JPH08257410A - Photocatalyst-carrying article and photoreaction reactor - Google Patents
Photocatalyst-carrying article and photoreaction reactorInfo
- Publication number
- JPH08257410A JPH08257410A JP7069318A JP6931895A JPH08257410A JP H08257410 A JPH08257410 A JP H08257410A JP 7069318 A JP7069318 A JP 7069318A JP 6931895 A JP6931895 A JP 6931895A JP H08257410 A JPH08257410 A JP H08257410A
- Authority
- JP
- Japan
- Prior art keywords
- photocatalyst
- article
- film
- light
- noble metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011941 photocatalyst Substances 0.000 claims abstract description 48
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 15
- 229910000510 noble metal Inorganic materials 0.000 claims abstract description 14
- 230000002093 peripheral effect Effects 0.000 claims abstract description 6
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 15
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 4
- 239000000835 fiber Substances 0.000 claims description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- 229910002367 SrTiO Inorganic materials 0.000 claims description 2
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 239000002245 particle Substances 0.000 abstract description 7
- 238000000354 decomposition reaction Methods 0.000 abstract description 5
- 238000013032 photocatalytic reaction Methods 0.000 abstract description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 3
- 239000001301 oxygen Substances 0.000 abstract description 3
- 229910052760 oxygen Inorganic materials 0.000 abstract description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 abstract description 3
- 238000006864 oxidative decomposition reaction Methods 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 25
- 238000006243 chemical reaction Methods 0.000 description 17
- 239000000126 substance Substances 0.000 description 15
- 230000001699 photocatalysis Effects 0.000 description 12
- 239000000243 solution Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- 239000013307 optical fiber Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000010419 fine particle Substances 0.000 description 6
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 238000002256 photodeposition Methods 0.000 description 5
- 239000010453 quartz Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 239000010970 precious metal Substances 0.000 description 4
- 239000011882 ultra-fine particle Substances 0.000 description 4
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 235000019253 formic acid Nutrition 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 150000002896 organic halogen compounds Chemical class 0.000 description 1
- 238000001637 plasma atomic emission spectroscopy Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- HKJYVRJHDIPMQB-UHFFFAOYSA-N propan-1-olate;titanium(4+) Chemical compound CCCO[Ti](OCCC)(OCCC)OCCC HKJYVRJHDIPMQB-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- -1 trihalomethane Chemical class 0.000 description 1
Landscapes
- Treating Waste Gases (AREA)
- Physical Water Treatments (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、水および空気中の有害
有機物質を光分解除去するための光触媒担持物品、およ
び該光触媒担持物品の集合体から構成される光反応リア
クターに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photocatalyst-carrying article for photolytically removing harmful organic substances in water and air, and a photoreaction reactor comprising an assembly of the photocatalyst-carrying articles.
【0002】[0002]
【従来の技術】最近、地球規模での環境汚染が問題にな
っている。なかでも、飲料水および空気中の有害有機物
質は、人間の体内に直接取り込まれることから、特に深
刻である。水中の有害有機物としては、トリハロメタン
などのハロゲン化有機化合物があり、従来活性炭などを
充填したフィルターにより除去されてきた。また、空気
中で問題になる有害物としては、NOx,SOx,NH3
などがあり、その除去方法としては活性炭を始めとする
各種吸着剤が用いられてきた。2. Description of the Related Art Recently, environmental pollution on a global scale has become a problem. Among them, harmful organic substances in drinking water and air are particularly serious because they are directly taken into the human body. Hazardous organic substances in water include halogenated organic compounds such as trihalomethane, which have been conventionally removed by a filter filled with activated carbon or the like. Further, as harmful substances which pose a problem in the air, NO x , SO x , NH 3
For example, various adsorbents such as activated carbon have been used as the removal method.
【0003】また、エレクトロニクス産業、特に半導体
の製造には、クリーンな環境が求められており、技術の
進歩に伴い求められるクリーン度も高くなりつつある。
塵埃などはエアフィルターで効率的に除去することがで
きるが、クリーンルーム中に存在する有機分子を除去す
ることは、サイズが小さい上に極低濃度であるために困
難である。この分野で問題となる空気中の有機物として
は、ガラスやウエハー基板上に付着する高沸点炭化水素
類、例えば、クリーンルーム構成材からの脱離物である
アルコール類,ケトン類,エステル類,カルボン酸類等
のC−O結合含有化合物がある。In addition, a clean environment is required in the electronics industry, particularly in the manufacture of semiconductors, and the degree of cleanliness required is increasing with the progress of technology.
Dust and the like can be efficiently removed by an air filter, but it is difficult to remove organic molecules existing in a clean room because of its small size and extremely low concentration. High-boiling hydrocarbons adhering to glass and wafer substrates, such as alcohols, ketones, esters, and carboxylic acids, which are desorbed substances from clean room components, are organic substances in the air that are a problem in this field. There are compounds containing a C—O bond such as
【0004】一方、TiO2 に代表される結晶性半導体
が、光触媒活性を有することはよく知られている(参考
文献:藤島ら,表面,第20巻,563ページ,198
2年)。これは、バンドギャップ以上のエネルギーを持
つ波長の光を吸収することにより、価電子帯の電子が伝
導帯に励起され、価電子帯には正孔が生成する。これら
の励起電子および正孔が直接または間接的に作用し、表
面に吸着した有機物を酸化分解するものである。On the other hand, it is well known that crystalline semiconductors typified by TiO 2 have photocatalytic activity (reference: Fujishima et al., Surface, Vol. 20, pp. 563, 198).
2 years). This is because absorption of light having a wavelength having an energy larger than the band gap excites electrons in the valence band into the conduction band, and holes are generated in the valence band. These excited electrons and holes act directly or indirectly to oxidize and decompose organic substances adsorbed on the surface.
【0005】従来の研究は、反応面積を大きくするため
に、主に半導体微粒子系で行われてきた。しかし、光触
媒では反応が誘起されるには反応表面を受光させる必要
があるため、微粒子化の効果はそれほど大きくない。ま
た、水および空気の浄化に用いる場合には、微粒子の回
収が大きな問題になる。[0005] Conventional research has been conducted mainly on a semiconductor fine particle system in order to increase the reaction area. However, since the photocatalyst needs to receive light on the reaction surface in order to induce the reaction, the effect of atomization is not so great. Further, when used for purification of water and air, the collection of fine particles becomes a big problem.
【0006】現在までに、TiO2 などの半導体を固体
支持体に固定化した種々の光反応リアクターが提案され
ている。例えば、特開昭63−97234号公報には、
透明材料の粒子,フレークまたは繊維の表面に、白金,
パラジウムなどを添加した酸化チタニウムの薄膜を被覆
させた固定化光触媒が記載されている。特開昭61−9
7102号公報には、光ファイバーの周表面に半導体微
粒子を担持させて光ファイバーを通して、その周表面に
ある反応系に光を照射することが記載されている。また
同様に、光学ファイバー表面に膜状半導体を固定化する
ものが発表されている(参考文献:D.C.Gape
n,米国ウイスコンシン−マジソン大学修士論文,19
91)。これらによれば、光学ファイバー径を小さく
し、多数のファイバーをまとめて使用することにより、
光反応表面積を増大させることが可能になる。To date, various photoreaction reactors in which a semiconductor such as TiO 2 is immobilized on a solid support have been proposed. For example, JP-A-63-97234 discloses that
On the surface of transparent material particles, flakes or fibers, platinum,
An immobilized photocatalyst coated with a thin film of titanium oxide added with palladium or the like is described. Japanese Patent Laid-Open No. 61-9
Japanese Patent Publication No. 7102 describes that semiconductor fine particles are carried on the peripheral surface of an optical fiber, and the reaction system on the peripheral surface is irradiated with light through the optical fiber. Similarly, a device in which a film-shaped semiconductor is immobilized on the surface of an optical fiber has been announced (reference: DC Gap).
n, USA Wisconsin-Madison University Master's Thesis, 19
91). According to these, by reducing the optical fiber diameter and using many fibers together,
It becomes possible to increase the photoreactive surface area.
【0007】しかしながら実際には、光触媒担持−光フ
ァイバー系でも、微粒子系を超える光触媒活性が得られ
ていないのが現状である。However, in reality, the photocatalytic support-optical fiber system does not have a photocatalytic activity higher than that of the fine particle system.
【0008】[0008]
【発明が解決しようとする課題】本発明は、大きな光反
応効率を有する光触媒担持物品、および多数の該光触媒
担持物品から構成される高効率光反応リアクターを提供
することを目的としている。SUMMARY OF THE INVENTION It is an object of the present invention to provide a photocatalyst-supporting article having a large photoreaction efficiency, and a high-efficiency photoreaction reactor composed of a large number of the photocatalyst-supporting articles.
【0009】[0009]
【課題を解決するための手段】本発明者らは、鋭意研究
の結果、光触媒を被覆した光透過性物品表面上に白金等
の貴金属超微粒子を担持することにより、その光触媒活
性を飛躍的に向上させることに成功した。Means for Solving the Problems As a result of intensive research, the present inventors have dramatically increased the photocatalytic activity by supporting ultrafine particles of precious metal such as platinum on the surface of a light-transmitting article coated with a photocatalyst. I succeeded in improving it.
【0010】すなわち、本発明は、光触媒の層が被覆さ
れた表面部分と、光を入射させるために光触媒の層が被
覆されていない表面部分とを有する光透過性物品からな
る光触媒担持物品において、前記光触媒層の外側表面に
貴金属が担持されていることを特徴とする光触媒担持物
品である。That is, the present invention provides a photocatalyst-carrying article comprising a light-transmissive article having a surface portion coated with a photocatalyst layer and a surface portion not coated with the photocatalyst layer for allowing light to enter. The photocatalyst-carrying article is characterized in that a noble metal is carried on the outer surface of the photocatalyst layer.
【0011】本発明の光触媒反応機構を、模式的に示し
た図1を用いて説明する。図1は透明棒状の光触媒担持
物品の横断面を示し、物品1の周表面は酸化チタニウム
のような光触媒膜2で被覆され、さらに光触媒膜の表面
には白金のような貴金属超微粒子3が担持されている。
光触媒膜で被覆されていない物品1の一端から励起光
(紫外および/または可視光)4を入射させると、光4
は物品に被覆された光触媒2に吸収されて、伝導帯5に
励起された励起電子6と価電子帯7の正孔8を生じさせ
る。励起電子6は、光触媒表面に担持された貴金属超微
粒子3に集められると同時に、正孔8は光触媒表面に吸
着している有害有機物粒子9に向かって移動し、有害有
機物粒子9は有機物粒子の周辺の酸素および正孔によっ
て光触媒反応を生じて酸化分解して、無害の分解生成物
10に変化させる。The photocatalytic reaction mechanism of the present invention will be described with reference to FIG. FIG. 1 shows a cross section of a transparent rod-shaped photocatalyst-carrying article. The peripheral surface of the article 1 is covered with a photocatalyst film 2 such as titanium oxide, and the surface of the photocatalyst film carries precious metal ultrafine particles 3 such as platinum. Has been done.
When excitation light (ultraviolet and / or visible light) 4 is incident from one end of the article 1 not covered with the photocatalytic film, the light 4
Is absorbed by the photocatalyst 2 coated on the article to generate excited electrons 6 excited in the conduction band 5 and holes 8 in the valence band 7. The excited electrons 6 are collected by the noble metal ultrafine particles 3 supported on the photocatalyst surface, and at the same time, the holes 8 move toward the harmful organic substance particles 9 adsorbed on the photocatalyst surface, and the harmful organic substance particles 9 are converted into organic substance particles. A photocatalytic reaction is generated by oxygen and holes in the periphery to cause oxidative decomposition and change into a harmless decomposition product 10.
【0012】本発明により、光触媒反応速度が著しく向
上する主な原因は、電荷分離の促進であると考えられ
る。もし、白金が担持されていない場合には、光吸収に
より光触媒中に生じた電子−正孔対の大半は、再結合し
て熱に変わる。本発明におけるように、白金等の貴金属
が光触媒膜の表面に担持されていると、貴金属が担持し
ていない光触媒膜の内側表面(光透過性物品と光触媒膜
との境界面)から入射した励起光が光触媒膜に効果的に
吸収され、発生した励起電子が光触媒膜の表面に向かっ
て移動し、そこにある貴金属上に集まり還元反応に優先
的に使われるために、再結合が抑制される。そして残っ
た正孔は有機物の分解に使われる。この結果、光エネル
ギーが有効に化学反応に利用でき、反応速度が増大する
ものと考えられる。According to the present invention, it is considered that the main cause of the remarkable increase in the photocatalytic reaction rate is the promotion of charge separation. If platinum is not supported, most of the electron-hole pairs generated in the photocatalyst by light absorption are recombined and converted into heat. When a noble metal such as platinum is supported on the surface of the photocatalyst film as in the present invention, the excitation incident from the inner surface of the photocatalyst film not supported by the noble metal (the boundary surface between the light transmissive article and the photocatalyst film) Light is effectively absorbed by the photocatalyst film, and the generated excited electrons move toward the surface of the photocatalyst film, gather on the noble metal there and are preferentially used for the reduction reaction, so that recombination is suppressed. . The remaining holes are used for decomposition of organic substances. As a result, it is considered that the light energy can be effectively used in the chemical reaction and the reaction rate is increased.
【0013】また、もし、白金が光触媒膜の内部に存在
する場合には、(1)励起電子が光触媒膜の表面に向か
って移動するが、光触媒膜の表面の貴金属は少ないの
で、この貴金属上に集まる励起電子も多くなく、従って
還元反応も生じにくいので正孔との再結合が生じ易くな
り、(2)光触媒膜の内部を通過する励起光が白金微粒
子により吸収されやすい、という二つの理由で、反応速
度はそれほど増大しない。Further, if platinum exists inside the photocatalyst film, (1) the excited electrons move toward the surface of the photocatalyst film, but the amount of precious metal on the surface of the photocatalyst film is small. There are not many excited electrons that collect in the space, and therefore the reduction reaction is less likely to occur, so that recombination with holes is likely to occur, and (2) the excitation light passing through the inside of the photocatalytic film is easily absorbed by the platinum fine particles. Therefore, the reaction rate does not increase so much.
【0014】本発明において、光透過性物品の材料とし
ては、その物品の上に被覆する光触媒を励起することが
できる紫外光および/または可視光を透過するもの、好
ましくは関係する光の波長に対する透過率が、材料の長
さ1cm当り96.0%以上のものであれば、何でも用
いることができるが、特に耐光性に優れた石英ガラス,
パイレックスガラス,ソーダライムガラスなどのガラス
ファイバーを好適に用いることができる。In the present invention, the material of the light-transmissive article is a material that transmits ultraviolet light and / or visible light capable of exciting the photocatalyst coated on the article, preferably for the wavelength of the relevant light. Any material can be used as long as it has a transmittance of 96.0% or more per 1 cm of the length of the material, but quartz glass having excellent light resistance,
Glass fibers such as Pyrex glass and soda lime glass can be preferably used.
【0015】光透過性線状物品は、その断面が円形,楕
円形,多角形等の断面を有する細長い物品であり、その
太さは細ければ細い程良いが、あまり細くなると機械的
強度が低下するので、直径が0.1mm以上であること
が望ましい。また、太さの上限はないが、太くなるほど
ファイバーの体積当りの光反応効率は低下するので、1
0mm以下が好ましい。特に好ましい直径は、0.2〜
1mmである。また、光透過性線状物品の長さは、特に
限定はないが、太さの10倍〜10万倍(好ましくは3
0倍〜3万倍、より好ましくは100倍〜5000倍)
で、通常は5cm〜10mである。また上記細長い形状
の他にも、板状、フィルム状のものも好ましく用いられ
る。The light-transmissive linear article is an elongated article having a circular, elliptical, polygonal or other cross-section, and the thinner it is, the better. However, if it is too thin, the mechanical strength is small. Therefore, the diameter is preferably 0.1 mm or more. Although there is no upper limit to the thickness, the photoreaction efficiency per volume of the fiber decreases as the thickness increases.
It is preferably 0 mm or less. A particularly preferred diameter is 0.2-
It is 1 mm. The length of the light-transmissive linear article is not particularly limited, but is 10 to 100,000 times the thickness (preferably 3 times).
0 times to 30,000 times, more preferably 100 times to 5000 times)
Then, it is usually 5 cm to 10 m. In addition to the above elongated shape, a plate shape or a film shape is also preferably used.
【0016】光透過性物品上に担持する光触媒の種類
は、対象となる有害有機物質および光源の種類などを考
慮の上、TiO2,ZnO,ZnS,WO3,Fe2O3,
GaAs,CdSe,GaAsP,CdS,SrTiO
3,GaP,In2O3,MoO3等の中から選定される。
光触媒活性の高さと化学的な安定性から、現在最も広範
に用いられている光触媒はTiO2 であり、本発明にも
特に好適に使用することが可能である。しかしながら、
本発明に使用される光触媒はこれに限定されることはな
く、従来光触媒として知られているものは如何なるもの
でも使用することができる。The type of photocatalyst supported on the light-transmissive article is TiO 2 , ZnO, ZnS, WO 3 , Fe 2 O 3 , in consideration of the type of harmful organic substance and the type of light source.
GaAs, CdSe, GaAsP, CdS, SrTiO
3 , GaP, In 2 O 3 , MoO 3, etc. are selected.
Due to its high photocatalytic activity and chemical stability, the most widely used photocatalyst at present is TiO 2 , which can be particularly preferably used in the present invention. However,
The photocatalyst used in the present invention is not limited to this, and any conventionally known photocatalyst can be used.
【0017】これらの光触媒は、上記細長い光透過性物
品の周表面に、また板状、フィルム状、の光透過性物品
の主表面に被覆される。そして、細長い光透過性物品お
よび、板状、フィルム状の光透過性物品の端面は光触媒
が被覆されずに、光を入射させるための表面となる。These photocatalysts are coated on the peripheral surface of the elongated light-transmitting article and on the main surface of the plate-like or film-like light-transmitting article. Then, the end faces of the elongated light-transmitting article and the plate-like or film-like light-transmitting article are not covered with the photocatalyst and serve as surfaces for allowing light to enter.
【0018】光触媒膜の厚みは、薄すぎると、光を十分
に吸収できない。一方、厚すぎると、膜中で生じた光キ
ャリヤーが外側表面まで拡散できないために、触媒活性
が低下する。従って、最適値が存在することになる。そ
の値は、用いる光触媒の種類によって異なるが、数nm
〜数μmの範囲であり、TiO2 の場合、より好ましく
は100〜1000nmの範囲内にある。If the photocatalyst film is too thin, it cannot absorb light sufficiently. On the other hand, if it is too thick, photocatalyst generated in the film cannot diffuse to the outer surface, so that the catalytic activity is lowered. Therefore, the optimum value exists. The value depends on the type of photocatalyst used, but it is several nm.
To several μm, and in the case of TiO 2 , it is more preferably in the range of 100 to 1000 nm.
【0019】光触媒膜の外側表面に貴金属を担持する方
法としては、含浸法,沈澱法,イオン交換法,光電析
法,混練法等を用いることができる。貴金属としては、
還元反応の触媒になる白金,金,銀等が有効であるが、
なかでも白金を最も好適に用いることができる。その担
持量は0.01〜20重量%の範囲で用いることが望ま
しく、さらには0.1〜2.5重量%の範囲が特に好ま
しい。As a method for supporting the noble metal on the outer surface of the photocatalyst film, an impregnation method, a precipitation method, an ion exchange method, a photodeposition method, a kneading method or the like can be used. As a precious metal,
Platinum, gold, silver, etc., which are catalysts for reduction reactions, are effective
Of these, platinum can be most preferably used. It is desirable to use the supported amount in the range of 0.01 to 20% by weight, particularly preferably 0.1 to 2.5% by weight.
【0020】この光触媒担持線状物品の複数本が、その
一端は光源からの光を最大限に導入するために密に束ね
られ、他端である反応部分は反応効率を上げるために粗
に束ねられて、汚染空気または汚染水が入る入り口と、
出ていく出口を有するジャケットの中に収納されること
により、反応リアクターにすることができる。A plurality of the photocatalyst-supporting linear articles are tightly bundled at one end for maximally introducing the light from the light source, and the reaction portion at the other end is roughly bundled for increasing the reaction efficiency. And an entrance for contaminated air or contaminated water,
It can be made into a reaction reactor by being housed in a jacket with an outgoing outlet.
【0021】[0021]
【実施例】以下、実施例に基づいて本発明を詳細に説明
するが、本発明はかかる実施例にのみに限定されるもの
ではない。光触媒担持体としては、石英製ロッド(直径
10mm,長さ100mm)を用い、以下で説明するゾ
ルゲル法を用いてTiO2 薄膜のコーティングを行なっ
た。チタン(IV)プロポキシド28.39gを18.
43gの無水エタノールに添加し、室温で約3分間攪拌
した後に、氷冷した(溶液A)。エタノール(18.4
3g),水(1.8g),塩酸(0.29g)の混合水
溶液を調製した(溶液B)。溶液Aを攪拌しながら、溶
液Bをビュレットを用いてゆっくりと滴下することによ
り、均一混合溶液とした(溶液C)。前記石英製ロッド
を溶液C中に3cm浸漬した後に、ディッピング装置を
用いて、1.8cm/分の一定速度で引き上げた。空気
中で十分に乾燥させた後に、500℃で10分間焼成し
た。The present invention will be described in detail below based on examples, but the present invention is not limited to these examples. A quartz rod (diameter 10 mm, length 100 mm) was used as the photocatalyst carrier, and a TiO 2 thin film was coated by the sol-gel method described below. Titanium (IV) propoxide 28.39 g was added to 18.
After adding to 43 g of absolute ethanol and stirring at room temperature for about 3 minutes, it was ice-cooled (solution A). Ethanol (18.4
A mixed aqueous solution of 3 g), water (1.8 g) and hydrochloric acid (0.29 g) was prepared (solution B). While stirring Solution A, Solution B was slowly added dropwise using a buret to obtain a homogeneous mixed solution (Solution C). After the quartz rod was immersed in the solution C for 3 cm, it was pulled up at a constant rate of 1.8 cm / min using a dipping device. After being sufficiently dried in air, it was baked at 500 ° C. for 10 minutes.
【0022】X線回折パターン分析の結果、TiO2 は
結晶化しており、結晶形はアナターゼであることが明ら
かになった。また、別途ガラス基板上に全く同じ方法で
コーティングしたサンプルを作製し、破断面のSEM観
察および接触式膜厚測定計を用いてTiO2膜厚を決定
した。その結果上記TiO2膜の厚みは約100nmで
あった。As a result of X-ray diffraction pattern analysis, it was revealed that TiO 2 was crystallized and the crystal form was anatase. Separately, another sample was prepared by coating the same on a glass substrate in exactly the same manner, and the TiO 2 film thickness was determined using SEM observation of the fracture surface and a contact-type film thickness meter. As a result, the thickness of the TiO 2 film was about 100 nm.
【0023】次に、光電析法によるTiO2 表面への白
金担持を試みた。用いた反応装置を図2に示す。0.1
モル/LのHCl溶液10mLに塩化白金酸を添加し、
0.02モル/Lの溶液を調製する。炭酸ナトリウムで
中和した後に、酢酸を添加し、pH=4に調節する(溶
液D)。ゾルゲルTiO2 膜11をコーティングした石
英ロッド12を反応容器に固定した。さらに、溶液D1
3を反応容器に入れて、アルゴンガスを流入口14を通
じて15分間フローすることにより、溶存酸素を除去し
てから系を閉じた。恒温水槽中に反応容器を浸漬し、反
応温度を55℃に保持した。光源として、250W高圧
水銀灯15(松尾産業,MSスポットキュアー)を用
い、光ファイバー製ライトガイド16によりゴム製スト
ッパー17を用いてカップラー18で接続したサンプル
ロッド12に光を導入した。サンプルロッド毎に光照射
時間を、4時間(サンプルa)、6時間(サンプル
b)、23時間(サンプルc)と変化させて、異なるP
t担持量を有するTiO2 膜11で被覆されたサンプル
を調製した。Next, an attempt was made to carry platinum on the surface of TiO 2 by the photo-deposition method. The reactor used is shown in FIG. 0.1
Chloroplatinic acid was added to 10 mL of a mol / L HCl solution,
Prepare a 0.02 mol / L solution. After neutralization with sodium carbonate, acetic acid is added and the pH is adjusted to 4 (solution D). The quartz rod 12 coated with the sol-gel TiO 2 film 11 was fixed to the reaction vessel. Furthermore, solution D1
3 was put into a reaction vessel, and dissolved oxygen was removed by flowing argon gas through the inlet 14 for 15 minutes, and then the system was closed. The reaction vessel was immersed in a constant temperature water bath and the reaction temperature was maintained at 55 ° C. A 250 W high-pressure mercury lamp 15 (Matsuo Sangyo, MS Spot Cure) was used as a light source, and light was introduced into a sample rod 12 connected by a coupler 18 using a rubber stopper 17 by an optical fiber light guide 16. The light irradiation time for each sample rod is changed to 4 hours (sample a), 6 hours (sample b), and 23 hours (sample c), and different P
A sample coated with a TiO 2 film 11 having a t loading was prepared.
【0024】プラズマ発光分析法により各サンプルの白
金析出量を定量した結果、光触媒に対してそれぞれ、
4.61重量%(サンプルa),4.74重量%(サン
プルb),および16.1(サンプルc)なる値が得ら
れ、光照射時間に伴って白金析出量が増大していること
が明らかになった。As a result of quantifying the amount of platinum deposited in each sample by plasma emission spectrometry,
The values of 4.61% by weight (sample a), 4.74% by weight (sample b), and 16.1 (sample c) were obtained, and the platinum deposition amount increased with the light irradiation time. It was revealed.
【0025】光触媒活性の評価を行うために、蟻酸の分
解反応を採用した。130mLの1モル/L蟻酸水溶液
を入れた光電析実験で用いたのと同じ反応容器(内容積
157mL)に、光触媒担持石英ロッドを3cmの深さ
まで挿入した。光電析実験におけるものと同じ光源を用
いて、光照射をおこない、発生したCO2 をガスクロマ
トグラフィーで定量した。図3に各サンプルを光触媒と
して用いた場合の累積CO2発生量(単位;光触媒1g
あたり発生したCO2量(モル))の経時変化を示して
いる。図中、a(黒四角■)、b(白丸○)、およびc
(黒三角▲)はそれぞれサンプルロッドA、B、および
Cについてのデータである。これより、白金を担持する
ことにより、CO2 発生速度が飛躍的に増大しているこ
とがわかる。さらに、従来最も光触媒活性が高いとされ
ているTiO2 微粒子(Degussa製,P−25)
の場合(図中R(黒丸●)で示す)、光照射5時間での
累積発生CO2 量0.0006モル/gに比べて、単位
重量当りの光触媒活性は光照射5時間での発生CO2 量
約0.025〜0.030モル/gであり、非常に増加
していることが明らかである。In order to evaluate the photocatalytic activity, a decomposition reaction of formic acid was adopted. The photocatalyst-supporting quartz rod was inserted to a depth of 3 cm in the same reaction vessel (internal volume 157 mL) used in the photodeposition experiment containing 130 mL of 1 mol / L formic acid aqueous solution. The same light source as used in the photodeposition experiment was used to perform light irradiation, and the generated CO 2 was quantified by gas chromatography. Fig. 3 shows the cumulative amount of CO 2 generated when each sample was used as a photocatalyst (unit: photocatalyst 1 g
The change over time in the amount of CO 2 (mol) generated per time is shown. In the figure, a (black square), b (white circle), and c
(Black triangles) are data for sample rods A, B, and C, respectively. From this, it is understood that the CO 2 generation rate is dramatically increased by supporting platinum. Furthermore, TiO 2 fine particles (made by Degussa, P-25), which have been said to have the highest photocatalytic activity, are conventionally used.
In the case of R (indicated by R (black circle) in the figure), the photocatalytic activity per unit weight was higher than that of CO generated in 5 hours of light irradiation, compared with the cumulative amount of CO 2 generated in 5 hours of light irradiation of 0.0006 mol / g. The amount of 2 is about 0.025 to 0.030 mol / g, and it is clear that the amount is greatly increased.
【0026】[0026]
【発明の効果】以上説明したように、本発明の貴金属担
持光触媒膜被覆物品、およびその集合体より成る反応リ
アクターは、著しく高い光触媒反応効率を有するもので
ある。従って、水および空気中の有害有機物を、効率よ
く分解除去することが可能になる。Industrial Applicability As described above, the noble metal-supported photocatalytic film-coated article of the present invention and the reaction reactor comprising the aggregate thereof have a remarkably high photocatalytic reaction efficiency. Therefore, it is possible to efficiently decompose and remove harmful organic substances in water and air.
【図1】本発明の貴金属担持光触媒膜被覆物品およびそ
の作用を模式的に示した説明図である。FIG. 1 is an explanatory view schematically showing a noble metal-supported photocatalyst film-coated article of the present invention and its action.
【図2】光電析法による貴金属担持実験に用いた反応装
置を模式的に示した説明図である。FIG. 2 is an explanatory view schematically showing a reaction device used in a noble metal supporting experiment by a photodeposition method.
【図3】本発明の光触媒活性評価結果を表わす説明図で
ある。FIG. 3 is an explanatory diagram showing the results of evaluating the photocatalytic activity of the present invention.
1 光透過性物品 2 光触媒膜 3 貴金属超微粒子 4 紫外および/または可視光 5 伝導帯 6 励起電子 7 価電子帯 8 正孔 9 有害有機物 10 無害分解生成物 11 ゾルゲルTiO2膜 12 石英ロッド 13 蟻酸水溶液(1M) 14 流入口 15 光源(高圧水銀灯) 16 光ファイバー製ライトガイド 17 ゴム製ストッパー 18 カップラーDESCRIPTION OF SYMBOLS 1 Light-transmissive article 2 Photocatalyst film 3 Noble metal ultrafine particles 4 Ultraviolet and / or visible light 5 Conduction band 6 Excited electron 7 Valence band 8 Hole 9 Harmful organic substance 10 Harmless decomposition product 11 Sol gel TiO 2 film 12 Quartz rod 13 Formic acid Aqueous solution (1M) 14 Inlet 15 Light source (high pressure mercury lamp) 16 Optical fiber light guide 17 Rubber stopper 18 Coupler
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/58 B01J 23/66 M 23/60 23/89 M 23/62 27/045 M 23/644 27/185 M 23/652 C02F 1/32 23/66 B01D 53/34 115 23/89 53/36 G 27/045 J 27/185 ZABG C02F 1/32 B01J 23/64 101M 103M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01J 23/58 B01J 23/66 M 23/60 23/89 M 23/62 27/045 M 23 / 644 27/185 M 23/652 C02F 1/32 23/66 B01D 53/34 115 23/89 53/36 G 27/045 J 27/185 ZABG C02F 1/32 B01J 23/64 101M 103M
Claims (6)
を入射させるために光触媒の層が被覆されていない表面
部分とを有する光透過性物品からなる光触媒担持物品に
おいて、前記光触媒層の外側表面に貴金属が担持されて
いることを特徴とする光触媒担持物品。1. A photocatalyst-carrying article comprising a light-transmissive article having a surface portion coated with a layer of the photocatalyst and a surface portion not coated with the layer of the photocatalyst for allowing light to enter. A photocatalyst-carrying article, wherein a noble metal is carried on the outer surface.
であり、その周表面に前記光触媒の層が被覆されている
請求項1記載の光触媒担持物品。2. The photocatalyst-carrying article according to claim 1, wherein the article has a columnar shape or a fiber shape, and a peripheral surface of the article is coated with the photocatalyst layer.
0.1〜2.5重量%の範囲である請求項1記載の光触
媒担持物品。3. The photocatalyst-carrying article according to claim 1, wherein the amount of the noble metal supported is in the range of 0.1 to 2.5% by weight based on the photocatalyst.
S,WO3,Fe2O3,GaAs,CdSe,GaAs
P,CdS,SrTiO3 ,GaP,In2O3,および
MoO3 からなる群より選ばれた少なくとも1種である
請求項1記載の光触媒担持物品。4. The photocatalyst is TiO 2 , ZnO, Zn
S, WO 3 , Fe 2 O 3 , GaAs, CdSe, GaAs
The photocatalyst-carrying article according to claim 1, which is at least one selected from the group consisting of P, CdS, SrTiO 3 , GaP, In 2 O 3 , and MoO 3 .
よび銀からなる群より選ばれた少なくとも1種である請
求項1記載の光触媒担持物品。5. The photocatalyst-carrying article according to claim 1, wherein the noble metal is at least one selected from the group consisting of platinum, gold, palladium and silver.
が、その一端を密に束ねられ、その他端を粗に束ねられ
て、入口と出口を有するジャケットの中に収納された光
反応リアクター。6. A photoreactor in which a plurality of the photocatalyst-carrying articles according to claim 2 are tightly bundled at one end and roughly bundled at the other end and housed in a jacket having an inlet and an outlet. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06931895A JP3731217B2 (en) | 1995-03-28 | 1995-03-28 | Photoreactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06931895A JP3731217B2 (en) | 1995-03-28 | 1995-03-28 | Photoreactor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08257410A true JPH08257410A (en) | 1996-10-08 |
JP3731217B2 JP3731217B2 (en) | 2006-01-05 |
Family
ID=13399098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06931895A Expired - Fee Related JP3731217B2 (en) | 1995-03-28 | 1995-03-28 | Photoreactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3731217B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997031703A1 (en) * | 1996-02-28 | 1997-09-04 | Hoya Corporation | Glass material for carrying a photocatalyst, filter device using the same and light irradiating method |
WO1997041069A1 (en) * | 1996-04-30 | 1997-11-06 | Tao Inc. | Sink-and-float body for purification and purificator |
JPH10165821A (en) * | 1996-12-09 | 1998-06-23 | Toshiba Lighting & Technol Corp | Photocatalyst body, light source and lighting fixture |
JPH1133357A (en) * | 1997-07-17 | 1999-02-09 | Sumitomo Heavy Ind Ltd | Photocatalyst reaction device |
JPH11207149A (en) * | 1998-01-23 | 1999-08-03 | Akio Komatsu | Metal carrying photocatalyst type air purifier |
JP2000275971A (en) * | 1999-03-25 | 2000-10-06 | Toshiba Corp | Image recorder and organic solvent filter |
JP2002172334A (en) * | 2000-12-06 | 2002-06-18 | Nippon Shokubai Co Ltd | Photocatalyst for removing nitrogen oxide |
JP2005349373A (en) * | 2004-06-08 | 2005-12-22 | Shinshu Univ | Light-leaking photocatalyst fiber |
KR100969643B1 (en) * | 2008-02-21 | 2010-07-14 | 성균관대학교산학협력단 | Method for decomposing aromatic cyclic compound using photolysis catalyst double layer with different band gap energy |
CN113481546A (en) * | 2021-08-13 | 2021-10-08 | 辽宁大学 | Zinc oxide/zinc sulfide composite film photoelectrode and solar photo-induced precious metal deposition recovery device |
-
1995
- 1995-03-28 JP JP06931895A patent/JP3731217B2/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997031703A1 (en) * | 1996-02-28 | 1997-09-04 | Hoya Corporation | Glass material for carrying a photocatalyst, filter device using the same and light irradiating method |
WO1997041069A1 (en) * | 1996-04-30 | 1997-11-06 | Tao Inc. | Sink-and-float body for purification and purificator |
JPH10165821A (en) * | 1996-12-09 | 1998-06-23 | Toshiba Lighting & Technol Corp | Photocatalyst body, light source and lighting fixture |
JPH1133357A (en) * | 1997-07-17 | 1999-02-09 | Sumitomo Heavy Ind Ltd | Photocatalyst reaction device |
JPH11207149A (en) * | 1998-01-23 | 1999-08-03 | Akio Komatsu | Metal carrying photocatalyst type air purifier |
JP2000275971A (en) * | 1999-03-25 | 2000-10-06 | Toshiba Corp | Image recorder and organic solvent filter |
JP2002172334A (en) * | 2000-12-06 | 2002-06-18 | Nippon Shokubai Co Ltd | Photocatalyst for removing nitrogen oxide |
JP2005349373A (en) * | 2004-06-08 | 2005-12-22 | Shinshu Univ | Light-leaking photocatalyst fiber |
KR100969643B1 (en) * | 2008-02-21 | 2010-07-14 | 성균관대학교산학협력단 | Method for decomposing aromatic cyclic compound using photolysis catalyst double layer with different band gap energy |
CN113481546A (en) * | 2021-08-13 | 2021-10-08 | 辽宁大学 | Zinc oxide/zinc sulfide composite film photoelectrode and solar photo-induced precious metal deposition recovery device |
CN113481546B (en) * | 2021-08-13 | 2024-03-22 | 辽宁大学 | Zinc oxide/zinc sulfide composite film photoelectrode and recovery device for solar photo-deposited noble metal |
Also Published As
Publication number | Publication date |
---|---|
JP3731217B2 (en) | 2006-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6902653B2 (en) | Apparatus and method for photocatalytic purification and disinfection of fluids | |
Blount et al. | Transparent thin-film TiO2 photocatalysts with high activity | |
US5449443A (en) | Photocatalytic reactor with flexible supports | |
Mendive et al. | New insights into the mechanism of TiO2 photocatalysis: thermal processes beyond the electron–hole creation | |
US20030050196A1 (en) | Photocatalyst compositions and methods for making the same | |
AU2006317512B2 (en) | Fluid purification using photocatalysis | |
US20080308405A1 (en) | Optical Fiber Photocatalytic Reactor And Process For The Decomposition Of Nitrogen Oxide Using Said Reactor | |
CN1350477A (en) | A photocatalyst | |
CN103373750A (en) | Light source device for removing organic matters and heavy metal ions by visible light and preparation method thereof | |
JPH08257410A (en) | Photocatalyst-carrying article and photoreaction reactor | |
Benmami et al. | Supported nanometric titanium oxide sols as a new efficient photocatalyst | |
US20020081246A1 (en) | Photocatalytic filter | |
JPH0417098B2 (en) | ||
Monge et al. | Ozone formation from illuminated titanium dioxide surfaces | |
US20050224335A1 (en) | Apparatus and method for photocatalytic purification and disinfection of fluids | |
JP3987289B2 (en) | Photocatalyst, method for producing the same, and photocatalyst using the same | |
JPH11335187A (en) | Photocatalyst module and equipment for photocatalyst | |
JP3987395B2 (en) | Visible light responsive photocatalyst, method for producing the same, and photocatalyst using the same | |
JP2000237543A (en) | Photocatalytic device | |
JP3202863B2 (en) | Photocatalyst-supported linear articles | |
JP3612552B2 (en) | Photoreaction catalyst | |
JP3476302B2 (en) | Method and apparatus for removing harmful gas | |
JP4570637B2 (en) | Visible light responsive photocatalyst, method for producing the same, and photocatalyst using the same | |
JP4348901B2 (en) | Photocatalytic material | |
JPH10180044A (en) | Fluid purifier utilizing photocatalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040623 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050510 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050711 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050920 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051003 |
|
LAPS | Cancellation because of no payment of annual fees |