JPH08259315A - Production of ferrite sintered compact - Google Patents
Production of ferrite sintered compactInfo
- Publication number
- JPH08259315A JPH08259315A JP7058930A JP5893095A JPH08259315A JP H08259315 A JPH08259315 A JP H08259315A JP 7058930 A JP7058930 A JP 7058930A JP 5893095 A JP5893095 A JP 5893095A JP H08259315 A JPH08259315 A JP H08259315A
- Authority
- JP
- Japan
- Prior art keywords
- ferrite
- powder
- ferrite sintered
- temperature
- sintered body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compounds Of Iron (AREA)
- Magnetic Ceramics (AREA)
- Powder Metallurgy (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は各種電子部品等に利用さ
れるフェライト焼結体の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a ferrite sintered body used in various electronic parts.
【0002】[0002]
【従来の技術】従来のフェライト焼結体は次のように製
造されていた。2. Description of the Related Art Conventional ferrite sintered bodies have been manufactured as follows.
【0003】まず、出発原料としてMnO,NiO,C
uO,ZnO,Fe2O3等の酸化物を秤量、混合した
後、約800〜900℃で仮焼し、次に、この仮焼粉を
粉砕し造粒した後、成形し、約1100〜1300℃で
本焼成して製造していた。First, MnO, NiO, and C are used as starting materials.
After measuring and mixing oxides such as uO, ZnO, and Fe 2 O 3 , the mixture is calcined at about 800 to 900 ° C., and then the calcined powder is crushed and granulated, and then molded to about 1100 to 100 ° C. It was manufactured by firing at 1300 ° C.
【0004】しかしながら、このようにして製造したフ
ェライト焼結体は良く知られているように本焼成中に約
10〜30%収縮する。焼結過程での収縮は次のような
原因で生じる。仮焼粉を単に加圧した成形体は通常、粒
径が1〜5μm程度もしくはそれ以下の粉末を使用する
ために成形密度が低く、粒子どうしは接触しているもの
のまだ空隙は多いため、仮焼温度以上の温度で加熱する
と粒子間の接触部分で相互拡散が生じ、焼結が始まる。
焼結が進行するにつれて粒子間の空隙が減少し、その結
果10〜30%の収縮が生じるのである。したがって実
際にフェライト材料を焼成する場合には、この寸法変化
率と変形を見越して必要なフェライト焼結体の寸法より
も若干大きくなるように成形体を作製している。そのた
め高寸法精度の必要とされるフェライト焼結体を得るに
は、得られたフェライト焼結体を必要な寸法、形状にす
るための切削加工の工程が必要であった。また焼成後の
フェライト焼結体は非常に硬いため、この切削加工で用
いられる切削刃の磨耗が著しく、また加工工数が多いた
め、その結果としてコスト高になっていた。However, the ferrite sintered body produced in this way shrinks by about 10 to 30% during the main firing as is well known. Shrinkage during the sintering process occurs due to the following reasons. A compact compacted by simply pressurizing the calcined powder has a low compacting density because a powder having a particle size of about 1 to 5 μm or less is used, and although the particles are in contact with each other, there are still many voids. When heated at a temperature equal to or higher than the firing temperature, mutual diffusion occurs at the contact portion between particles and sintering starts.
As the sintering progresses, the voids between the particles decrease, resulting in 10-30% shrinkage. Therefore, when the ferrite material is actually fired, the molded body is manufactured so as to be slightly larger than the required size of the ferrite sintered body in consideration of this dimensional change rate and deformation. Therefore, in order to obtain a ferrite sintered body that requires high dimensional accuracy, a cutting process for forming the obtained ferrite sintered body into the required size and shape was necessary. Further, since the ferrite sintered body after firing is extremely hard, the cutting blade used in this cutting process is significantly worn, and the number of processing steps is large, resulting in a high cost.
【0005】フェライトの焼結に伴う収縮を改善するた
めの研究はこれまでにも数多くなされてきたが、フェラ
イトの諸特性を確保するためにはある程度の収縮は避け
られないのが実状である。例えば、特開昭58−135
133号公報、特開昭58−135606号公報に記載
されているように、フェライト仮焼粉とガラス粉末とを
混合した後に、フェライトの焼結が進行する温度で焼成
すると、ガラス粉末がフェライト粒子の周囲を覆うこと
でフェライトの緻密化を一部抑制して低収縮率のフェラ
イト焼結体を得ることができるというものである。しか
し、仮焼粉作製温度が本焼成温度よりも低いため、本焼
成時には直接接触しているフェライト粒子間の相互拡散
は避けがたく、実際には数%の収縮が生じていた。Although many studies have been carried out so far to improve the shrinkage of ferrite due to sintering, it is the actual situation that some shrinkage is inevitable in order to secure the various characteristics of ferrite. For example, JP-A-58-135
As described in JP-A No. 133 and JP-A-58-135606, when the calcined ferrite powder and the glass powder are mixed and then fired at a temperature at which ferrite sintering proceeds, the glass powder becomes ferrite particles. By covering the periphery of the ferrite, it is possible to partially suppress the densification of the ferrite and obtain a ferrite sintered body with a low shrinkage ratio. However, since the calcination powder preparation temperature is lower than the main calcination temperature, mutual diffusion between ferrite particles in direct contact with each other is unavoidable during the main calcination, and in reality, shrinkage of several% occurred.
【0006】[0006]
【発明が解決しようとする課題】以上述べてきたよう
に、従来のフェライト焼結体では、所望の特性を得るた
めに焼結を進行させると収縮は大きくなり、逆に収縮を
抑制すれば特性が確保されず両立は非常に困難である。
しかしながら、フェライト焼結体は電子部品、デバイズ
材料として多用され、その特性および高寸法精度がます
ます重要視されている。As described above, in the conventional ferrite sintered body, the shrinkage increases as the sintering proceeds to obtain the desired characteristics, and conversely, if the shrinkage is suppressed, the characteristics decrease. However, it is very difficult to achieve both.
However, ferrite sintered bodies are widely used as electronic parts and device materials, and their characteristics and high dimensional accuracy are becoming more and more important.
【0007】本発明は前記従来技術の課題を解決するた
め、焼成時の寸法変化率が小さく優れた磁気特性を有す
るフェライト焼結体の製造方法を提供することを目的と
する。In order to solve the above-mentioned problems of the prior art, it is an object of the present invention to provide a method for producing a ferrite sintered body having a small dimensional change rate during firing and excellent magnetic properties.
【0008】[0008]
【課題を解決するための手段】上記の目標を達成するた
め本発明のフェライト焼結体の製造方法は、フェライト
組成を構成する酸化物の少なくとも一種類以上を熱処理
し粉砕する第一工程と、前記フェライトを構成する酸化
物の少なくとも一種類以上を全てあるいは一部金属粉体
と置換し混合する第二工程と元素の金属粉体を少なくと
も一種類以上添加し混合する第二工程と、この混合粉に
有機質の結合剤を加えて混合し造粒粉を形成する第三工
程と、前記造粒粉を圧縮成形して成形体を得る第四工程
と、前記成形体を焼成してフェライト結晶体を形成する
第五工程とを備えたフェライト焼結体の製造方法であ
る。In order to achieve the above-mentioned object, a method for producing a ferrite sintered body of the present invention comprises a first step of heat-treating and pulverizing at least one kind of oxide constituting a ferrite composition, A second step of substituting and mixing at least one or more kinds of oxides constituting the ferrite with metal powders wholly or partly, and a second step of adding and mixing at least one or more kinds of metal powders of elements, and this mixing A third step of forming a granulated powder by adding an organic binder to the powder to form a granulated powder, a fourth step of compression-molding the granulated powder to obtain a molded body, and firing the molded body to obtain a ferrite crystal body. And a fifth step for forming a ferrite sintered body.
【0009】さらに酸化物としてMnO,NiO,Cu
O,ZnO,Fe2O3を少なくとも一種類以上、金属粉
体としてMn,Ni,Cu,Zn,Feを少なくとも一
種類以上用い、熱処理温度が500〜1100℃、焼成
温度が800〜1300℃からなる製造方法に関するも
のである。Further, MnO, NiO, Cu as oxides
O, ZnO, Fe 2 O 3 at least one kind, and Mn, Ni, Cu, Zn, Fe at least one kind as a metal powder are used, and the heat treatment temperature is 500 to 1100 ° C., and the firing temperature is 800 to 1300 ° C. The present invention relates to a manufacturing method.
【0010】[0010]
【作用】前記した本発明のフェライト焼結体の製造方法
によれば、加えられた金属粉体が焼成過程において酸化
膨張し粒子間の空隙を埋めることによって焼成時の寸法
変化を抑制し、さらに出発原料の酸化物を少なくとも一
種類以上熱処理することによりフェライトの焼結性が著
しく向上し、寸法変化率が小さく、磁気特性の優れたフ
ェライト焼結体が得られる。According to the above-described method for producing a ferrite sintered body of the present invention, the added metal powder is oxidized and expanded during the firing process to fill the voids between the particles, thereby suppressing the dimensional change during firing. By heat-treating at least one oxide of the starting material, the sinterability of ferrite is remarkably improved, the dimensional change rate is small, and a ferrite sintered body having excellent magnetic properties can be obtained.
【0011】[0011]
【実施例】以下に本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.
【0012】すなわち、本発明のフェライト焼結体の製
造方法の基本とするところは、フェライト組成を構成す
る酸化物の少なくとも一種類以上を熱処理し粉砕する第
一工程と、前記フェライトを構成する酸化物の少なくと
も一種類以上を全てあるいは一部金属粉体と置換し混合
する第二工程と元素の金属粉体を少なくとも一種類以上
添加し混合する第二工程と、この混合粉に有機質の結合
剤を加えて混合し造粒粉を形成する第三工程と、前記造
粒粉を圧縮成形して成形体を得る第四工程と、前記成形
体を焼成してフェライト結晶体を形成する第五工程とを
備えたところにある。That is, the basis of the method for producing a ferrite sintered body of the present invention is that the first step of heat-treating and pulverizing at least one or more kinds of oxides constituting the ferrite composition, and the oxidation constituting the ferrite. A second step of substituting and mixing at least one kind or more of all or part of the metal powder with a metal powder, a second step of adding and mixing at least one kind of metal powder of the element, and an organic binder to the mixed powder. A third step of adding and mixing to form a granulated powder, a fourth step of compression molding the granulated powder to obtain a molded body, and a fifth step of firing the molded body to form a ferrite crystal body. It is equipped with and.
【0013】このとき熱処理温度は500〜1000℃
で、焼成温度よりも100℃以上低温であることが好ま
しい。これは熱処理温度が焼成温度と同等以上の高温で
熱処理した場合には本焼成時の反応性が著しく低下し、
優れた磁気特性を得難いためである。At this time, the heat treatment temperature is 500 to 1000 ° C.
It is preferable that the temperature is 100 ° C. or more lower than the firing temperature. This means that when heat treatment is performed at a high temperature equal to or higher than the firing temperature, the reactivity during the main firing is significantly reduced.
This is because it is difficult to obtain excellent magnetic properties.
【0014】また、本焼成温度は1300℃以下で焼成
した方が熱処理による効果が大きい。1300℃以上で
焼成した場合には磁気特性が低下し始める。一方、本焼
成温度が800℃以下になると反応が十分に進行せず、
100%スピネル化しないため、諸特性は著しく劣化す
る。Further, the effect of the heat treatment is greater when the main baking temperature is 1300 ° C. or lower. When fired at 1300 ° C. or higher, magnetic properties start to deteriorate. On the other hand, when the main firing temperature is 800 ° C. or lower, the reaction does not proceed sufficiently,
Since it is not made 100% spinel, various characteristics are significantly deteriorated.
【0015】各々の酸化物を熱処理することによって得
られる効果は、NiOについては250℃付近で相転移
を生じる(電気化学便覧第4版、電気化学協会、丸善)
ことが知られており、熱処理によってNiOの相転移が
生じ、そのことが本焼成時の反応性を高め、磁気特性を
改善するものと考えられる。その他の酸化物について
は、理由は定かでないものの事前に熱処理を行うことで
金属粉体との反応性を高める、あるいは不純物が除去さ
れるといった効果が考えられ、程度の差はあるものの同
様の効果が認められた。The effect obtained by heat-treating each oxide is that NiO undergoes a phase transition at around 250 ° C. (Electrochemical Handbook, 4th edition, Electrochemical Society, Maruzen).
It is known that the heat treatment causes a phase transition of NiO, which enhances the reactivity during the main firing and improves the magnetic properties. For other oxides, although the reason is not clear, it may be possible to increase the reactivity with the metal powder or remove impurities by performing heat treatment in advance, and the same effect with varying degrees. Was recognized.
【0016】金属粉体の平均粒径は、金属粉体が焼成過
程ですべて酸化されることが最低条件であり、焼成温
度、昇温速度などの諸条件によって大きく異なるが、1
〜20μm程度であることが望ましい。金属粉体の粒径
が小さすぎると、ある温度領域で急激に酸化膨張が進行
するため、試料内の酸素濃度が不均一になり健全な組織
が得られない、あるいは焼結体にクラックが生じるとい
った不具合が生じるからである。The average particle size of the metal powder is the minimum condition that all the metal powder is oxidized during the firing process, and varies greatly depending on various conditions such as firing temperature and temperature rising rate.
It is desirable that the thickness is about 20 μm. If the particle size of the metal powder is too small, oxidative expansion will proceed rapidly in a certain temperature range, and the oxygen concentration in the sample will become non-uniform and a sound structure will not be obtained, or cracks will occur in the sintered body. This is because such a problem occurs.
【0017】次に具体的な実施例について実験結果に基
づいて説明する。 (実施例1)出発原料には800℃、2hrで仮焼した
平均粒径が1μm、組成比がNiO=15mol%、Z
nO=30mol%、CuO=5mol%、Fe2O3=
50mol%のNi−Zn−Cu系フェライト仮焼粉を
用いた。また、酸化物としてNiO,ZnO,CuO、
金属粉体として平均粒径が6μmの金属Fe粉を用い
た。ここで酸化物と金属粉体をあわせて充填材と呼ぶこ
とにする。この充填材の組成を前記フェライト仮焼粉と
同組成となるように配合した。またフェライト仮焼粉と
充填材の体積比が6:4になるようにフェライト仮焼粉
および充填材を構成する酸化物、金属粉体をそれぞれ秤
量した。このうち、酸化物のNiO,ZnO,CuOの
少なくとも一種類を(表1)に示したように800℃、
2hrで熱処理したものと置換した。Next, specific examples will be described based on experimental results. (Example 1) The starting material was calcined at 800 ° C. for 2 hours, the average particle size was 1 μm, the composition ratio was NiO = 15 mol%, and Z was Z.
nO = 30 mol%, CuO = 5 mol%, Fe 2 O 3 =
A 50 mol% Ni-Zn-Cu-based ferrite calcined powder was used. Further, as oxides, NiO, ZnO, CuO,
As the metal powder, a metal Fe powder having an average particle size of 6 μm was used. Here, the oxide and the metal powder are collectively referred to as a filler. The composition of this filler was blended so as to have the same composition as the above-mentioned ferrite calcined powder. The oxides and metal powders that compose the ferrite calcined powder and the filler were weighed so that the volume ratio of the calcined ferrite powder and the filler was 6: 4. Among these, at least one kind of oxides NiO, ZnO, and CuO is 800 ° C. as shown in (Table 1),
It was replaced with one that was heat-treated for 2 hours.
【0018】上記のフェライト仮焼粉、酸化物、熱処理
を行った酸化物および金属粉体を混合し、ポリビニルア
ルコールの5重量%水溶液を10重量%加え、30#の
ふるいを通過させて造粒した。この造粒粉を1t/cm
2で一軸金型成形し、この成形体を350℃、1hr大
気中でバインドアウトした後、1000℃、5hr大気
中で焼成を行った。The above calcined ferrite powder, oxide, heat-treated oxide and metal powder were mixed, 10% by weight of a 5% by weight aqueous solution of polyvinyl alcohol was added, and the mixture was passed through a 30 # sieve to granulate. did. 1 t / cm of this granulated powder
After uniaxial die molding in 2 , the molded body was bound out at 350 ° C. for 1 hr in air, and then fired at 1000 ° C. for 5 hr in air.
【0019】特性の測定は、得られたフェライト焼結体
より外径15mm、内径10mm、厚さ3mmのトロイ
ダルコアを切り出し、0.5mmφのエナメル線を20
ターン巻き、インピーダンスアナライザーを用いて1M
Hzでの透磁率を測定した。各々のフェライトコアの密
度、寸法変化率および透磁率を(表1)に示した。To measure the characteristics, a toroidal core having an outer diameter of 15 mm, an inner diameter of 10 mm, and a thickness of 3 mm was cut out from the obtained ferrite sintered body, and a 0.5 mmφ enamel wire was cut into 20 pieces.
Turn, 1M using an impedance analyzer
The magnetic permeability at Hz was measured. The density, dimensional change rate, and magnetic permeability of each ferrite core are shown in (Table 1).
【0020】[0020]
【表1】 [Table 1]
【0021】NiOは本実施例で使用した酸化物の中で
最も反応性が悪いため、NiOを熱処理したものについ
て特に特性の向上が見られる。また、NiO,ZnO,
CuOは混合して熱処理しても化合物はつくらないの
で、各々を単独で熱処理したものと比較して磁気特性、
微細組織のいずれも差異は全く見られない。Since NiO has the lowest reactivity among the oxides used in this example, the characteristics of NiO heat-treated are particularly improved. In addition, NiO, ZnO,
Even if CuO is mixed and heat-treated, no compound is formed, so magnetic properties,
No difference is seen in any of the microstructures.
【0022】(表1)に示した組み合わせ以外の組み合
わせも考えられるがそれらについても有効であることは
言うまでもない。Combinations other than the combinations shown in (Table 1) are conceivable, but it goes without saying that they are also effective.
【0023】(実施例2)出発原料には平均粒径が1〜
4μmのNiO,ZnO,CuO,Fe2O3と平均粒径
が6μmの金属Fe粉を用いて組成比がNiO=8mo
l%、ZnO=32mol%、CuO=12mol%、
Fe2O3=48mol%のフェライトを作製した。Example 2 The starting material has an average particle size of 1 to
Using NiO, ZnO, CuO, Fe 2 O 3 of 4 μm and metallic Fe powder having an average particle size of 6 μm, the composition ratio is NiO = 8mo.
1%, ZnO = 32 mol%, CuO = 12 mol%,
A ferrite containing Fe 2 O 3 = 48 mol% was prepared.
【0024】まず、NiO,ZnO,CuOをモル比で
8:32:12となるように混合し、(表2)に示す温
度で2hr熱処理を行った。これに、Fe2O3と金属F
e粉を重量比で1:1になるように秤量、混合したもの
を上記組成比になるように加えた。そして実施例1と同
様の方法で成型体を作製し、350℃、1hr大気中で
バインドアウトした後、1200℃、4hr大気中で焼
成を行った。First, NiO, ZnO and CuO were mixed in a molar ratio of 8:32:12 and heat-treated for 2 hours at the temperature shown in (Table 2). In addition to this, Fe 2 O 3 and metal F
The e powder was weighed and mixed so that the weight ratio was 1: 1 and the mixture was added so as to have the above composition ratio. Then, a molded body was prepared by the same method as in Example 1, bound at 350 ° C. for 1 hr in the air, and then fired at 1200 ° C. for 4 hr.
【0025】このようにして得られたフェライト焼結体
の密度、寸法変化率および透磁率を(表2)に示した。The density, dimensional change rate and magnetic permeability of the thus obtained ferrite sintered body are shown in (Table 2).
【0026】[0026]
【表2】 [Table 2]
【0027】熱処理温度が480℃のとき、ほかの温度
で熱処理したサンプルに比べ、密度、透磁率が著しく低
く、500℃以上で熱処理した場合に比べ明らかに焼結
性が劣っていることがわかる。一方、熱処理温度が焼成
温度と等しいか低い場合には、熱処理することによって
反応性がむしろ低下し焼結が進行しないため、密度、透
磁率が向上しないものと考えられる。このことは、焼結
時の収縮が少ないため寸法変化率が膨張する傾向を示し
ていることからも説明できる。焼成温度よりも熱処理温
度のほうが低く、熱処理温度が500〜1100℃の間
で透磁率は良好な値を示すが、密度および寸法変化率を
考慮すると600〜1000℃の間で熱処理するのがさ
らに望ましい。It can be seen that when the heat treatment temperature is 480 ° C., the density and magnetic permeability are remarkably lower than those of the samples heat-treated at other temperatures, and the sinterability is clearly inferior to the case of heat treatment at 500 ° C. or higher. . On the other hand, when the heat treatment temperature is equal to or lower than the firing temperature, the reactivity is rather lowered by the heat treatment and the sintering does not proceed, so that it is considered that the density and magnetic permeability are not improved. This can also be explained from the fact that the shrinkage during sintering is small and the dimensional change rate tends to expand. The heat treatment temperature is lower than the firing temperature, and the magnetic permeability shows a good value when the heat treatment temperature is in the range of 500 to 1100 ° C. However, in consideration of the density and the dimensional change rate, the heat treatment is further performed in the range of 600 to 1000 ° C. desirable.
【0028】また、本焼成温度を変化させた場合も考え
られるが、スピネル化が進行する温度以上であれば問題
ないのは言うまでもない。It is also conceivable to change the main firing temperature, but it goes without saying that there is no problem if it is at or above the temperature at which spinelization progresses.
【0029】(実施例3)出発原料に平均粒径が1〜3
μmのNiO,ZnO,CuO,Fe2O3と平均粒径が
6μmの金属Fe粉を用いて組成比がNiO=8mol
%、ZnO=32mol%、CuO=12mol%、F
e2O3=48mol%のフェライトを作製した。(Example 3) The starting material has an average particle size of 1 to 3
Using NiO, ZnO, CuO, Fe 2 O 3 of μm and metallic Fe powder having an average particle size of 6 μm, the composition ratio is NiO = 8 mol
%, ZnO = 32 mol%, CuO = 12 mol%, F
A ferrite of e 2 O 3 = 48 mol% was prepared.
【0030】まず、NiO,ZnO,CuOをモル比で
8:32:12となるように混合し、600℃、2hr
で熱処理した。これに、Fe2O3と金属Fe粉を重量比
で1:1になるように秤量、混合したものを上記組成比
になるように加え、実施例1と同様の方法で成型体を作
製し、350℃、1hr大気中でバインドアウトした
後、(表3)に示した温度で6hr大気中で焼成を行っ
た。First, NiO, ZnO and CuO were mixed at a molar ratio of 8:32:12, and the mixture was heated at 600 ° C. for 2 hours.
Heat treated in. Fe 2 O 3 and metallic Fe powder were weighed and mixed so that the weight ratio was 1: 1 and added to the above composition ratio so as to prepare a molded body in the same manner as in Example 1. After binding out at 350 ° C. for 1 hr in the atmosphere, firing was performed in the atmosphere for 6 hr at the temperature shown in (Table 3).
【0031】(表3)に焼成温度変化させたときの密
度、寸法変化率および透磁率を示す。なお、比較のため
に( )内に熱処理を行っていない同組成の試料の透磁
率も併せて示す。Table 3 shows the density, dimensional change rate, and magnetic permeability when the firing temperature was changed. For comparison, the magnetic permeability of the sample of the same composition without heat treatment is also shown in parentheses.
【0032】[0032]
【表3】 [Table 3]
【0033】焼成温度と透磁率は1300℃までは熱処
理の有無に関わらず正の相関関係があるが、600℃で
熱処理を行ったものは800℃の低温でかなり透磁率が
向上しており、熱処理を行うことによって反応性が向上
したことがわかる。しかしながら、焼成温度が1320
℃以上になると特性は劣化していくものと考えられる。
一方、前処理を行っていない試料は反応性が不十分であ
るため、高温で焼成した試料でも透磁率は向上しない。The firing temperature and the magnetic permeability have a positive correlation up to 1300 ° C. regardless of the presence or absence of the heat treatment, but the one heat treated at 600 ° C. has a considerably improved magnetic permeability at a low temperature of 800 ° C. It can be seen that the reactivity was improved by performing the heat treatment. However, the firing temperature is 1320
It is considered that the characteristics deteriorate as the temperature rises above ° C.
On the other hand, the sample that has not been subjected to the pretreatment has insufficient reactivity, and therefore the magnetic permeability does not improve even in the sample fired at a high temperature.
【0034】組成、焼成時間、熱処理温度を変化させる
ことで最適焼成温度は若干変化するものの特性は本実施
例で得られたものと比べて差異は見られなかった。密
度、寸法変化率および透磁率の点から950〜1200
℃の間で焼成することによって本発明の効果が最も大き
くなる。Although the optimum firing temperature was slightly changed by changing the composition, firing time, and heat treatment temperature, no difference was observed in the characteristics as compared with those obtained in this example. 950 to 1200 in terms of density, dimensional change rate and magnetic permeability
The effect of the present invention is maximized by firing at a temperature between ° C.
【0035】(実施例4)Mn−Znフェライトの出発
原料には酸化物としてMnO,ZnO,Fe2O3、金属
粉体としてMn,Feを用い、組成比がMnO:Zn
O:Fe2O3=24:24:52mol%のフェライト
を作製した。(表4)に示したように実施例18ではM
nOを、実施例19ではFe2O3をそれぞれ800℃、
2hr大気中で熱処理を行い、金属粉体としては実施例
18ではFeを、実施例19ではMnとFeを使用し
た。なお、酸化物と金属粉体は重量比1:1となるよう
に加えた。これらを実施例1と同様の方法で造粒して成
型体を作製し、350℃、1hr大気中でバインドアウ
トした後、1200℃、6hrでN2−O2雰囲気中で焼
成を行った。得られたフェライト焼結体の密度、寸法変
化率および透磁率を(表5)に比較例8、実施例23,
24として示す。Example 4 MnO, ZnO, Fe 2 O 3 as oxides and Mn, Fe as metal powders were used as starting materials for Mn-Zn ferrite, and the composition ratio was MnO: Zn.
O: Fe 2 O 3 = 24: 24: 52 mol% ferrite was produced. As shown in (Table 4), in Example 18, M
nO, and Fe 2 O 3 in Example 19 at 800 ° C.,
Heat treatment was performed in the atmosphere for 2 hours, and as the metal powder, Fe was used in Example 18 and Mn and Fe were used in Example 19. The oxide and the metal powder were added at a weight ratio of 1: 1. These were granulated in the same manner as in Example 1 to prepare a molded body, which was bound out in the atmosphere at 350 ° C. for 1 hr, and then fired at 1200 ° C. for 6 hr in an N 2 —O 2 atmosphere. The density, dimensional change rate and magnetic permeability of the obtained ferrite sintered body are shown in (Table 5) as Comparative Example 8, Example 23,
Shown as 24.
【0036】一方、Ni−Zn−Cu系フェライトの出
発原料には酸化物として平均粒径が1〜4μmのNi
O,ZnO,CuO,Fe2O3と金属粉体として平均粒
径が3〜8μmのNi,Zn,Cu,Fe金属粉を用い
て組成比がNiO=10mol%、ZnO=30mol
%、CuO=12mol%、Fe2O3=48mol%の
フェライトを作製した。上記出発原料に加え、NiO,
ZnO,Fe2O3をそれぞれ単独で800℃、2hr熱
処理を行ったものとNiO,ZnO,CuOを混合して
同時に800℃、2hr熱処理したものを用意した。こ
れらを(表4)に示したような組み合わせで上記組成比
になるように秤量し、実施例1と同様の方法で造粒粉を
作製した。なお、酸化物と金属粉体は重量比で1:1に
なるように混合した。前記の造粒粉を実施例1と同様の
方法で成型体を作製し、350℃、1hr大気中でバイ
ンドアウトした後、1000℃、6hr大気中で焼成を
行った。得られたフェライト焼結体の密度、寸法変化率
および透磁率を(表5)に比較例9、実施例25〜27
として示す。On the other hand, the starting material for the Ni-Zn-Cu ferrite is Ni having an average particle size of 1 to 4 μm as an oxide.
O, ZnO, CuO, Fe 2 O 3 and Ni, Zn, Cu, Fe metal powder having an average particle size of 3 to 8 μm as a metal powder were used, and the composition ratio was NiO = 10 mol%, ZnO = 30 mol.
%, CuO = 12 mol%, Fe 2 O 3 = 48 mol% ferrite was produced. In addition to the above starting materials, NiO,
ZnO and Fe 2 O 3 were individually heat-treated at 800 ° C. for 2 hours, and NiO, ZnO, and CuO were mixed and simultaneously heat-treated at 800 ° C. for 2 hours. These were weighed with the combinations shown in (Table 4) so as to have the above composition ratio, and granulated powder was produced in the same manner as in Example 1. The oxide and the metal powder were mixed in a weight ratio of 1: 1. A molded body was produced from the above-mentioned granulated powder by the same method as in Example 1, bound out at 350 ° C. for 1 hr in air, and then fired at 1000 ° C. for 6 hr in air. The density, dimensional change rate and magnetic permeability of the obtained ferrite sintered body are shown in (Table 5) as Comparative Example 9 and Examples 25 to 27.
As shown.
【0037】[0037]
【表4】 [Table 4]
【0038】[0038]
【表5】 [Table 5]
【0039】(表5)に示したように種々の酸化物、金
属粉体との組み合わせで良好な特性が得られている。し
かしながら、酸化物を熱処理しなかった試料については
反応性が明らかに低下しているのがわかる。As shown in (Table 5), good characteristics were obtained in combination with various oxides and metal powders. However, it can be seen that the reactivity of the sample in which the oxide was not heat-treated was clearly reduced.
【0040】なお、本実施例に示さなかった組み合わせ
でも十分に良好な特性が得られるのは言うまでもない。
ただし、Mn金属粉のような低温で急激に酸化するよう
なものでは、昇温速度の制御、あるいは雰囲気制御など
を行わないと均一な組織が得られないので注意が必要で
ある。また金属粉体の酸化開始温度、融点なども焼結体
の特性に大きな影響を及ぼすので同様に注意が必要であ
る。Needless to say, even with the combinations not shown in this embodiment, sufficiently good characteristics can be obtained.
However, it should be noted that a substance such as Mn metal powder which is rapidly oxidized at a low temperature cannot obtain a uniform structure unless the temperature rising rate is controlled or the atmosphere is controlled. Also, since the oxidation start temperature and melting point of the metal powder have a great influence on the characteristics of the sintered body, the same caution is required.
【0041】[0041]
【発明の効果】以上説明したとおり本発明のフェライト
焼結体の製造方法によれば、加えられた金属粉体が焼成
過程において酸化膨張し粒子間の空隙を埋めることによ
って焼成時の寸法変化を抑制し、さらに出発原料の酸化
物を少なくとも一種類以上熱処理することによりフェラ
イトの焼結性が著しく向上し、寸法変化率が小さく、磁
気特性の優れたフェライト焼結体を低コストで製造する
ことができる。As described above, according to the method for producing a ferrite sintered body of the present invention, the added metal powder oxidatively expands during the firing process and fills the voids between the particles, thereby suppressing the dimensional change during firing. Suppressing, and further heat treating at least one kind of oxide as a starting material, the sinterability of ferrite is significantly improved, the dimensional change rate is small, and the ferrite sintered body with excellent magnetic properties can be manufactured at low cost. You can
Claims (4)
くとも一種類以上を熱処理し粉砕する第一工程と、前記
フェライトを構成する酸化物の少なくとも一種類以上を
全てあるいは一部金属粉体と置換し混合する第二工程
と、この混合粉に有機質の結合剤を加えて混合し造粒粉
を形成する第三工程と、前記造粒粉を圧縮成形して成形
体を得る第四工程と、前記成形体を焼成してフェライト
結晶体を形成する第五工程とを備えたフェライト焼結体
の製造方法。1. A first step of heat-treating at least one or more kinds of oxides constituting a ferrite composition and pulverizing, and substituting at least one or more kinds of oxides constituting the ferrite with metal powders wholly or partly. A second step of mixing, a third step of forming a granulated powder by adding an organic binder to the mixed powder, and a fourth step of obtaining a molded product by compression molding the granulated powder, A fifth step of firing a molded body to form a ferrite crystal body, the method for producing a ferrite sintered body.
0℃である請求項1記載のフェライト焼結体の製造方
法。2. The heat treatment temperature of the first step is 500 to 110.
The method for producing a ferrite sintered body according to claim 1, wherein the temperature is 0 ° C.
0℃である請求項1または2記載のフェライト焼結体の
製造方法。3. The main firing temperature in the fifth step is 800 to 130.
It is 0 degreeC, The manufacturing method of the ferrite sintered compact of Claim 1 or 2.
n,Feのうち少なくとも一種類以上を用いた請求項1
記載のフェライト焼結体の製造方法。4. Mn, Ni, Cu, Z as a metal powder
2. At least one of n and Fe is used.
A method for producing the ferrite sintered body described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7058930A JPH08259315A (en) | 1995-03-17 | 1995-03-17 | Production of ferrite sintered compact |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7058930A JPH08259315A (en) | 1995-03-17 | 1995-03-17 | Production of ferrite sintered compact |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08259315A true JPH08259315A (en) | 1996-10-08 |
Family
ID=13098559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7058930A Pending JPH08259315A (en) | 1995-03-17 | 1995-03-17 | Production of ferrite sintered compact |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08259315A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100588853B1 (en) * | 1999-08-24 | 2006-06-14 | 티디케이가부시기가이샤 | Granule for forming ferrite body, ferrite sintered product and production method thereof |
-
1995
- 1995-03-17 JP JP7058930A patent/JPH08259315A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100588853B1 (en) * | 1999-08-24 | 2006-06-14 | 티디케이가부시기가이샤 | Granule for forming ferrite body, ferrite sintered product and production method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0376319B1 (en) | A composite ferrite material | |
JP2005132715A (en) | Ni-Cu-Zn SYSTEM FERRITE MATERIAL AND ITS MANUFACTURING METHOD | |
EP0623938B1 (en) | Ferrite containing magnetic material and method of manufacture of ferrite by sintering | |
JP3365072B2 (en) | Ferrite material and method for producing the same | |
JPH06215919A (en) | Magnetic substance and manufacture thereof | |
JPH08259315A (en) | Production of ferrite sintered compact | |
JP2762531B2 (en) | Ferrite magnetic body and method of manufacturing the same | |
US6068786A (en) | Low-fire ferrite composition and a process for manufacturing ceramic articles using the said composition | |
JPH11307336A (en) | Manufacture of soft magnetic ferrite | |
JP2830241B2 (en) | Ferrite magnetic material | |
JP2762530B2 (en) | Manufacturing method of ferrite magnetic material | |
JP2762532B2 (en) | Ferrite magnetic body and method of manufacturing the same | |
JP3856722B2 (en) | Manufacturing method of spinel type ferrite core | |
JP2830071B2 (en) | Ferrite magnetic body and method of manufacturing the same | |
JP2760026B2 (en) | Ferrite magnetic body and method of manufacturing the same | |
JP3391108B2 (en) | Magnetic body and method of manufacturing the same | |
JPH03233908A (en) | Ferrite magnetic substance and its manufacture | |
JPH0971455A (en) | Ferrite material and its production | |
JPH09306718A (en) | Ferrite magnetic material and method of fabricating the same | |
JP2000138117A (en) | Manufacture of ferrite material for power source | |
JPH06151148A (en) | Ferrite magnetic body and manufature thereof | |
JPH02177511A (en) | Ferrite magnetic material and manufacture thereof | |
KR100302070B1 (en) | Method for preparing soft magnetic ferrite | |
JPH07115015A (en) | Magnetic body and manufacture thereof | |
JPH05299229A (en) | Ferrite magnetic body and manufacturing method thereof |