, and at 25 cm,
At d / h = 1.25, the selection ratio is 2.5 times or more that of the conventional one.

【0030】一方、装置内のパーティクル発生数につい
ても、8インチウェハ上において従来装置では約76個
であったものが、d/h=0.75では約43個、d/
h=1.25以上では約30以下と従来装置の半分以下
になり、真空処理室側壁の影響を防止する効果が十分に
認められた。
On the other hand, the number of particles generated in the apparatus was about 76 on the 8-inch wafer in the conventional apparatus, but about 43 when d / h = 0.75 and d / h.
When h = 1.25 or more, it is about 30 or less, which is half or less of that of the conventional apparatus, and the effect of preventing the influence of the side wall of the vacuum processing chamber was sufficiently recognized.

【0031】なお、パーティクル発生数のカウントは、
ウェハ異物計測装置によりウェハ上に付着した粒子数を
実測したものであり、これらの粒子は殆ど真空処理室側
壁から飛散してきたものである。さらに、ポリシリコン
やSiO2のエッチング速度の経時変化も従来装置の約
1/2以下に低減した。
The count of the number of particles generated is
The number of particles adhering to the wafer was measured by a wafer foreign matter measuring device, and most of these particles were scattered from the side wall of the vacuum processing chamber. Further, the change with time of the etching rate of polysilicon and SiO 2 is reduced to less than about half that of the conventional device.

【0032】〈実施例2〉この実施例ではプラズマ発生
手段を、実施例1のマイクロ波放電の代わりに高周波放
電による構成としたものである。図4はトランスフォー
マ・カップル・プラズマ(Transformer couple plasm
a)エッチングとよばれている誘導結合型のドライエッ
チング装置に本発明を適用した装置の要部断面図であ
る。
<Embodiment 2> In this embodiment, the plasma generating means is constituted by a high frequency discharge instead of the microwave discharge of the first embodiment. Fig. 4 shows Transformer couple plasma.
FIG. 3A is a cross-sectional view of a main part of an apparatus in which the present invention is applied to an inductively coupled dry etching apparatus called etching.

【0033】また、図5はこの装置の従来構造を比較の
ために示した要部断面図である。従来装置では、試料台
11の外周部から真空処理室側壁面3までの距離dと、
試料台11と対向する天井壁殿の高さhとの関係は、d
/h<1/2であった。
Further, FIG. 5 is a sectional view showing the main part of a conventional structure of this device for comparison. In the conventional apparatus, the distance d from the outer peripheral portion of the sample table 11 to the side wall surface 3 of the vacuum processing chamber,
The relationship between the height h of the ceiling wall opposite to the sample table 11 is d
/ H <1/2.

【0034】これに対して、図4の本発明による装置で
は、実施例1の場合と同様にd/h≧1/2として試料
台11の外周部から側壁面3までの距離dをより遠ざけ
る構造にすると共に、排気口10に隣接する側壁面3の
幅h0を上下に拡げた。その一例として、試料台11と
対向する天井壁殿の高さhを30cmとし、試料台11
の外周部から真空処理室側壁面3までの距離dを20c
mとして、d/h=0.67とした。なお、側壁面3の
上下幅h0は60cmとした。
On the other hand, in the apparatus according to the present invention shown in FIG. 4, the distance d from the outer peripheral portion of the sample table 11 to the side wall surface 3 is further increased by setting d / h ≧ 1/2 as in the case of the first embodiment. With the structure, the width h 0 of the side wall surface 3 adjacent to the exhaust port 10 is expanded vertically. As an example, the height h of the ceiling wall facing the sample table 11 is set to 30 cm, and the sample table 11 is
The distance d from the outer peripheral part to the side wall surface 3 of the vacuum processing chamber is 20c
As m, d / h = 0.67. The vertical width h 0 of the side wall surface 3 was set to 60 cm.

【0035】この装置によりエッチングガスとしてガス
供給管12からCl2ガスを処理室7内に供給し、試料
8として表面に予めアルミニウム合金膜が形成された液
晶パネル用のガラス基板を準備し、このアルミニウム合
金膜上に周知のフォトリソグラフにより所定パターンの
レジストマスクを形成し、ドライエッチングにより配線
パターンを形成した。その結果、アルミニウム合金/S
iO2のエッチ速度選択比が従来装置の30%増加し、
装置内パーティクルが1/2以下に減少した。
Cl 2 gas as an etching gas is supplied from the gas supply pipe 12 into the processing chamber 7 by this apparatus, and a glass substrate for a liquid crystal panel having an aluminum alloy film formed on its surface in advance as a sample 8 is prepared. A resist mask having a predetermined pattern was formed on the aluminum alloy film by known photolithography, and a wiring pattern was formed by dry etching. As a result, aluminum alloy / S
The etch rate selectivity of io 2 increased by 30% compared to the conventional equipment,
The number of particles in the device was reduced to 1/2 or less.

【0036】〈実施例3〉この実施例では、図1のプラ
ズマ処理装置を用いてCVDにより、シリコン基板上に
SiO2膜を形成した例について説明する。図1のプラ
ズマ処理装置は原料ガスをエッチングガスからCVDガ
スに切り換えるだけでプラズマCVDによる成膜装置と
なる。
<Embodiment 3> In this embodiment, an example in which a SiO 2 film is formed on a silicon substrate by CVD using the plasma processing apparatus shown in FIG. 1 will be described. The plasma processing apparatus of FIG. 1 becomes a film forming apparatus by plasma CVD simply by switching the source gas from the etching gas to the CVD gas.

【0037】先ず、原料ガスとしてモノシランSi
4、ジシランSi26及び酸素ガスをガス供給管12
から送給し、成膜速度500nm/分で2分間成膜し、
1.0μmのSiO2膜を形成した。膜質は良好であ
り、真空処理室7の側壁面3からの付着物9が飛散する
ことによる異物の発生は従来装置に比較して激減した。
First, monosilane Si is used as a source gas.
Gas supply pipe 12 for supplying H 4 , disilane Si 2 H 6 and oxygen gas
The film is fed from the above and the film is formed at a film forming speed of 500 nm / min for 2 minutes.
A 1.0 μm SiO 2 film was formed. The film quality was good, and the generation of foreign matter due to the scattering of the deposit 9 from the side wall surface 3 of the vacuum processing chamber 7 was drastically reduced as compared with the conventional apparatus.

【0038】[0038]

【発明の効果】以上詳述したように本発明により、所期
の目的を達成することができた。すなわち、プラズマ処
理装置の壁の影響を低減することにより、例えばドライ
エッチングにおいては、エッチング選択比向上、エッチ
速度向上、装置内パーティクル低減、特性の経時変化低
減などの効果があり、成膜においては異物の発生を低減
し、高品質の薄膜形成を可能とした。
As described above in detail, according to the present invention, the intended purpose can be achieved. That is, by reducing the influence of the wall of the plasma processing apparatus, for example, in dry etching, there are effects such as an improvement in etching selection ratio, an increase in etching rate, a reduction in particles in the apparatus, and a reduction in characteristics over time. The generation of foreign matter is reduced and high quality thin film can be formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例となるプラズマ処理装置の要
部断面図。
FIG. 1 is a sectional view of a main part of a plasma processing apparatus according to an embodiment of the present invention.

【図2】比較例となる従来装置の要部断面図。FIG. 2 is a cross-sectional view of a main part of a conventional device as a comparative example.

【図3】装置構成のパラメータとなるd/hの関係が、
エッチング特性に及ぼす影響を示した本発明の一実施例
となる特性曲線図。
FIG. 3 shows a relationship of d / h which is a parameter of a device configuration,
The characteristic curve figure which becomes an Example of this invention which showed the influence which it has on etching characteristic.

【図4】本発明の他の実施例となるプラズマ処理装置の
要部断面図。
FIG. 4 is a sectional view of a main part of a plasma processing apparatus according to another embodiment of the present invention.

【図5】比較例となる他の従来装置の要部断面図。FIG. 5 is a cross-sectional view of essential parts of another conventional device serving as a comparative example.

【符号の説明】[Explanation of symbols]

1…マグネトロン、 2…導
波管、3…処理室側壁面、
4…処理室天井壁、5…マイクロ波導入窓、
6…磁場コイル、7…真空処理室、
7a…プラズマ、8…試料(基
板、ウェハ)、 9…付着物、10…
排気口、 11…試料
台、12…ガス供給管、 1
4…真空バッファ室、15…プラズマ励起コイル、d…
試料台の外周部から側壁面までの距離、h…試料台と対
向する天井壁殿の高さ、h0…処理室側壁面の上下幅。
1 ... Magnetron, 2 ... Waveguide, 3 ... Side wall of processing chamber,
4 ... ceiling wall of processing chamber, 5 ... microwave introduction window,
6 ... Magnetic field coil, 7 ... Vacuum processing chamber,
7a ... Plasma, 8 ... Sample (substrate, wafer), 9 ... Adhesion matter, 10 ...
Exhaust port, 11 ... Sample stage, 12 ... Gas supply pipe, 1
4 ... Vacuum buffer chamber, 15 ... Plasma excitation coil, d ...
Distance from the outer peripheral portion of the sample stage to the side wall surface, h ... sample stage facing the ceiling wall buttocks height, h 0 ... vertical width of the processing chamber side wall.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水谷 巽 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tatsumi Mizutani 1-280, Higashi Koigokubo, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】試料処理室を真空に排気し、室内に処理ガ
スを導入すると共に、高周波エネルギを印加することに
より処理室内にプラズマを発生させ、このプラズマ空間
に試料台に載置された基板表面を曝すことによってプラ
ズマ処理を行なう工程を有するプラズマ処理方法におい
て、試料台の外周部から真空処理室側壁面までの最短距
離をdとし、試料台上に対向する天井壁の高さをhとし
たとき、これら両者の関係をd/h≧1/2とする条件
下でプラズマ処理を行なう工程を有して成るプラズマ処
理方法。
1. A sample processing chamber is evacuated to a vacuum, a processing gas is introduced into the chamber, and high frequency energy is applied to generate plasma in the processing chamber. A substrate placed on a sample table in the plasma space. In a plasma processing method having a step of performing plasma processing by exposing the surface, the shortest distance from the outer peripheral portion of the sample table to the side wall surface of the vacuum processing chamber is d, and the height of the ceiling wall facing the sample table is h. Then, the plasma processing method comprising the step of performing plasma processing under the condition that the relationship between the two is d / h ≧ 1/2.
【請求項2】試料処理室を真空に排気し、室内に処理ガ
スを導入すると共に、高周波エネルギを印加することに
より処理室内にプラズマを発生させ、このプラズマ空間
に試料台に載置された基板表面を曝すことによってプラ
ズマ処理を行なう工程を有するプラズマ処理方法におい
て、試料台と処理室天井壁面とに挟まれた空間領域にプ
ラズマを発生させる際に、プラズマ処理領域となる試料
基板上のプラズマ密度を少なくとも1010cm-3以上と
し、真空処理室側壁面に接触するプラズマ密度を109
cm-3以下として成るプラズマ処理方法。
2. A sample processing chamber is evacuated to a vacuum, a processing gas is introduced into the chamber, and high-frequency energy is applied to generate plasma in the processing chamber. A substrate placed on a sample table in the plasma space. In a plasma processing method having a step of performing plasma processing by exposing a surface, when plasma is generated in a space area sandwiched between a sample table and a ceiling wall of a processing chamber, a plasma density on a sample substrate to be a plasma processing area Is at least 10 10 cm −3 and the plasma density in contact with the side wall of the vacuum processing chamber is 10 9
A plasma treatment method consisting of cm −3 or less.
【請求項3】処理ガスとしてエッチングガスを導入し、
基板表面にプラズマ処理を行なう工程を、ドライエッチ
ング工程として成る請求項1もしくは2記載のプラズマ
処理方法。
3. An etching gas is introduced as a processing gas,
3. The plasma processing method according to claim 1, wherein the step of performing plasma processing on the substrate surface is a dry etching step.
【請求項4】処理ガスとしてCVDガスを導入し、基板
表面にプラズマ処理を行なう工程を、CVDによる成膜
工程として成る請求項1もしくは2記載のプラズマ処理
方法。
4. The plasma processing method according to claim 1, wherein the step of introducing a CVD gas as a processing gas and performing the plasma processing on the substrate surface is a film forming step by CVD.
【請求項5】試料基板を半導体、もしくはガラスからな
る電子部品用基板で構成し、前記電子部品用基板の表面
に所望のプラズマ処理を施す工程を有して成る請求項1
乃至4何れか一つに記載のプラズマ処理方法。
5. The method according to claim 1, further comprising the step of forming the sample substrate with an electronic component substrate made of a semiconductor or glass, and subjecting the surface of the electronic component substrate to a desired plasma treatment.
4. The plasma processing method according to any one of 4 to 4.
【請求項6】真空処理室と、真空処理室内に処理ガスを
供給する手段と、高周エネルギを印加することにより処
理室内にプラズマを発生させる手段と、真空処理室内を
排気する手段と、真空処理室内に発生させたプラズマに
試料基板のプラズマ被処理面を曝す手段とを有して成る
プラズマ処理装置において、試料台の外周部から真空処
理室側壁面までの距離をdとし、試料台上に対向する天
井壁面の高さをhとしたとき、これら両者の関係をd/
h≧1/2とする条件下に設定した真空処理室を具備し
て成るプラズマ処理装置。
6. A vacuum processing chamber, means for supplying a processing gas into the vacuum processing chamber, means for generating plasma in the processing chamber by applying high circumferential energy, means for exhausting the vacuum processing chamber, and vacuum. In a plasma processing apparatus having means for exposing a plasma-processed surface of a sample substrate to plasma generated in a processing chamber, the distance from the outer peripheral portion of the sample table to the side wall surface of the vacuum processing chamber is defined as d When the height of the ceiling wall opposite to is defined as h, the relationship between the two is d /
A plasma processing apparatus comprising a vacuum processing chamber set under the condition of h ≧ 1/2.
【請求項7】真空処理室と、真空処理室内に処理ガスを
供給する手段と、高周エネルギを印加することにより処
理室内にプラズマを発生させる手段と、真空処理室内を
排気する手段と、真空処理室内に発生させたプラズマに
試料基板のプラズマ被処理面を曝す手段とを有して成る
プラズマ処理装置において、試料台と処理室天井壁面と
の空間領域に発生させるプラズマのうち、プラズマ処理
領域となる試料基板上のプラズマ密度を少なくとも10
10cm-3以上、真空処理室側壁面に接触するプラズマ密
度を109cm-3以下に制御された真空処理室を具備し
て成るプラズマ処理装置。
7. A vacuum processing chamber, means for supplying a processing gas into the vacuum processing chamber, means for generating plasma in the processing chamber by applying high circumferential energy, means for exhausting the vacuum processing chamber, and vacuum. In a plasma processing apparatus having a means for exposing a plasma-processed surface of a sample substrate to plasma generated in a processing chamber, a plasma processing region among plasmas generated in a space region between a sample stage and a ceiling wall surface of the processing chamber. Plasma density on the sample substrate of at least 10
10 cm -3 or more, a plasma processing apparatus comprising comprises a vacuum processing chamber which is controlled plasma density in contact with the vacuum processing chamber side wall surface 10 9 cm -3 or less.
【請求項8】真空処理室側壁の下端部が試料台より低い
位置に存在し、かつこの下端部に隣接した真空処理室底
部に排気口を配設して成る請求項6もしくは7記載のプ
ラズマ処理装置。
8. The plasma according to claim 6, wherein the lower end of the side wall of the vacuum processing chamber is located at a position lower than the sample stage, and an exhaust port is provided at the bottom of the vacuum processing chamber adjacent to the lower end. Processing equipment.
【請求項9】真空処理室側壁の上端部の高さが、試料台
上に対向する処理室天井壁の高さhよりも高く、かつ真
空処理室側壁の下端部が試料台より低い位置に存在し、
かつこの下端部に隣接した真空処理室底部に排気口を配
設して成る請求項6もしくは7記載のプラズマ処理装
置。
9. The height of the upper end of the side wall of the vacuum processing chamber is higher than the height h of the ceiling wall of the processing chamber facing the sample stage, and the lower end of the side wall of the vacuum processing chamber is lower than that of the sample stage. Exists,
The plasma processing apparatus according to claim 6 or 7, wherein an exhaust port is provided at the bottom of the vacuum processing chamber adjacent to the lower end.
【請求項10】真空処理室側壁の上端から下端に至る上
下幅をh0とし、試料台上に対向する処理室天井壁の高
さをhとしたとき、これら両者の関係をh0/h≧1.
5とする条件下に設定した真空処理室を具備して成る請
求項6乃至9何れか一つに記載のプラズマ処理装置。
10. When the vertical width from the upper end to the lower end of the side wall of the vacuum processing chamber is h 0 and the height of the ceiling wall of the processing chamber facing the sample stage is h, the relationship between the two is h 0 / h. ≧ 1.
10. The plasma processing apparatus according to claim 6, further comprising a vacuum processing chamber set under the condition of 5.
JP4956295A 1995-03-09 1995-03-09 Method and device for plasma treatment Pending JPH08250470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4956295A JPH08250470A (en) 1995-03-09 1995-03-09 Method and device for plasma treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4956295A JPH08250470A (en) 1995-03-09 1995-03-09 Method and device for plasma treatment

Publications (1)

Publication Number Publication Date
JPH08250470A true JPH08250470A (en) 1996-09-27

Family

ID=12834652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4956295A Pending JPH08250470A (en) 1995-03-09 1995-03-09 Method and device for plasma treatment

Country Status (1)

Country Link
JP (1) JPH08250470A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006270054A (en) * 2005-01-28 2006-10-05 Applied Materials Inc Method and apparatus to confine plasma and to enhance flow conductance
JP2008277306A (en) * 1997-01-29 2008-11-13 Foundation For Advancement Of International Science Plasma device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277306A (en) * 1997-01-29 2008-11-13 Foundation For Advancement Of International Science Plasma device
JP2006270054A (en) * 2005-01-28 2006-10-05 Applied Materials Inc Method and apparatus to confine plasma and to enhance flow conductance
JP4713352B2 (en) * 2005-01-28 2011-06-29 アプライド マテリアルズ インコーポレイテッド Method and apparatus for confining plasma and increasing flow conductance

Similar Documents

Publication Publication Date Title
US5824158A (en) Chemical vapor deposition using inductively coupled plasma and system therefor
JP3192370B2 (en) Plasma processing equipment
KR19990077237A (en) Cleaning method and plasma processing method of plasma processing apparatus
JP3400918B2 (en) Method for manufacturing semiconductor device
KR20180124773A (en) Plasma processing apparatus cleaning method
JPWO2002058125A1 (en) Plasma processing apparatus and plasma processing method
US5897740A (en) Plasma processing system
JP3520577B2 (en) Plasma processing equipment
JP3323764B2 (en) Processing method
JP2000091247A (en) Plasma processing device
JP3408994B2 (en) Plasma processing apparatus and control method for plasma processing apparatus
KR100262883B1 (en) Plasma cleaning method
JPH08250470A (en) Method and device for plasma treatment
JP2003142471A (en) Plasma treatment apparatus and method of manufacturing constitutional body
JP2004214609A (en) Method of treating plasma processing apparatus
JP2797307B2 (en) Plasma process equipment
JP3400909B2 (en) Plasma processing method and apparatus
JP2000294548A (en) Microwave plasma treatment apparatus using dielectrics window
JP3335762B2 (en) Plasma cleaning method
JP3172340B2 (en) Plasma processing equipment
JP3077516B2 (en) Plasma processing equipment
JP3164188B2 (en) Plasma processing equipment
JP3147769B2 (en) Plasma processing apparatus and processing method
JP2002319569A (en) Dry etching method
JP3082702B2 (en) Plasma processing apparatus and metal wiring etching method